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ABSTRACT: 

 

Single image super resolution (SISR) technology has been attracted much attention from remote sensing community due to its proven 

potentials in remote sensing applications. Existing SISR techniques varying from conventional interpolation methods to different 

network architectures. Generative adversarial networks (GANs) are one of the latest network architectures proven a greater potential 

as a SISR method whereas least attention has been given by the remote sensing community. Several studies have already been carried 

out on this context. However, yet there is no generalized GAN based approach to super resolve remote sensing imageries. Therefore, 

this study investigated the potentials of enhanced super resolution generative adversarial (ESRGAN) model to super resolve very high 

to medium resolution images from high to coarse resolution images for remote sensing applications. Two models were trained and 

Worldview-3 (WV3) images used as for very high resolution images. Whereas, down sampled WV3 and Sentinel-2(S2) were used as 

low resolution counterparts. Model performances were qualitatively and quantitatively analysed using standard metrics such as PSNR, 

SSIM, UIQI, CC, SAM, SID. Evaluation results emphasised super resolved images were preserved the original quality of the satellite 

images to a greater extent while improving its ground resolution.      

 

1. INTRODUCTION 

Remote sensing images, specifically the images taken from 

satellite and airborne platforms are crucial for applications such 

as environmental surveillance, hazard monitoring, traffic 

mapping, agriculture monitoring, oceanography, hydrology etc. 

due to their capability to monitor wider area within a shorter 

period of time (Drusch et al., 2012). However, the specific 

application of the remote sensing images is determined by its 

spatial resolution. For instance, high resolution (HR) images 

contains more descriptive information and are crucial for the 

applications such as disaster damage detection in hazard 

monitoring.  With the recent advancements in satellite sensors, 

images with very high ground resolution or spatial resolution 

covering all parts of the earth is widely available. However, the 

use of such HR satellite images for larger area and multi temporal 

analysis is mostly impractical due to the cost constraint. 

Moreover at the time of a disaster, images are rarely taken at nadir 

and mostly the sensor will be tilted to rapid grasp of a wider area. 

Such oblique images (Figure 1) hinder its usability for damage 

extractions hence a further resolution improvement techniques 

are required.  

 

 
 

Figure 1. (a) Image taken on 2018/09/11 with ground resolution 

(GR) 1.5m (b) respective aerial image taken at same location on 

2018/09/11 with 0.1m GR. 1 
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In contrary, regardless of the fact that the earth observation data 

sets covering all parts of the earth at 5 days temporal resolution 

is freely provided by the Sentinel-2 missions of European Space 

Agency (ESA) its popularity for post processing applications 

such as damage detection or feature extraction is quite low (Ma 

et., al, 2019) due to its coarse spatial resolution (Figure 2). 

Therefore, a technology which allow to improve original 

resolution of the satellite images would be desirable for 

comprehensive use of remote sensing images in the contexts of 

applications as well as for a broader user community.  

 

 
 

Figure 2. (a) WV3 image taken on 2020/04/02 with ground 

resolution (GR) 0.3m (b) respective S2 image taken at same 

location on 2020/04/02 with 10.0m GR. 

 

1.1 Single Image Super Resolution  

Since 2012, deep learning became a prominent tool for computer 

vision and image processing tasks such as object detection, 

segmentation etc. (Galar et al., 2019). Less than a decade, its 

applicability has grown beyond the standard applications. 

Remote sensing is a key field which benefitted immensely from 

the recent advancements in deep learning. 

 

Image fusion was the only option for the resolution 

improvements in remote sensing images. One of the major draw 

backs of image fusion technology was the requirement of 

panchromatic band along with the multispectral band as some of 

(a) (b) 

(a) (b) 
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the satellite sensors such as Copernicus mission of S2 only 

provides the multispectral imageries. 

