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ABSTRACT: 

 

Climate change and current susceptibilities exacerbated the coastal flood loss and damage resulting in livelihoods and property damage. 

Urban areas in the Low to Lower-Middle Income Countries are expected to be disproportionately impacted by the disaster, given a 

higher share of citizens living in the Low Elevation Coastal Zone, limited financial resources, and poorly constructed disaster 

protection. Documentation of historical coastal floods, population, and property affected, could advance the assessment by considering 

those parameters in risk analysis. Besides, incorporating such geographic features e.g., mangroves as the ecological solution for 

alternative coastal flood protection in the prediction is also essential. Mangrove is considered fit for the LLMIC primarily situated in 

the tropical zone. The prediction utilizing spatial Machine Learning (ML) could aid climate-related disaster risk analysis and contribute 

to risk reduction and policy suggestions to improve disaster resilience. The research aims to archive recent studies on the application 

of geospatial science empowering Artificial Intelligence, notably ML in coastal flood risk assessment, so-called GIS-based AI. Another 

aim is to document population, property, and mangrove distribution across the LLMIC. Artificial Neural Networks were mostly utilized 

for disaster risk assessment in past research. The number of 58 historical coastal flood events and 908 expected coastal flood hotspots 

for 2006 to 2021 has been documented. Over 1,2 million Km2 falls under vulnerable areas toward coastal flood in LLMIC under 

different settlement types where Large City (urban areas) dominates it. Mangrove distribution is mainly distributed across tropical 

regions mostly distributed along the Southeast Asia coast.  

 

 

 

1. INTRODUCTION 

1.1 Background 

The coastal cities have experienced and been exposed to a range 

of coastal hazards, notably due to extreme Sea Level Rise (SLR) 

with its four significant impacts: coastal flood; coastal erosion; 

exacerbated land subsidence; and saltwater intrusion (Azevedo 

de Almeida and Mostafavi, 2016). According to the Special 

Report on the impacts of global warming of 1.5°C by IPCC, 

coastal flood has the highest risk of a severe impact associated 

with climate change. Each degree of increasing temperature is a 

matter of coastal flood risk (IPCC, 2018). The risk is projected to 

increase, associated with rising temperature and triggered by 

current susceptibilities, resulting in population exposure, 

property damage, and disruption of economic activities in the 

coastal zone.  

 

Previous documentation revealed that nearly 10% of the world's 

population (618 million) and 2.3% (2,599 thousand km2) of the 

world's land area of coastal countries resided and situated in Low 

Elevation Coastal Zone (LECZ) in 2000, defined as the 

contiguous area along the coast that is less than 10 meters above 

sea level  (McGranahan et al., 2007; Neumann et al., 2015). By 

looking at the urban boundary, it accounted for 13% of the total 

urban population (352 million) living within LECZ, which 

covered 8% of the whole world's urban land area (275 thousand 

km2). Another documentation indicated that in 2015 the urban 

area that falls under LECZ was estimated to have 10% of the 

world's population and 13% of the world's urban population, 
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equal to 815 million (MacManus et al., 2021). By 2060, the total 

LECZ population was projected to reach 1.4 billion inhabitants 

(534 people/km2) or equal to 12% of the world's population of 

11.3 billion under the highest-end of forecast scenarios 

(Neumann et al., 2015). On the other hand, the situation is getting 

worst, exacerbated by the increase of such disasters in the future 

followed by their damage. According to historical global data by 

EM-DAT, the event tends to increase in upcoming years, which 

is associated with increasing loss and damage (Kirezci et al., 

2020). Average global flood losses in 2005 are estimated to be 

approximately US$ 6 billion per year, rising to US$ 52 billion by 

2050 with projected socio-economic change alone (Hallegatte et 

al., 2013). In short, coastal flood is expected to have the highest 

risk of a severe impact of loss and damage on livelihood and 

properties damage (Chan et al., 2018; Hallegatte et al., 2013; 

Kirezci et al., 2020; Neumann et al., 2015; Nicholls et al., 2008). 

It is, therefore, essential to carry out a coastal flood risk analysis 

to better grasp the disaster across the coastal zone.     

