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ABSTRACT: 
 
High-resolution Digital Terrain Models (DTMs) of the lunar surface can provide crucial spatial information for lunar exploration 
missions. In this paper, we propose a method to generate high-quality DTMs based on a synthesis of deep learning and Shape from 
Shading (SFS) with a Lunar Reconnaissance Orbiter Narrow Angle Camera (LROC NAC) image as well as a coarse-resolution 
DTM as input. Specifically, we use a Convolutional Neural Network (CNN)-based deep learning architecture to predict initial pixel-
resolution DTMs. Then, we use SFS to improve the details of DTMs. The CNN-model is trained based on the dataset with 30, 000 
samples, which are formed by stereo-photogrammetry derived DTMs and orthoimages using LROC NAC images as well as the 
Selenological and Engineering Explorer and LRO Elevation Model (SLDEM). We take Chang’E-3 landing site as an example, and 
use a 1.6 m resolution LROC NAC image and 5 m resolution stereo-photogrammetry derived DTM as input to test the proposed 
method. We evaluate our DTMs with those from stereo-photogrammetry and deep learning. The result shows the proposed method 
can generate 1.6 m resolution high-quality DTMs, which can clearly improve the visibility of details of the initial DTM generated 
from the deep learning method. 
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1. INTRODUCTION 

Digital Terrain Models (DTMs) derived from high-resolution 
orbiter imagery represent fundamental spatial information to 
support lunar exploration missions. The resolution of images 
taken by Lunar Reconnaissance Orbiter Narrow Angle Camera 
(LROC NAC) images on board the Lunar Reconnaissance 
Orbiter (LRO) falls within 0.5 m – 2 m, which are the highest 
resolution orbiter images of the lunar surface available 
(Henriksen et al., 2017). Currently, stereo-photogrammetry, 
Shape from Shading (SFS), and Convolutional Neural Network 
(CNN)-based deep learning methods have been used to produce 
high-resolution DTMs based on the LROC NAC images. Deep 
learning and SFS techniques can use a single image and an 
initial existing low-resolution DTM to retrieve pixel-resolution 
DTMs (Grumpe et al., 2014; Liu et al., 2021).  The performance 
of SFS is highly dependent on the quality of the input DTM 
(Wu et al., 2018). Currently, DTMs derived from laser altimetry 
or stereo-photogrammetry are the main source of input DTMs 
for SFS (Liu et al., 2020). Laser altimetry produces global 
DTMs with a high vertical accuracy, but the horizontal 
resolution is relatively coarse, for example, the Lunar Orbiter 
Laser Altimeter (LOLA) DEM with 30 m / pixel (Smith et al., 
2010). Stereo-photogrammetry can generate 2 m – 5 m 
resolution DTMs based on LROC NAC stereo pairs (Henriksen 
et al., 2017). Although the LROC NAC images can almost 
cover the lunar surface completely, suitable stereo images that 
meet the requirements of conjugate matching and triangulation 
are spatially limited. It is therefore unlikely that stereo-
photogrammetry can be used to produce high-resolution DTMs 
for all areas of interest, let alone as input to SFS. 
 

CNN-based single depth estimation was introduced to estimate 
depth maps from single images in computer vision, and the 
performance has been steadily improved (Eigen et al., 2014; 
Alhashim et al., 2018). It has been applied to generate high- and 
even pixel-resolution DTMs using single images for the 
Martian surface (Chen et al., 2021; Tao et al., 2021a; Tao et al., 
2021b; Tao et al., 2021c). Moreover, single depth completion 
technique was proposed, which can boost the predict accuracy 
significantly (Ma et al., 2018; Cheng et al., 2019). Specifically, 
in addition to images, sparse depth maps are also used as input 
to estimate high-resolution depth maps (Shivakumar et al., 
2019). On the other hand, the CNN-based method tends to 
produce overly smoothed structures because of the large 
receptive field involved in the regularization (Yao et al., 2018; 
Chen et al., 2017; Chen et al., 2021). Despite this, the method is 
still able to retrieve finer terrain details than laser altimetry or 
stereo-photogrammetry. In addition, because deep learning 
requires only single images, it is not subject to the limitations of 
stereo-photogrammetry. Therefore, it is well suited as the initial 
DTM for the SFS method. 
 
