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ABSTRACT: 

 

The rapid and accurate acquisition of crop planting spatial location information using remote sensing is one of the important guarantees 

to maintain the sustainable development of agriculture. However, the accuracy of crop identification by remote sensing is currently 

limited by many factors, such as the influence of other ground objects and the lack of time-series data. To overcome the above problems, 

this paper proposes an algorithm named improved artificial immune network crop recognition algorithm based on dispersed vegetation 

index genetic chain (IaiNet). This algorithm can be combined with multi-spectral data from Sentinel-2 series satellites for crop 

identification. As a test case, we identified and evaluated 3 different crop recognition scenarios in Henan, China. The results show that 

IaiNet can accurately identify the spatial distribution of crop planting. In all identification results, the accuracy is higher than 90%, and 

the kappa coefficient is greater than 0.9. In addition, the crop recognition results of IaiNet are significantly better than the random 

forest algorithm and support vector machine algorithm. 

 

 

 

 

 

1. INTRODUCTION 

Agricultural production is the basis for maintaining human 

survival and health and is an important strategic pillar industry 

for safeguarding the country's economy, people's livelihood, and 

political stability. In the natural resource environment, 

agriculture occupies a pivotal position, and sufficient agricultural 

resources are an important prerequisite for ensuring social 

stability and realizing sustainable development strategies. At 

present, agricultural production is continuously affected by 

factors such as changes in farming methods (Laporte et al., 2021; 

Wang, Lu, 2020), population growth (Nicolas et al., 2015), and 

climate change (Malhi et al., 2021), resulting in fluctuations in 

agricultural planting areas and grain yields. At present, the use of 

all advanced means to ensure the safety of agricultural production 

is one of the great important issues by governments around the 

world. 

As one of the important agricultural factors, the spatial location 

information of crop planting distribution is the basis for 

formulating a series of agricultural security policies and 

economic plans. Various studies on agricultural production (such 

as yield estimation (Jiang et al., 2020), growth status monitoring 

(Tja et al., 2020), etc.) all rely on the accurate identification of 

crops. The ability to obtain the timely and accurate spatial 

distribution of crops and cultivated land will have a positive 

effect on the sustainable development of agriculture. 

In recent years, with the development of satellite remote sensing 

technology, this technology has gradually provided strong data 

support for the investigation of the spatial distribution of crops. 

There are various methods for calculating the spatial distribution 

position of crops based on remote sensing observation data, 

including traditional supervised classification models, such as 
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maximum likelihood (Strahler, 1980), support vector machine 

(Cortes, Vapnik, 1995), artificial neural network (Gong et al., 

1996), etc.; as well as emerging models and theories such as deep 

learning (Zhang et al., 2020). However, traditional methods are 

easily affected by other ground objects, resulting in lower 

recognition accuracy (Maxwell et al., 2018), and deep learning 

relies more on a large number of field investigations, professional 

personnel training, and stronger computer computing power (Ma 

et al., 2019; Vali et al., 2020). These phenomena have restricted 

the large-scale application of existing algorithms and models in 

crop recognition. 

Using time-series data is a feasible idea for crop identification. 

Many studies have shown that multispectral remote sensing 

imagery based on time series is an effective means of large-scale, 

long-term, continuous agricultural remote sensing mapping 

(Ortiz et al., 2008; Potgieter et al., 2010). The vegetation index is 

currently the most widely used characteristic parameter to 

describe crop phenological changes. The vegetation index based 

on time series multispectral remote sensing image data can reflect 

the dynamic changes of different crop types over time. However, 

due to the physical properties of optical satellites, their sensors 

are often affected by factors such as clouds and fog, resulting in 

the inability to obtain complete time-series information, which 

has a great impact on crop identification based on time series data. 

Based on the above discussion, this paper proposes an algorithm 

named improved artificial immune network crop recognition 

algorithm based on dispersed vegetation index genetic chain 

(IaiNet), which can be applied to crop recognition under the 

premise of missing time series data. This algorithm introduces 

the concept of scattered vegetation index genetic chain and 

improves the confusion of ground objects caused by the use of a 

single vegetation index time series in traditional methods. In 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-501-2022 | © Author(s) 2022. CC BY 4.0 License.