 

Among the world's countries, urban areas in Low and Lower 

Middle-Income Countries (LLMIC) are expected to be the most 

vulnerable to coastal floods, given a higher share of the 

population living in the LECZ and limited financial resources for 

disaster management. The majority (83%) of the global LECZ 

population lived in less developed countries (Neumann et al., 

2015). Accounted 28% of the urban area of the LLMIC 

population lives in the LECZ (McGranahan et al., 2007), which 

makes it vulnerable. Dasgupta et al. (2009) assessed that 

approximately 0.3% (194,000 km2) of the territory in the 84 

developing countries would be impacted by a 1-m SLR. It would 
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equal 56 million people (1.28% of the population) exposed. 

LLMIC also tends to have non-engineered or poorly constructed 

coastal protection due to financial resources (Takagi, 2019).  

 

Despite their budgetary limitations, many developing countries 

have the advantage of considering an ecological solution 

because they are often situated in tropical and subtropical 

regions. The ecological solution, i.e., the mangrove ecosystem 

for Eco-DRR, is currently acknowledged as one of the alternative 

strategies for coastal flood protection. Besides, it provides co-

benefits for carbon sequestration both in the soil and the plant. 

The strategies also allow stewardship supporting people 

surrounding livelihood. Therefore, understanding to what extent 

ecological solutions can be applied and beneficial for LLMIC 

will be advantageous for coastal flood management.  

 

An advancement in coastal flood risk simulation could contribute 

to risk reduction, policy suggestions, minimizing the loss of 

livelihood, and property damage associated with coastal floods. 

Nowadays, Artificial Intelligence (AI), notably Machine 

Learning (ML) approach for flood risk simulation, has emerged 

in the past few years (Chang et al., 2019; Mosavi et al., 2018). 

The paper is trying to document the utilization of AI, especially 

ML for aiding coastal flood risk analysis. ML utilization is 

encouraged to aiding climate-related disaster analysis and 

advance disaster risk prediction for handling big spatial data and 

high spatial-temporal data (Huntingford et al., 2019). In addition, 

looking at LLMIC which is considered a vulnerable region, it is 

essential to document the population, property, and coastal 

strategies, especially mangroves as Eco-DRR along its coastal 

zone. This documentation could enrich an advancement in 

coastal flood risk prediction by incorporating those parameters 

into the simulation. Besides, it is expected that the significance 

of ecological solutions in averting loss and damage from a coastal 

flood is also revealed. 

 

1.2 Objective 

The study aims to archive recent geospatial science studies that 

empower Artificial Intelligence, notably ML, in aiding disaster 

risk analysis, so-called GIS-based AI. Another aim is to 

document the population and property in LLMIC, which is 

vulnerable to coastal floods and the distribution of mangroves 

along their coastal zone. 

 

2. METHODOLOGY 

2.1 Research Boundary 

Case Study: The study selects cases in the Low to Lower 

Middle-Income Countries, or LLMIC, given their vulnerability 

toward coastal floods, i.e., a higher share of citizens living in their 

urban area, limited financial resources for coastal flood 

management, and poorly constructed coastal protection. Urban 

areas along the coastal zone are selected as essential locations for 

livelihood and economic activities within LLMIC. 

 

LLMIC: countries that fall under the category where their GNI 

per capita is lower than $4,095 (World Bank 2021). Forty-five 

countries fall under this category worldwide. 

 

Coastal Flood Risk Terminology: The study defines the risk as 

to the potential occurrence and impact of the coastal flood in 

terms of loss and damage, including population exposure, 

property damage, and economic loss. A coastal flood is water that 

penetrates onto land, especially within Low Elevation Coastal 

Zone (LECZ), areas lower than 10 m above sea level and 

hydrologically connected to the coast. 

 

2.2 Mapping on Coastal Flood Events, Population, 

Property, and Mangrove Distribution across LLMIC 

The study utilized the ArcGIS Pro to document historical and 

projected coastal flood events, population, property, and 

mangrove distribution across LLMIC. Historical coastal flood 

data were recorded from the Global Active Archive of Large 

Flood Events, Dartmouth Flood Observatory. Spatial data were 

collected based on data sources information of global spatial 

dataset for flood studies, which is well explained by previous 

research (Kirezci et al., 2020; Lindersson et al., 2020). 