In this paper, we propose a DTM generation approach that 
combines deep learning and SFS. We present a data experiment 
to show that the method possesses not only the high elevation 
accuracy but also fine local structure details, which is superior 
to stereo-photogrammetry and deep learning methods. 

 

2. METHOD 

The principle of the proposed DTM generation approach is to 
use CNN-based deep learning derived DTMs as the initial 
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DTMs for SFS. The flow chart of the proposed work is shown 
in Figure 1. In this paper, we use CNN-based single depth 
completion technique as the deep learning method. First, during 
the pre-processing stage, we clip the size of the input according 
to the requirements of the method, and normalize these clipped 
data to ensure convergence of the CNN architecture. Then, the 
pre-processed data are used to train our CNN-based deep 
learning architecture, and we use the well-trained CNN model 
to predict the DTMs from single LROC NAC images and 
coarse-resolution DTMs. Subsequently, the predicted, 
normalized DTMs are recovered to the real scale. Finally, we 
use the LROC NAC images and the scale recovered DTMs as 
the input to SFS to refine the deep learning derived DTMs. 

  
Figure 1. Flowchart of the DTM generation process. 

 
2.1 Dataset and Pre-processing 

The training and validation datasets for the deep learning 
method are formed from the public DTMs and Digital 
Orthophoto Maps (DOMs) produced via stereo-
photogrammetry based on LROC NAC stereo pairs 
(downloaded from 
https://wms.lroc.asu.edu/lroc/rdr_product_select), and the 
corresponding Selenological and Engineering Explorer and 
LRO Elevation Model (SLDEM) with 512 pixels / degrees 
(downloaded from 
http://imbrium.mit.edu/EXTRAS/SLDEM2015/). As the 
SELENE DTM covers latitudes between 60° S/N, we only used 
NAC DTMs and orthoimage pairs from this region. Also, since 
their resolution falls into 2 m - 5 m, we individually cropped 
out the SLDEM for each NAC DTM and orthoimage pairs and 
interpolate them to the same resolution of the DTMs and DOMs. 
Considering the memory constraint of the graphic card used in 
our computing environment (see below), these data are clipped 
into 256 * 320 sub-images. We used the clipped LROC NAC 
DOMs and SLDEM as the respective input images and DTMs, 
the clipped LROC NAC DTMs as the ground truth. 
 
The gray values of the images were regularized to [0, 1], and 
the elevations of DTMs were normalized to zero mean and unit 
standard deviation. Then, we subtracted the minimum value for 

each normalized DTMs. We randomly selected 27, 000 samples 
as our training set, and 3,000 samples as our validation set at 
the end of the training. We carried out vertical and horizontal 
flips with 0.5 probability respectively during the training stage 
to expand the training set with more different illumination 
azimuth angle conditions. 
 
2.2 Deep Learning Method 

2.2.1 Network Architecture 

In this study, we use a dual-encoder CNN architecture to 
estimate the pixel resolution DTM for the lunar surface. The 
network architecture is shown in Figure 2. It adopts two 
independent encoder branches to extract features from LROC 
NAC images and SLDEM, respectively, and uses a fuse module 
to concatenate the outputs from the two encoder modules into 
one volume. As the LROC NAC images contain fine texture 
information, the LROC NAC encoder module is based on the 
relatively complex ResNet50 architecture (He et al., 2016; 
Laina et al., 2016). In contrast, the SLDEM encoder module is 
based on five simple stacked convolution blocks to extract the 
elevation information. The decoder module is built with four 
up-projection blocks and a nearest upsampling block to recover 
the spatial resolution to match that of the input (Laina et al., 
2016; Alhashim et al, 2018). The connections are added 
between the layers with the same spatial resolution in the 
LROC NAC encoder module and decoder module to increase 
the ability to predict more surface structure feature (Alhashim 
et al, 2018). Finally, a convolution layer is added to reduce the 
channels of the output from the nearest upsampling block to 1. 
This is the output of the model.  
 