 
501



 

addition, replacing the Euclidean distance with the Mahalanobis 

distance as a new similarity measure unit suppresses the 

phenomenon of being relatively sensitive to noise in the genetic 

chain vector. Combined with Sentinel-2 satellite imagery, the 

IaiNet algorithm can perform crop identification at a spatial 

resolution of 10 m. Finally, the method was applied to 3 different 

crop recognition scenarios in Henan, China in 2020. The results 

were evaluated using the measured samples and compared with 

the random forest algorithm and the support vector machine 

algorithm. 

 

2. STUDY AREA 

Henan Province is a major agricultural production province in 

China, and one of the three provinces with a national grain output 

exceeding 30 million tons. As a key crop monitoring area in 

China, it is of practical significance to select typical agricultural 

production counties in Henan Province as the target research area 

for crop identification and exploration. Therefore, this thesis uses 

Zhengyang County (Figure 1. a) and Huaibin County (Figure 1. 

b) in southern Henan as the research area to explore the 

capabilities of IaiNet from the perspective of different regions 

and different crop types. The selection of the study area is mainly 

based on the following factors: developed agricultural production, 

complex crop planting spatial distribution, many types of 

agricultural production crops, and the inability to obtain complete 

spectral time series characteristics due to the influence of climate. 

Based on the above factors, this paper uses winter wheat in 

Zhengyang County, summer peanuts in Zhengyang County, and 

winter wheat in Huaibin County as target crops for research to 

evaluate the crop recognition ability of IaiNet. 

 

  
(a) (b) 

Figure 1. Schematic diagram of the location of the study area a. 

Zhengyang County b. Huaibin County (Note: The remote 

sensing image used in the figure is the average false-color 

image of Sentinel-2 in April 2020, and the band combination is 

R: near-infrared G: red B: green) 

Zhengyang County is located between 114°12′—115°53′ east 

longitude and 32°16′—32°47′ north latitude. The county is 64.5 

km long from east to west and 57 km wide from north to south. 

It is under the jurisdiction of Zhumadian City, Henan Province, 

with a total county area. Approximately 1903 km2. As of 

November 2020, its permanent population is approximately 

625,100. Topographically, Zhengyang County is in the sloping 

plain area in front of the Dabie Mountains. The terrain gradually 

decreases from northwest to southeast, with an average elevation 

of 78.8 meters. The county has a suitable climate and is in the 

transitional zone from the north subtropical to the warm 

temperate zone. It has a continental monsoon humid climate. The 

average annual precipitation is about 960 mm and the average 

temperature is about 15.3 ℃. This climate provides excellent 

conditions for the growth of a variety of crops. 

Huaibin County is located between 115 °11 ′—115 °35 ′  east 

longitude and 32°15′—32°38′ north latitude. The county is 53 

km long from east to west and 43 km wide from north to south. 

The total area of the county is approximately 1209 km2. As of 

November 2020, the county's permanent population is 

approximately 549,600. Huaibin County is located between the 

northern and front junction depressions of the Dabie Mountains 

and the Huanghuai Plain. Its terrain is high in the west and low 

in the east, and high in the north and low in the south. Its 

topography is dominated by hillocks, plains, and depressions. In 

terms of climate, Huaibin County is in the transitional zone from 

the north subtropical to the warm temperate zone. It has a 

continental monsoon humid climate. The average annual 

precipitation is about 955.6 mm, the average temperature is about 

15.6 ℃, and the annual sunshine rate is 42%. In agriculture, 

Huaibin County has about 1.18 million mu of arable land, and the 

main crop types are wheat, rice, and corn. 

In the two study areas, the growth period of winter wheat is 

between October and May of the following year, and the growth 

period of summer peanuts is between June and September. 