 

2.3 Documentation of Past Studies on Empowering Geo-

based AI on Disaster Risk Analysis 

The study concerns on application of Artificial Intelligence (AI), 

both Machine Learning (ML) and Deep Learning (DL), for 

disaster risk analysis, especially flood risk. The study focuses on 

recent research for the period 2016-2022 at any level and 

coverage. It emphasizes what kind of analysis is used in terms of 

temporal or spatial machine learning, ML algorithm used, and 

feature variables incorporated in the simulation. 

 

3. RESULT AND DISCUSSION 

3.1 State of the Art Geo-AI Approach in Aiding Disaster 

Risk Analysis 

Artificial Intelligence, especially the Machine Learning (ML) 

approach, has emerged in the past few decades (Mosavi et al., 

2018), as shown in Figure 1. This approach allows for various 

purposes, especially for resilience and preparedness against 

flooding (Saravi et al., 2019). According to the documentation, 

the research revealed that researchers mainly utilized ANNs 

(Artificial Neural Networks) followed by the SVM (Support 

Vector Machine), which gradually increased in use. Aiyelokun 

et al. (2021) predicted flood risk and drought through Naïve 

Bayes (NB) approach for traditional ML using wind, rainfall, 

temperature, and Relative Humidity (RH) dataset (Aiyelokun et 

al., 2021). Park and Lee (2020) assessed coastal flood risk under 

climate change impacts in South Korea using multiple machine 

learning algorithms (KNN-k-Nearest Neighbor; RF-Random 

Forest; SVM) spatially (Park and Lee, 2020). They have 

included geographic features such as Tide, DEM, and urban 

characteristics for the analysis despite lacking in considering the 

population and coastal protection in the simulation. At the same 

time, other researchers assessed the flood risk using traditional 

machine learning through flood datasets only (area, location, 

duration, etc.) for flood classification or prediction of the 

inundation (Chang et al., 2019; Saravi et al., 2019; Tayfur et al., 

2018).  

 

In short, based on the documentation, the most general ML 

algorithms for flood prediction were Adaptive Neuro-Fuzzy 

Inference System (ANFIS), Multilayer Perceptron (MLP), 

Wavelet Neural Network (WNN), Ensemble Prediction 

Systems (EPSs), Decision Tree (DT), Random Forest (RF), 

classification and regression trees (CART), Support Vector 

Machine (SVM), Naïve Bayes (NB), and Artificial Neural 

Networks (ANNs) (Aiyelokun et al., 2021; Ganguly et al., 2019; 

Manandhar et al., 2020; Park and Lee, 2020; Ruckelshaus et al., 

2020; Saravi et al., 2019). They were widely used in flood 

modeling and provide robust and efficient ML algorithms for 

flood prediction. 
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Figure 1. Primary ML methods are used for flood prediction in 

the literature. Reference year: 2008 (source: Scopus adapted 

from Mosavi et al., 2018). 

Although most of the researchers have acknowledged the 

robustness of ML in flood prediction, they were still analyzing 

through traditional ML and neglected the geographic features 

which essential and may influence the assessment. In addition, 

the researchers have limited estimates of risk in terms of loss and 

damage such as area flooded, the property affected, and 

community exposed, including the projection analysis 

considering climate change and population scenarios. Previous 

research limited their risk assessment to engineered ones instead 

of focusing on ecological solutions, i.e., Eco-DRR mainly 

through mangrove ecosystems that hypothesized fit for LLMIC 

primarily situated in the tropical or subtropical region. Table 1 

shows the comparison recommended for future research, 

originality, and novelty. 