 

Single image super resolution (SISR) is one of recent 

advancements which attracted much attention of remote sensing 

community due to its greater potential to add extra value to 

remote sensing images without using additional information 

(Yang et al., 2018, Pan et al., 2013, Yang et al., 2008).  

 

In literature, several methods (Lim et al., 2017, Kim et al., 2019, 

Zhang et al., 2014, Dong et al., 2014) have been tested for SISR 

ranging from conventional interpolation methods (e.g. linear, bi-

cubic etc.) to different network architectures from standard 

CNNs to generative adversarial networks (GANs). As of authors’ 

knowledge about existing literature, least attention has been 

given to GANs and underestimated its potential in SISR by 

remote sensing community. Most prominent concern is the 

possible spectral discrepancies in generated images. 

 

Mehmood A., (2020), Galar et al., (2018, 2019) and Romero et 

al., (2020) are some of the recent studies attempted to apply GAN 

models for resolution improvements in images for remote 

sensing applications. However, authors have learnt from existing 

literature that the adequate attention has not been given to the 

alleviation in spectral quality of the generated images by some 

studies. Further, several studies are carried out exclusively with 

selected data sets (Galar et al., 2019) therefore, its generality is 

unclear along with its applicability for the worst case scenarios 

such as oblique images.  

 

Therefore, this study is an initial communication of a series of 

studies to develop generalized SISR technique based on GAN 

models for resolution improvements without degrading the 

quality and value of the satellite imageries. The objective of this 

study is to investigate the potentials and applicability of enhanced 

super resolution generative adversarial networks (ESRGANs) as 

a general method to super resolve remote sensing images at 

different resolution levels. Two experiments were designed and 

the objective of the first experiment (EXP1) to evaluate the model 

performance for resolve the original resolution of the satellite 

images from degraded images. 

 

And from the experiment 2 (EXP2) a model was trained to 

resolve S2 images by four folds. Through these experiments 

authors expected to cater two prevailing concerns with remote 

sensing data usage. The 1st and the foremost is to develop a 

generalized methodology to improve the image quality of 

satellite images captured even at severe conditions without extra 

information. And the 2nd concern is to support a broader remote 

sensing user community for comprehensive analysis using largest 

earth observation satellite data sets available at no cost.       

 

2. MATERIALS AND METHODS 

2.1 Network Architecture 

GANs were proposed by Goodfellow et al., (2016) and have been 

widely used in super resolution tasks due to their ability to 

generate more photo realistic outputs with rich texture and 

quality (Romero et al., 2020). As shown in the Figure 3, both 

generator network and discriminator network train 

simultaneously with training data samples with  an aim to train 

the generator network which can generate fake images in such a 

way that the discriminator could not be able to distinguish it as a 

fake image.    

 

This study has adopted one of the state of art network ESRGAN 

(Wang et al., 2018) due to its novelty, proven success and the 

usability. ESRGAN model was developed to further enhance the 

visual quality of the resolved image by improving three key 

components of SRGAN model, namely network architecture, 

adversarial loss and perceptual loss function (Xintao et al., 2018). 

 

 

 
 

Figure 3. Overview of the generative adversarial network. 

 

ESRGAN model was introduced the Residual in Residual Dense 

Block (RRDB) (Figure 4) without batch normalization to the 

original SRGAN model. With the aforementioned advancements 

ESRGAN model generated much realistic and natural textures 

eliminating the prominent blurring effects found at SRGAN 

outputs (Xintao et al., 2018).  

 

 

 

 

 

 

 

Figure 4. Basic network architecture of SRResNet model. 

 

2.2 Datasets and Study Area 

As explained in the introduction section, this study carried out 

two experiments. HR and LR datasets used for each experiment 

along with imaging data are included in Table 1. All datasets used 

in this study are captured in Japan (Figure 5). EXP1 was designed 

to evaluate the model capability to recreate original resolution of 

WV3 images from down-sampled WV3 images. The test image 

selected for EXP1 was taken at relatively high nadir angle and 

low ground resolution in comparison to training data set with a 

motive to test the capabilities of ESRGAN model on images 

taken at non-ideal conditions.   