 

3. MATERIALS AND PREPROCESSING 

3.1 Sentinel-2 Satellite Data 

Sentinel-2 was launched by ESA (European Space Agency) for 

land monitoring. It can provide images of vegetation, soil and 

water coverage, inland waterways, and coastal areas, and can also 

be used for emergency rescue services. It consists of two 

satellites, Sentinel-2A and Sentinel-2B, equipped with a 

multispectral imager (MSI). Sentinel-2 satellite data can provide 

data in 13 spectral bands ranging from visible light, near-infrared 

to short-wave infrared, with a ground resolution of up to 10 m 

(Table 1). In this paper, the Sentinel-2 L2A satellite image was 

used, which is the product that has undergone radiometric 

calibration and atmospheric correction. All Sentinel-2 images 

(except for cloud and monthly mean value synthesis) were 

obtained from Google Earth Engine, and the image acquisition 

time refers to the phenological period of the crops in the study 

area. 
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 S2A S2B  

Sentinel-2 Bands Central 

wavelength (nm) 

Bandwidth 

(nm) 

Central 

wavelength (nm) 

Bandwidth 

(nm) 

Spatial 

resolution (m) 

Band 1 - Coastal 

aerosol 

442.7 21 442.2 21 60 

Band 2- Blue 492.4 66 492.1 66 10 

Band 3 - Green 559.8 36 559.0 36 10 

Band 4 - Red 664.6 31 664.9 31 10 

Band 5- Vegetation 

Red Edge 

704.1 15 703.8 16 20 

Band 6 - Vegetation 

Red Edge 

740.5 15 739.1 15 20 

Band 7 - Vegetation 

Red Edge 

782.8 20 779.7 20 20 

Band 8 - NIR1 832.8 106 832.9 106 10 

Band 8A - Vegetation 

Red Edge 

864.7 21 864.0 22 20 

Band 9 - Water 

Vapor 

945.1 20 943.2 21 60 

Band 10 - SWIR - 

Cirrus 

1373.5 31 1376.9 30 60 

Band 11 - SWIR2 1613.7 91 1610.4 94 20 

Band 12 - SWIR 2202.4 175 2185.7 185 20 
1 NIR refers to the near-infrared band. 2 SWIR refers to the shortwave infrared band. 

Table 1. Spectral bands for the Sentinel-2 sensors (Sentinel-2A & Sentinel-2B) 

 

3.2 Calculation of Vegetation Index  

In this article, a total of 23 cropping indexes are selected, as 

shown in Table 2. In all vegetation indices, all those whose value 

range is not [0,1] were normalized to ensure the unity of 

subsequent calculations. 

 

Vegetation index References Vegetation index References 

Soil Adjusted Vegetation Index (SAVI)  (Huete, 1988) Atmospherically Resistant Vegetation Index (ARVI) 
(Kaufman, 

Tanre, 1992) 

Transformed Soil Adjusted Vegetation Index 

(TSAVI) 

(Baret et al., 

1989) 
Normalized Difference Index (NDI 45) 

(Delegido et al., 

2011) 

Modified Soil Adjusted Vegetation Index 

(MSAVI) 
(Qi et al., 1994) Meris Terrestrial Chlorophyll Index (MTCI) 

(Dash, Curran, 

2007) 

Second Modified Soil Adjusted Vegetation 

Index (MSAVI 2) 
(Qi et al., 1994) 

Modified Chlorophyll Absorption Ratio Index 

(MCARI) 

(Daughtry et 

al.,2000) 

Difference Vegetation Index (DVI) (Tucker, 1979) Sentinel-2 Red-Edge Position Index (S2REP) 
(Frampton et 

al.,2013) 

Ratio Vegetation Index (RVI) 
(Major et al., 

1990) 
Inverted Red-Edge Chlorophyll Index (IECI) 

(Castillo et al., 

2017) 

Perpendicular Vegetation Index (PVI) 
(Richardson, 

Wiegand, 1977) 
Pigment Specific Simple Ratio (PSSR) 

(Blackburn, 

1998) 

Infrared Percentage Vegetation Index (IPVI) (Crippen, 1990) Normalized Difference Vegetation Index (NDVI) 
(Rouse et al., 

1974) 

Weighted Difference Vegetation Index (WDVI) (Clevers, 1988) 
Modified Red Edge Normalized Difference 

Vegetation Index (NDVI 705)  

(Gitelson, 

Merzlyak, 1994) 