 

Reference Level - Coverage Focus Analysis Approach Feature Variables 

  (Aiyelokun et al., 2021)  Urban – province  Flood, drought TML NB Wind, Rainfall, Temp., RH 

  (Park and Lee, 2020)  All – country Coastal flood SML KNN, RF, SVM Tide, DEM, Urban geo-characteristics 

  (Saravi et al., 2019)  All – global  Flood Classification TML RF, ANN, NB, LR Flood data (area, location, duration) 

  (Chang et al., 2019) Urban – city  Flood Inundation TML ANN Flood data (area, location, duration) 

  (Tayfur et al., 2018) All – country Flood TML ANN Flood data (area, location, duration.) 

  Future Research Urban - global 

(LLMIC) 

Coastal Flood SML Ensemble Model SLR, Tide, Surge, Waves, Wind 

Speed, DEM, DRR, Population, GDP, 

Flood Data  

Table 1. Review on coastal flood risk simulation through ML 

 

3.2 Distribution of Urban Settlement across LLMIC 

Cattaneo et al. (2021) has identified and divided the catchment 

areas of urban centers of different sizes called Urban-Rural 

Catchment Areas (URCAs), varied by the total population and 

time travel to the city. URCA is a raster dataset of the 30 urban-

rural catchment areas showing different sizes of catchment areas 

around cities and towns. As explained by the authors, each rural 

pixel is assigned to a specific category. In this study, it is adapted 

and modified into ten categories of urban settlement types to 

make it simpler as follows: 

1. Large city (> 5 million) 

2. Large city (1 – 5 million) 

3. Intermediate city (500,000 – 1 million) 

4. Intermediate city (250,000 – 500,000) 

5. Small city (100,000 – 250,000) 

6. Small city (50,000 – 100,000) 

7. Town (20,000 – 50,000) 

8. Rural (beyond other types) 

9. Dispersed towns (>3 hours to any city) 

10. Hinterland (>3 hours to any city) 

 

The study concerns the urban areas in the Low Elevation Coastal 

Zone (LECZ) across Low to Lower-Middle Income Countries 

(LLMIC) located in tropical and subtropical regions. The 

selection of the areas is mainly motivated due to higher 

vulnerability zone among other zones toward coastal floods. This 

vulnerability means that the location has a higher risk of coastal 

flood occurrence, followed by the potential impact on population 

exposure and property damage (MacManus et al., 2021; 

McGranahan et al., 2007; Neumann et al., 2015). Besides, they 

also have limited financial resources for disaster management 

and poorly constructed coastal protection Fields(Takagi, 2019). 

Tropical and subtropical boundaries are selected considering the 

mangrove ecosystem fits this region’s (Giri et al., 2011; Takagi, 

2019). Figure 2 indicates the distribution of urban areas along 

LECZ (<10 masl) in 10 different urban settlement types. Bali 

Island is provided to depict clearly where Denpasar city shows as 

a large city. In total, over 1,2 million Km2 falls under vulnerable 

areas toward coastal flood in LLMIC under different settlement 

types where Large City (urban areas) dominates it. 

 

 

 

Figure 2. Distribution of Urban Settlement along LECZ across 

LLMIC 
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3.3 Distribution of Historical Coastal Flood Events and 

Coastal Floods Hotspot 

Historical coastal flood event was compiled based on 

Dartmouth Flood Observatory (DFA) specifically for coastal 

flood event from 2006 to 2021. DFA provides the flood 

information from 1985, but due to lacking coordinated 

information, it is only started from 2006. There are compiled 

109 cases of coastal floods worldwide caused by high tides, 

storm surges, cyclones, and typhoons but only 58 events across 

the LLMIC areas, as shown in Figure 3. Some of these events 

will be validated by the news if available. Each point comprises 

information such as country, detailed location including 

coordinate, duration of the flood, people exposed and damage, 

primary cause, and flooded area. 

 

 

Figure 3. Global distribution of historical coastal floods (2006-

2021 June) across LLMIC 

In addition to the historical coastal flood event, the study 

recommends considering the global episodic coastal flood 

hotspot due to SLR, as shown in Figure 4. Coastal flood "hotspot" 

regions of changes in episodic coastal flooding in 2100 for 

RCP8.5 were estimated based on projected episodic flooding in 

2100 minus present-day episodic flooding (Kirezci et al., 2020). 