 

Experiment  HR data LR data 

EXP1 WV3 [0.3m] WV3[1.2m] 

Itabashi (2020/04/04) 

Joban (2021/02/14) 

Mashiki (2016/11/01) 

Mitaka(2020/08/15) 

Nara(2020/11/18) 

Nihonmatsu[0.5m](2021/02/14) 

EXP2 WV3 [2.5m] S2[10.0m] 

Itabashi (2020/04/02) 

Joban (2021/02/13) 

Mashiki (2016/12/28) 

Mitaka(2020/08/15) 

Nara(2020/11/26) 

Nihonmatsu (2021/03/21) : S2 image 

Ichihara (2020/01/03): S2 image 

Table 1. Summary of the data sets used in respective experiment 

(image names written in bold italic corresponds to test data sets). 
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The motive of the EXP2 was to resolve S2 images by four folds. 

Down-sampled WV3 images into 2.5m used as HR images for 

corresponding LR S2 images. As shown in Table 1 Nihonmatsu 

image along with Ichihara S2 images are used as test data sets. 

Longest time lag observed for Nihonmatsu image among the used 

data set. S2 Ichihara image is specifically selected investigate the 

model’s performance in in urban landscapes as Nihonmatsu 

image covers mountainous region. However, Ichihara image has 

been included only for qualitative analysis due to unavailability 

of the corresponding HR image for a quantitative analysis.   

 

 
 

Figure 5. WV3 images used for EXP1 and 2 (a) Itabashi (b) 

Mashiki (c) Joban (d) Nihonmatsu (e) Mitaka (f) Nara.  

 

 

 
 

Figure 6. Overview of dataset preparation for EXP1. 

 

2.2.1 Dataset Preparation EXP1: As shown in Figure 6, 

WV3 images were converted to 8bit from 16bit and then created 

the image tiles before classify them into soil, vegetation and 

urban. Thereafter, image samples exceeding threshold value of 

0.5 for NDVI (normalized differential vegetation index) and 

NDSI (normalized differential soil index) indices are excluded 

from data set expecting better training performance on urban 

landscapes. Subsequently, training and validation image samples 

were randomly selected based on 8:2 ratio and created respective 

LR images.  

 

2.2.2 Dataset Preparation EXP2: There are three main 

differences in dataset preparation of EXP1 with EXP2. First and 

the foremost is the downgrade the original resolution of WV3 

from 0.3m to 10.0m. Resampling was performed in stepwise by 

2x to minimize the image detail loss at direct downsampling of 

the satellite images. WV3 image samples at 2.5m resolution are 

used as HR whereas, corresponding 10.0m resolution samples as 

LR during model pre-training phase. The second difference is the 

during the actual model training with WV3-S2 data sets, 

resampled WV3 image tiles(2.5 m) created with 50% overlap  are 

used as HR and respective S2 image tiles are used as LR image 

samples (Figure 7). The third difference is that the no image tile 

classification has performed due to less amount of image tiles. 

Number of training and validation samples used for each 

experiments is summarized at Table 2.  

 

Experiment training validation test 

EXP1 2259 565 441 

EXP2 389 97 124 

Table 2. Number of image pairs used for each experiment. 

 

2.3 Network Training 

ESRGAN model was implemented as per the guideline given in 

the BasicSR library (Xintao et al., 2018) developed under 

PyTorch (Paszke et al., 2017) framework. Authors found that the 

pertained networks are not necessary for EXP1 based on the 

studies carried out by Lanaras et al., (2018), Galar et al., (2019) 

and Romero et al., (2021)  due to the fact that common data 

source used for both LR and HR image tiles. Subsequently, 

model pre-training has been carried out in EXP2 with only WV3 

images due to different data sources are used in HR and LR.  