Transformed Normalized Difference 
Vegetation Index (TNDVI) 

(Tucker, 1979) Enhanced Vegetation Index (EVI) (Liu, 1995) 

Green Normalized Difference Vegetation Index 
(GNDVI) 

(Gitelson et al., 
1996) 

2-Band Enhanced Vegetation Index (EVI 2) 
(Xun et al., 

2019) 

Global Environmental Monitoring Index 
(GEMI) 

(Pinty, 

Verstraete, 1991) 
  

Table 2. Selected vegetation indices 
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3.3 Selection of Training Samples and Verification Samples  

This article mainly constructs a training sample set and 

verification sample set with pixels as the unit to reduce 

redundancy and spatial autocorrelation (Gong & Howarth, 1990). 

To obtain sample information, this article visually compares the 

2020 site survey data (including site sampling points, drone aerial 

images, and site record photos) with very high resolution (Very-

High-Resolution, VHR) images. All samples were selected in the 

form of pixels, and mixed pixels are eliminated. The above work 

was completed by an experienced person to ensure the accuracy 

and consistency of the sample. The detailed information of the 

sample data is shown in Table 3. 

 

Crop Recognition 

Scenario 

Type of 

Samples 
Crop 

Non-

crop 
Total 

Huaibin-Winter 

Wheat 

Training 

Samples 
1271 1267 2538 

Validation 

Samples 
3349 2779 6128 

Zhengyang-Winter 

Wheat 

Training 

Samples 
2186 365 2551 

Validation 

Samples 
5760 374 6134 

Zhengyang-

Summer Peanuts 

Training 

Samples 
453 468 921 

Validation 

Samples 
1201 664 1865 

Table 3. Sample data details (number of pixels) 

 

4. METHODS 

4.1 Methodological Overview 

This short note mainly explains the process of improved artificial 

immune network crop recognition algorithm based on dispersed 

vegetation index genetic chain (IaiNet). First, based on Google 

Earth Engine (GEE), the L2A-level average monthly image data 

of the Sentinel-2 satellite in the study area is obtained, and then 

the corresponding vegetation index is calculated to construct the 

multi-dimensional vegetation index feature time series. Then, the 

importance of each vegetation index unit is calculated using the 

feature importance of the Gini coefficient embedded in the 

random forest model, and it is sorted from high to low. 

Immediately afterward, by determining the minimum feature set 

that can make the sum of importance reach 0.8, construct the 

genetic chain of scattered vegetation index, and use this as the 

antigen to input the artificial immune network algorithm. Next, 

through the reference vegetation index genetic chain generated 

by the artificial immune network algorithm, the Mahalanobis 

distance is used to evaluate the similarity of potential crop pixels 

to generate the spatial distribution layer of crop planting positions. 

Finally, use the verification sample to evaluate the accuracy of 

the results and compare them with other algorithms for final 

statistics and analysis. Except for Google Earth Engine, other 

calculations in this chapter are implemented using Python 

language. 

 

4.2 IaiNet Algorithm  

The artificial immune network model (aiNet) is a kind of artificial 

immune system model, which was originally proposed jointly by 

De Castro L. N. and Von Zuben F. J. (Castro & Zuben, 2001; 

Castro & Zuben, 2002). Referring to the human immune system, 

the main goal of the artificial immune network algorithm is to use 

the input genetic chain of scattered vegetation index as an 

"antigen", and then generate "antibody", and finally use the 

"antibody" as a new "antigen" to identify crops. The basic steps 

of the IaiNet algorithm include: 

Step 1: Calculate the vegetation indices for each month during 

the growing period of the crop. 

Step 2: Import all the vegetation indices into the random forest 

model, calculate the feature importance scores, and arrange all 

the vegetation indices in descending order of the scores, and take 

the first several vegetation indices whose sum is greater than 0.8 

to construct the genetic chain of scattered vegetation indices. 

Step 3: All classes of scattered vegetation index genetic chains 

were regarded as "antigens" and randomly selected from them.  

Step 4: The randomly screened "antigen" is cloned, and then 

mutation named the calculated result as "antibody". 