There were 908 total cases of extreme sea-level rise projected in 

the future (2100), mostly under 1.5 m. Furthermore, there is a 

vast distribution of coastal hotspots, especially in southeast Asia, 

i.e., Indonesia. On average, the coastal hotspots range from 0.7-

0.8 m asl. Based on the historical information and distribution of 

coastal hotspots, there is a case match in a city currently exposed 

by the storm surge and, in the future, expected to have a 1.5-2.5 

m extreme sea-level rise. 

 

 

Figure 4. Global distribution of historical (2006-2021), 

projected Extreme Sea Level (ESL) for RCP8.5 in 2100, and 

Coastal 'Hotspot' across LLMIC 

3.4 Distribution of Mangrove across LLMIC 

The study concerns ecological solutions for coastal flood 

countermeasure in the LLMIC region. The distribution of 

ecosystem types for coastal protection benefits has been 

documented in the SNAPP project (Science for Nature and 

People Partnership). It shows various coastal protection and its 

benefits, as indicated in Figure 5 (Li et al., 2017). In addition, 

mangroves as massive coastal protection applied in the tropical 

zone were documented. Figure 6 shows the majority of mangrove 

distribution globally. Indonesia occupied almost one-fourth of 

global mangroves, equal to 3,244 thousand ha of (Giri et al., 

2011; Kusmana, 2014). 

 

Figure 5. Various coastal protection for specific hazard (n = 

52). (Li et al., 2017) 

 

Figure 6. Global Mangrove Forests Distribution in 2000  

(Giri et al., 2011; Kusmana, 2014) 

3.5 Population and Property Documentation across LLMIC 

The documentation of population and property across LLMIC is 

addressed to reconsider that these areas are prioritized zone for 

the assessment. The documentation of the people with high-

resolution was documented by CIESIN (Facebook Hub) called 

High-Resolution Settlement Layer (HRSL). HRSL is an 

estimation of human population distribution at a resolution of 1 

arc-second (approximately 30m) for the year 2015. The 

population estimates are based on recent census data and high-

resolution (0.5m) satellite imagery from DigitalGlobe. The 

Connectivity Lab at Facebook developed the settlement extent 

data using computer vision techniques to classify blocks of 

optical satellite data as settled (containing buildings) or not. 

CIESIN used proportional allocation to distribute subnational 

census data to the settlement extent. World Bank Living 

Standards Measurement Study (LSMS) program was used to 

validate the final dataset against anonymized "ground-truth" 

household surveys. While the World Settlement Footprint (WSF) 

2015 is a 10m (0.32 arcsec) resolution binary mask outlining the 

2015 global settlement extent derived by jointly exploiting 

multitemporal Sentinel-1 radar and Landsat-8 optical satellite 

imagery. Settlements are associated with value 255; all other 

pixels are associated with value 0. Figure 7 indicates the 

documentation of population and property with high spatial 

resolution potentially used for the coastal flood risk simulation. 
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Figure 7. High-Resolution Settlement Layer (HRSL) 2020 

(Facebook - CIESIN 2016) and World Settlement Footprint 

2015 (Marconcini et al., 2020) 

 

3.6 Framework Development for Coastal Flood Risk 

Assessment by Employing Geo-based AI 

The coastal flood simulation approach was developed, as shown 

in Figure 8. The study presents a novel use of the ensemble 

Spatial Machine Learning Algorithm (SMLA) for coastal flood 

simulation, harnessing big spatial data of high temporal and 

horizontal resolution globally. Once the key parameters’ 

documentation is finished, all data will be transformed and 

harmonized into grid-based data and compiled into (A) Data 

Table of Key Parameters as variable features for flood modeling. 

The parameters include Sea Level Rise (SLR); Tide; Surge; 

Wave Setup; Wind/typhoon/cyclone; MERIT-DEM; Slope; 

Population; DRR applied; (*) Coastal Flood Occurrence and 

Duration; (*) Flooded Area (Km2); (*) Property Damage ($); (*) 

Injuries or Death Direct/Indirect (number). 