2.2.2 Loss Function 

The weighted sum of the mean absolute error (L1; Hambarde et 
al., 2020) and the gradient loss (Lgrad; Alhashim et al, 2018) are 
adopted to train the network. The L1 loss can minimize the 
residual error between the predicted DTMs and the ground truth. 
The Lgrad can account for the relationships between surrounding 
pixels to predict more correctly local surface features. The loss 
function (L) is defined by: 
 

L = λ * L1 + γ * Lgrad                                (1) 
 
where λ and γ are the weight factors to be specified for the 
training 
 
2.2.3 Scale Recovery 

We initially recover the scale of the predicted DTM based on 
the heights of the reference coarse-resolution DTM, namely, the 
input DTM of the model: 
 

DTMinit = ν + μ * DTMpred                          (2) 
 
where  DTMpred = the predicted DTM from our model 
 DTMinit = the initial scale recovered DTM 
 ν = the mean of the coarse-resolution DTM heights 
 μ = the standard deviation of the coarse-resolution 

DTM heights 
 
Then, we use the pc_align tool in Ames Stereo Pipeline (ASP) 
software to co-register the initial recovered DTMs to the 
reference DTM (Beyer et al., 2018). 
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2.2.4 Training of the Network Architecture  

The network was implemented on PyTorch and trained using a 
single Nvidia® RTX3060® graphic card (Paszke et al., 2017). 
We used Adam optimizer for optimization (Kingma et al., 
2014). The batch size was 4; the training epochs was 20. the 
initial learning rate was 0.0001; we successively reduced it to 

10% after every 5 epochs; the loss function weights λ and γ 
were set to 1 and 0.5, respectively. 
 
After training, we used the best model i.e., of the highest 
accuracy in reference to the validation set to predict DTMs. The 
outcomes were subsequently used as the initial DTMs for the 
following SFS method. 
 

 
Figure 2. Overview of the network architecture. Each coloured box represents a block in the model. Numbers next to blocks in the 
Encoder module represent the input dimensions of the block. Numbers next to blocks in the Decoder module represent the output 

dimension. 

 
 
2.3 SFS method 

We use the LROC NAC images and the predicted DTMs via 
deep learning directly as inputs for SFS methods. In this paper, 
we simply use the SFS tool provided by the ASP to improve the 
details of the input DTMs. As we only consider a single image 
and an initial DTM as input, the code works by minimizing the 
following cost function (Alexandrov et al., 2018): 
 

dxdyy)](x,Zy)κ[Z(x,y)Z(x,θ

y)]y)R(Z)(x,(x,E - y)[P(Z)(x,
2

0

22

2

−+∇+

∫∫ ∑ α
        (3) 

 
where  Z(x, y) = the estimated DTM 
 P(Z)(x, y) = the camera image interpolated at pixels 

obtained by projecting into the camera 3D pointing 
from Z(x, y) 

 E = the image exposure 
 α(x, y) = the terrain-dependent albedo 

R(Z)(x, y) = the reflectance computed from Z(x, y) for 
the image 
θ = the smoothing weight 

22 y)(x,Z∇ = the sum of squares of all second-order 

partial derivatives of Z(x, y) 
κ = the initial DTM constraint weight 
Z0(x, y) = the initial DTM 

 
We selected the Lunar Lambertian model as the reflectance 
model of the local surface (McEwen et al., 1991). We set the 
initial smoothing weight as 0.08, and the initial DTM constraint 
weight as 0.001 in the following experiments. 
 