Step 5: Use the "antibody" set to recognize the "antigen", if the 

"antibody" can recognize the "antigen", output the "antibody" to 

the "recognition antibody" set, and remove the recognized 

"antigen" from the "antigen" set 

Step 6: When the "antigen" set is empty, output the "recognition 

antibody" set. 

Step 7: Calculate the Mahalanobis distance between the 

vegetation index genetic chain of each pixel and the "recognition 

antibody" set, then assign the feature category attribute of the 

"recognition antibody" with the smallest distance to the pixel 

until the algorithm terminates when the entire area is traversed. 

In terms of similarity measurement, the artificial immune 

network model used for similarity research in the past mostly 

uses Euclidean distance to measure the similarity relationship 

between vectors, but it is relatively sensitive to noise in the 

genetic chain vector, and lead to the occurrence of 

"misclassification" (Hao et al., 2018). Therefore, in this study, 

Mahalanobis distance was used as a new similarity measure unit. 

Mahalanobis distance, proposed by Indian statistician P. C. 

Mahalanobis, is an effective method for calculating the similarity 

between two unknown sample sets. Compared with Euclidean 

distance, it has the characteristics of "scale independent" and can 

exclude the interference of correlation between variables. The 

formula for calculating Mahalanobis distance is as follows: 

   𝐷(𝑥⃗, 𝑦⃗) = √∑
(𝑥𝑚−𝑦𝑚)

2

𝜎𝑚
2

𝑀
𝑚=1                    (1) 

In the formula, 𝑥𝑚 and 𝑦𝑚 are the m-th value of the vector 𝑥⃗ and 

the vector 𝑦⃗ respectively, 𝑀 is the number of values in the vector, 

and 𝜎𝑚 is the standard deviation of 𝑥𝑚. 

The IaiNet algorithm was implemented using Python 

programming. 

 

4.3 Contrast Algorithm  

To evaluate the ability of the IaiNet algorithm in crop 

identification, this paper introduces a random forest algorithm 

and support vector machine algorithm for comparison. 

Considering that the difference of input samples will bring about 

changes in the mapping results, the random forest algorithm and 

support vector machine algorithm in this paper used the same 

input samples and feature data as IaiNet. According to previous 

experience, the parameters of the random forest algorithm and 

the support vector machine algorithm adopt the default values 

recommended by the developers (Le et al., 2014). The two 

algorithms use the same variables as IaiNet. In the random forest 

algorithm, the number of trees is set to 500, the Kernel Type in 

the support vector machine algorithm is Radial Basis Function, 

the Gamma in Kernel Function is 0.25, the Fenalty Parameter is 

100.00, and the Fyramid Levels is 0. The above algorithms were 

implemented using Python programming. 
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4.4 Accuracy Evaluation  

In this paper, Producer Accuracy (PA), User Accuracy (UA), 

Overall Accuracy (OA), Kappa Coefficient (kappa), and 

Misclassified Pixels calculated based on confusion matrix are 

used to measure the crop identification of IaiNet algorithm ability. 

 

5. RESULTS AND DISCUSSION 

5.1 Result of Genetic Chain Construction of Scattered 

Vegetation Index 

The research area of this paper is located in the southern part of 

Henan Province, near the geographical boundary between the 

Qinling Mountains and the Huaihe River in the north and south, 

so the complete monthly average image data of Sentinel-2 cannot 

be obtained. For different crops, the time distribution of available 

data in the phenological period is shown in Table 4. Based on the 

above data, this paper obtained the time series data of each 

vegetation index and calculated its feature importance score. 

 

Crop 

Recognition 

Scenario 

Time distribution of available data 

Huaibin-Winter 

Wheat 

2019 (Nov. Dec.), 2020 (Jan. Feb. 

Mar.Apr.May.)  

Zhengyang-Winter 

Wheat 

2019 (Oct.Nov. Dec.), 2020 (Jan. 

Feb. Mar.Apr.May.) 

 

 

Zhengyang-Summer 

Peanuts 
2020 (Jun. Aug. Sept.) 