 

The Data Table of Key Parameter will be split into a training 

dataset (70%) and a testing dataset (30%) contained by data 

feature as a predictor and feature target (indicated in asterisk (*) 

above). Subsequently, these data will be (B) modeled through 

GIS-based Machine Learning (ML) using ArcGIS API for 

Python. Following ML approaches will be compared to figure 

out the best accuracy, such as Random Forest (RF), Support 

Vector Machine (SVM), Artificial Neural Networks (ANN), 

Naïve Bayes (NB), and Logistic Regression (LR). Result 

evaluation such as confusion matrix, ROC, and F1 score (>75%) 

will be employed. Previous research has compared these 

approaches for flood simulation but is limited to coastal floods 

especially considering such DRR in the simulation 

(Faizollahzadeh Ardabili et al., 2019; Park and Lee, 2020). 

 

 

Figure 8. ML model of coastal flood risk assessment 

 

Coastal flooding is driven by stochastic high-water events, such 

as storm surges and waves caused by tropical cyclones/coastal 

storms/high tides. In other words, a coastal flood is a seawater 

penetrating onto land (Lorie et al., 2020). Some coastal flood 

parameters are used in the analysis, as shown in Figure 9 and 

listed below. 

 

 

Figure 9. Coastal flood pathways and key parameters 

 

Sea level rise is defined as the height of water over the mean sea 

surface in a given time and region. In this analysis, the dataset of 

sea level anomalies is computed concerning a twenty-year mean 

reference period (1993-2012) using up-to-date altimeter 

standards. Tide and surge are easily defined as the difference 

between seawater anomaly and mean sea level rise (high tide), or 

the contrast of the rise in water level above the average tidal level, 

and do not include waves.  

 

For further simulation, variable targets (Y) are required, such as 

flooded areas, the property affected, and the population exposed. 

The following is impact documentation in the case study 

(Pekalongan northern coast, central java, Indonesia). 

The study developed the flooded areas due to coastal floods 

(Figure 10). It was generated using Landsat 8. There are some 

limitations where Landsat did not cover some areas during 

coastal floods. Therefore, the study assumed the most extended 

duration of the flood. Landsat 8 issues on cloud cover are also 

challenging. Here, Modified Normalized Different Water Index 

was used to estimate flooded areas despite overestimating 

compared with the news. The flooded area is defined as a 

temporary water index by MNDWI (> 0.5). The Modified 

Normalized Difference Water Index (MNDWI) uses green and 

SWIR bands to enhance open water features. It also diminishes 

other indices' built-up area features that are often correlated with 

open water Fields(Muis et al., 2020). 
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 MNDWI = (Green - SWIR) / (Green + SWIR) 

 

 

Figure 10. Flooded area in Pekalongan Northern Coast 

In addition to that, the study also developed the damage analysis 

by considering the property is affected and the population 

exposed (Figure 11). Property damage is defined as the GDP loss 

in the flooded area boundary. While the population exposed is 

defined as the total inhabitant living in the region where floods 

occur. The damage analysis used Open Street Map (OSM) and 

Gridded GDP. The plan will consider the depth, duration, and 

GDP. While the population exposed was calculated using gridded 

WorldPop. We found that the main issue was the spatial 

resolution. 

 

The future study will analyze coastal flood risk with the key 

parameters above. The impact above will act as a variable target 

(Y), and the feature variable will be the key parameters 

developed. This may include in the final paper. 

 

 

 
Figure 11. Flooded area in Pekalongan Northern Coast 

4. CONCLUSION 

A study on utilizing Machine Learning (ML) to aid disaster risk 

analysis has emerged recently. It is vastly improved to advance 

disaster prediction both spatially and temporally. Despite a 

limited study on spatial disaster risk assessment using the ML, 

there is a trend on this, and expected to utilize it shortly 

extensively. The application of this approach in the case study 

shows that ML has promising results to advance risk prediction 

in loss and damage.  

 

Considering LLMIC, especially urban zone, for the focus study 

is essential given they are expected to have a severe impact from 

the coastal flood. The documentation of population and property 

has revealed that it is crucial to consider this region for 

assessment. The study recommends that those information and 

geographic features parameters such as ecological solutions 

applied to climate change and population scenarios enrich the 

risk forecast under various conditions. 
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