3. EXPERIMENTS AND RESULTS 

3.1 Test Data and Pre-processing 

We used high-resolution LROC NAC images as the input image 
to test our approach for the Chang’E-3 landing site. We 
downloaded the LROC NAC EDR level images 
(M1144929211LE) from the PDS website. The illumination 
azimuth angle is 234.04°, and the illumination elevation angle 
is 33.11 ° . We used the Integrated System for Imagers and 
Spectrometers (ISIS) to process the EDR image to a map 
projected image with 1.6 m resolution. Also, we downloaded 
and used the 5 m resolution stereo-photogrammetry derived 
DTM as the input DTM from 
https://wms.lroc.asu.edu/lroc/view_rdr/NAC_DTM_CHANGE3.  
It was interpolated to the same resolution of the map projected 
LROC NAC image to unify the resolution.  
 
Then, we took the Chang’E-3 landing site as the centre, and 
clipped the projected image and interpolated DTM to an area of 
256 * 320 pixels in size (Figure 3). Then, the clipped image and 
DTM were regularized to [0, 1] and reduced to standard normal 
distribution as the input for the method, respectively. 
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Figure 3. The test data in the Chang’E-3 landing site, (a) the 

input image, (a) the input DTM. 

 

3.2 Results 

Figure 4 shows the 5 m resolution stereo-photogrammetry 
derived DTM (Figure 4(d)), the 1.6 m resolution deep learning 
derived DTM (Figure 4(e)), the 1.6 m resolution SFS derived 
DTM (Figure 4(f)), the corresponding hill shaded maps and 
comparisons between elevation profiles across these three 
DTMs. Owing to the coarse resolution of stereo-
photogrammetry DTM, its hill shaded map does not show small 
scale craters (Figure 4(a)). While the DTM can retrieve the 

correct topographic trend, local areas exist apparently erroneous 
topographic undulations. The hill shaded map generated from 
deep learning DTM reveals small scale craters clearly. However, 
the recovered structures tend to be over-smoothed as described 
in Section 1. In contrast, the SFS derived DTM can show finer 
local details than the deep learning method, and these details 
are more consistent with the original LROC NAC images 
(Figure 4(c)). For example, several craters near the Chang'E-3 
lander (cf. Fig. 3) can be accurately recovered (see the white 
arrows in Figure 4(c)), while the stereo-photogrammetry and 
deep learning method fail to retrieve them. 
 
In the meantime, the profile comparison result shows the SFS-
derived DTM is very well consistent with the other two DTMs 
(Figure 4(g)). Considering both terrain details and overall 
elevation accuracy, the SFS method based on the deep learning-
derived initial DTM has the highest quality. 
 

4. CONCLUSION 

In this paper, we proposed a pixel-resolution DTM generation 
method for the lunar surface via deep learning and SFS. We 
used deep learning derived DTMs as input for SFS as a means 
of refinement. The result shows that the proposed approach can 
retrieve more detailed terrain structure information than those 
derived from deep learning and stereo-photogrammetry alone. 
Also, the overall elevation accuracy of the final SFS-refined 
DTM is inherently constrained by, and thus corresponds well to, 
the DTMs derived by deep learning or photogrammetry. 
Overall, the generated high-quality DTMs are suitable for high-
precision landing site selection and assessment, or other 
applications which need high-resolution and precision spatial 
information.  
 
As the next step, we will perform more tests for different areas 
and explore the fusion of multiple methods to generate higher 
accuracy DTMs. 
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Figure 4. DTM generation results and comparison. The three top panels (a,b,c) show the hill shaded maps with the same 

illumination azimuth and elevation angles of the original LROC NAC images. The center panels (d,e,f) are the generated DTMs by 
stereo-photogrammetry, deep learning, and SFS, respectively. The bottom panel (g) shows the profile comparison between the three 

DTMs in middle panel. The location of the profile is shown on the DTMs. (For interpretation of the references in the legend, the 
reader is referred to the web (colour) version of this article.) 
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