 

 

Table 4. Time distribution of available data during phenology 

 

An important evaluation criterion for obtaining the construction 

elements of the genetic chain of the scattered vegetation index is 

the feature importance score. In this paper, the feature importance 

scores of all vegetation indices are sorted in descending order, 

and the sum of the top 𝑁 items is calculated. When the sum of 

the current 𝑁 items is greater than 0.8, the vegetation index data 

of the first 𝑁items are the construction elements of the scattered 

vegetation index genetic chain. 

Table 5, Table 6, and Table 7 list the genetic chain construction 

elements of scattered vegetation index for winter wheat in 

Huaibin County, winter wheat in Zhengyang County, and 

summer peanut in Zhengyang County, respectively. It can be 

found that for the same crop in different regions, the number of 

building elements of the genetic chain of the scattered vegetation 

index is not the same. For different crop identification scenarios, 

there are differences in the construction elements of the genetic 

chain of the scattered vegetation index. For the identification of 

winter wheat in Huaibin County, the data in May dominated; for 

the identification of summer peanuts in Zhengyang County, the 

data in August dominated; for the identification of winter wheat 

in Zhengyang County, each month in the phenological period 

played a major role effect. 

 

Ranking Variables Importance Score 

1 ndvi705_Mar 0.3359 

2 gndvi_Mar 0.2089 

3 tndvi_Mar 0.1517 

4 pssr_Mar 0.1004 

5 arvi_Mar 0.0433 

Table 5. Construction elements of the genetic chain of 

dispersed vegetation index of winter wheat in Huaibin County 

 

Ranking Variables Importance Score 

1 ndi45_Mar 0.268 

2 gndvi_Oct 0.1695 

3 dvi_Jan 0.1105 

4 dvi_Feb 0.0991 

5 ndi45_Apr 0.0454 

6 gndvi_Apr 0.0429 

7 ndi45_May 0.0269 

8 mcari_Jan 0.0259 

Table 6. Construction elements of the genetic chain of 

dispersed vegetation index of winter wheat in Zhengyang 

County 

 

Ranking Variables Importance Score 

1 gemi_Jun 0.5359 

2 ieci_Aug 0.0807 

3 mcari_Aug 0.0743 

4 msavi2_Jun 0.037 

5 gndvi_Jun 0.0251 

6 mtci_Aug 0.0247 

7 ndvi705_Aug 0.0221 

8 ieci_Jun 0.0204 

Table 7. Construction elements of the genetic chain of 

dispersed vegetation index of summer peanuts in Zhengyang 

County 

 

5.2 Crop Identification Results 

The IaiNet algorithm shows good recognition potential in 

different crop recognition scenarios. As shown in Table 8, the 

crop identification calculation using the IaiNet algorithm has 

obtained good accuracy performance in three scenarios: Huaibin 

County winter wheat, Zhengyang County winter wheat, and 

Zhengyang County summer peanuts (accuracy > 90%, Kappa 

coefficient > 0.9). For the vertical comparison of three different 

scenarios, the recognition accuracy of winter wheat in 

Zhengyang County is better than the other two scenarios. 

 

Crop Recognition 

Scenario 
OA (%) UA (%) PA (%) Kappa 

Huaibin-Winter 

Wheat 
97.14 96.27 98.47 0.9425 

Zhengyang-Winter 

Wheat 
99.27 99.24 99.98 0.9392 

Zhengyang-

Summer Peanuts 
96.25 97.5 96.7 0.9179 

Table 8. Accuracy evaluation of IaiNet crop identification 

results 
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5.3 Compared with other classification and identification 

methods 

In this paper, the crop identification results obtained by the IaiNet 

algorithm were compared with the random forest algorithm (RF) 

and the support vector machine (SVM) algorithm to 

comprehensively evaluate the crop identification ability of the 

IaiNet algorithm. 

 

  
False Color IaiNet 

  
RF SVM 

Figure 2. Comparison of crop recognition results under the 

recognition scene of winter wheat in Huaibin (Note: the false-

color image was acquired in April, and the band combination 

was R: near-infrared G: red B: green) 

Figure 2 shows the comparison results of crop identification for 

winter wheat in Huaibin. From the intuitive comparison of the 

results, it is found that the IaiNet algorithm has the best 

recognition effect of winter wheat in Huaibin. Compared with RF 

and SVM, the recognition results of IaiNet algorithm have the 

least noise and clear boundaries of cultivated land, which can 

effectively filter non-agricultural elements such as roads and 

residential areas in villages. For the area south of the Huaihe 

River, the actual agricultural planting situation on the surface is 

complex, and the wheat planting plots are fragmented and 

scattered, which causes certain difficulties in the identification of 

winter wheat in this scenario. The phenomenon in Huaibin shows 

that the IaiNet algorithm has certain robustness in the face of the 

mixed pixel influence generated by the complex surface. 

 

  
False Color IaiNet 

  
RF SVM 

Figure 3. Comparison of crop recognition results under the 

recognition scene of winter wheat in Zhengyang (Note: the 

false-color image was acquired in April) 

Figure 3 shows the comparison results of crop identification for 

winter wheat in Zhengyang County. It can be seen from the 

resulting graph that the three algorithms have little difference in 

the identification results of winter wheat in Zhengyang County, 

and all of them can better identify the spatial distribution pixels 

of winter wheat in Zhengyang County. However, in terms of 

details, RF generated more noise in the urban area of Zhengyang, 

and eliminated too many rural road pixels; SVM was affected by 

broken land in the southern river beach area of Zhengyang, which 

resulted in the missed classification of some wheat planting 

pixels, and relatively more noise pixels were generated in this 

area; Compared with the other two algorithms, IaiNet has 

obtained better results in identifying winter wheat in Zhengyang. 

It can filter the interference of a large number of non-wheat pixels 

while retaining the wheat pixels, and its details such as plot 

boundaries are best preserved. 

 

  
False Color IaiNet 

  
RF SVM 

Figure 4. Comparison of crop recognition results under the 

recognition scene of summer peanut in Zhengyang (Note: the 

false-color image was acquired in August) 

As shown in Figure 4, the three algorithms have produced great 

differences in the identification results of summer peanuts in 

Zhengyang. The area with the largest difference is located in the 

rice planting area in the south of Zhengyang County (the color is 

darker on the false-color image), and the IaiNet algorithm can 
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well identify the difference between rice and peanut pixels in this 

area, with less noise. Affected by the phenomenon of the same 

spectrum of foreign objects, RF generates more noise pixels in 

this area. SVM completely misclassifies rice pixels into peanuts 

in this area, resulting in a large loss of accuracy. Meanwhile, the 

IaiNet algorithm also shows better potential in the ability to strip 

non-agricultural elements such as rural roads and residential 

areas and retains the most details. This further illustrates the 

robustness of the IaiNet algorithm in the face of different surface 

conditions. 

 

Crop 

Recognition 

Scenario 

Algorithm 
OA 

(%) 

UA 

(%) 

PA 

(%) 
Kappa 

Huaibin-Winter 

Wheat 

IaiNet 97.14 96.27 98.47 0.9425 

RF 95.89 95.34 97.08 0.9172 

SVM 89.34 92.68 88.38 0.7839 

Zhengyang-

Winter Wheat 

IaiNet 99.27 99.24 99.98 0.9392 

RF 99.07 99.11 99.9 0.9232 

SVM 97.2 97.43 99.57 0.788 

Zhengyang-

Summer 

Peanuts 

IaiNet 96.25 97.5 96.7 0.9179 

RF 94.32 96.09 95.14 0.8755 

SVM 73.46 93.17 73.04 0.5511 

Table 9. Comparison of recognition accuracy of different 

algorithms in different recognition scenarios 

 

The accuracy comparison of the recognition results of different 

algorithms in the three recognition scenarios is shown in Table 9. 

Overall, the accuracy of the IaiNet algorithm is better than the 

other two algorithms, and the result of the SVM algorithm is the 

worst. In the recognition scene, the recognition accuracy of 

winter wheat in Zhengyang County is the best overall, and the 

overall recognition accuracy of winter wheat in Huaibin County 

and summer peanut in Zhengyang County are similar. Analysis 

of the reasons may lie in the following points: 1. The time series 

of Zhengyang County's winter wheat recognition scene is 

relatively complete, while the time series data are missing in both 

Huaibin County's winter wheat and Zhengyang County's summer 

peanut recognition scenes; 2. In terms of spatial distribution, the 

distribution of winter wheat in Zhengyang County is relatively 

complete, with fewer broken patterns than the other two scenarios; 

3. In terms of interfering ground object type factors, the 

distribution of other crop types in the identification scene of 

winter wheat in Zhengyang County is relatively small, while the 

two identification scenes of winter wheat in Huaibin County and 

summer peanut in Zhengyang County are affected by 

geographical factors or plant phenological factors  (such as rice 

identification for Zhengyang County summer peanut). 

In this paper, the number of misclassified pixels of each 

algorithm in different recognition scenarios is counted. In Table 

10, "Correct number of pixels " represents the number of pixels 

that were correctly identified as crops, and "Error number of 

pixels " was the sum of the number of pixels misclassifying crops 

as non-crops and non-crops as crops. The comparison shows that 

in the three recognition scenarios, the IaiNet algorithm has the 

least number of misclassified pixels, and the SVM has the worst 

recognition result, which produces far more misclassified pixels 

than the other two algorithms. From the results, the IaiNet 

algorithm can obtain more stable accuracy performance, but due 

to various factors, some pixels will still be misclassified, 

resulting in a loss of accuracy. 

 

Crop Recognition 

Scenario 
Algorithm 

Correct 

number of 

pixels 

Wrong 

number of  

pixels 

Huaibin-Winter 

Wheat 

IaiNet 3224 175 

RF 3193 252 

SVM 3104 653 

Zhengyang-

Winter Wheat 

IaiNet 5716 45 

RF 5709 57 

SVM 5612 172 

Zhengyang-

Summer Peanuts 

IaiNet 1171 70 

RF 1154 106 

SVM 1119 495 

Table 10. Statistical comparison of error segmentation pixels of 

different algorithms in different recognition scenarios 

 

6. CONCLUSION 

Taking the artificial immune network model as a reference, this 

paper proposes an improved artificial immune network crop 

recognition algorithm based on dispersed vegetation index 

genetic chain (IaiNet). In the new algorithm, the phenological 

period of the crop to be identified is used as the time unit to 

construct the monthly vegetation index data set, and then the 

genetic chain of the scattered vegetation index is constructed. By 

introducing the Mahalanobis distance, the method of measuring 

the similarity between "antibody" and "antigen" in the artificial 

immune network model is improved to realize the identification 

of crops. The IaiNet algorithm constructed based on the artificial 

immune network model can generate several "antibodies" in each 

category, which can effectively resist the interference caused by 

the phenomenon of different spectrum of same ground objects. 

By analyzing the results of the IaiNet algorithm in three 

recognition scenarios, and comparing with the results of the 

random forest algorithm and the support vector machine 

algorithm, the conclusions are as follows: 

1. According to the change of the identification scene, the 

identification potential of vegetation index and phenological 

period for different crops vary. Traditional vegetation indices 

such as NDVI (Normalized Difference Vegetation Index) and 

EVI (Enhanced Vegetation Index) have not shown potential in 

the evaluation of the importance of comprehensive multi-

phenological and multi-dimensional vegetation indices. 

2. In the three recognition scenarios, the recognition accuracy of 

the IaiNet algorithm has achieved good results (accuracy＞90%, 

Kappa＞ 0.9). Compared with the random forest algorithm and 

the support vector machine algorithm, the advantage of crop 

recognition based on the IaiNet algorithm is that it can overcome 

the error loss caused by the phenomenon of different spectrum of 

same ground objects and eliminate the impact of the lack of 

timing. As well, the IaiNet algorithm improves the robustness of 

crop identification in complex surface conditions. 

3. The IaiNet algorithm is still affected by different factors during 

crop identification, resulting in a loss of accuracy. Including 

timing integrity, ground fragmentation, and complexity of 

ground objects. 

The IaiNet algorithm proposed in this paper provides a new 

method for crop identification cartographic production work. In 

the next work, it is one of the research directions to improve the 

IaiNet algorithm by combining the hybrid pixel decomposition 

technology and the object-oriented image segmentation 

technology. 
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