 

Random flips, rotation and crops were used as data augmentation 

option at the network training. Models were trained with a 

learning rate of 4x10-5 and batch size of one as it has been 

demonstrated as effective in image tasks (Ulyanov et al., 2016).   

 

 
 

Figure 7. Overview of dataset preparation for EXP2. 
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2.4 Evaluation Methodology 

Model performances were evaluated qualitatively and 

quantitatively. At the validation phase widely used matrices for 

super resolution such as Peak signal to noise ratio (PSNR) and 

structural similarity index (SSIM) introduced by Zhou et al., 

(2004) were applied to quantify the image quality degradation 

along with the other indices mentioned in the text.  

The higher the index value the better the quality of generated 

image with respect to ground truth image. An extended 

evaluation was carried out both at the validation as well as test 

phase with special emphasis to evaluate the deterioration of 

spectral quality of the generated image with corresponding 

ground truth image. Consequently, following indices which 

estimate pixel wise error for all bands of the images were also 

used.   

 

2.4.1 Spectral Angle Mapper (SAM): SAM attempts to 

obtain the angles formed between reference spectrum and the 

image spectrum treating them as vectors in a space with a 

dimensionality equal to the number of bands ((Kruse et al.,1993, 

Boardman, 1992). A value of cos (SAM) equal to one denotes 

none existence of spectral deviations with its ground truth image 

(Cetin et al, 2009). Thus, SAM measures how realistic is the 

spectral distribution of a reconstructed pixel regardless of the 

absolute brightness (Lanaras et al., 2018). However, Carvalho 

and Meneses (2000) argued that even though there is an apparent 

difference in original and tested image, the cos (SAM) shows a 

high correlation (close to 1) that does not reflect the truth. In such 

cases Pearson Correlation is tend to be more accurate as it ranges 

from -1 to 1. 

 

 

SAM(X, Y) = arccos (
𝑋.𝑌

|𝑋|2|𝑌|2
)        (1) 

 

Where, X and Y are generated image and corresponding ground 

truth respectively.  

 

2.4.2 Universal Image quality Index (UIQI): UIQI (Wang 

and Bovik, (2002)) estimates the difference between two images 

based on three factors namely, loss of correlation, luminance and 

contrast. The index is used as a measure of spectral quality of the 

output image, the higher the value closer to one the better the 

image quality (Cetin and Musaoglu, 2009). UIQI defined as 

 

𝑈𝐼𝑄𝐼 =
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦

2𝑥̅𝑦̅

(𝑥̅)2+(𝑦̅)2

2𝜎𝑥𝜎𝑦

𝜎𝑥
2+𝜎𝑦

2       (2) 

 

Where, 
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1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1   , 𝑦̅ =

1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1  

 

𝜎𝑥
2 =

1

𝑁−1
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1 , 𝜎𝑦
2 =

1

𝑁−1
∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1  

 

𝜎𝑥𝑦 =
1

𝑁−1
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑁

𝑖=1 . 

 

2.4.3 Spectral Information Divergence (SID): SID views 

each pixel spectrum as a random variable, and measures the 

band-band variability. Thus, Chang, (1999) argued that SID is 

relatively effective index for determining the similarity and 

variability in the context of spectral information at a pixel than 

SAM.Zero SID value indicates the original image spectral quality 

is fully preserved. SID at a pixel (x, y) is defined as follows. 

 

SID(x, y) = ∑ [
𝐼𝑋(𝑥,𝑦,𝛾𝑖)

∑ 𝐼𝑋(𝑥,𝑦,𝛾𝑗)𝑙
𝑗=1

−𝑙
𝑖=1

𝐼𝑋(𝑥,𝑦,𝛾𝑖)

∑ 𝐼𝑋(𝑥,𝑦,𝛾𝑗)𝑙
𝑗=1

] [𝑙𝑜𝑔
𝐼𝑋(𝑥,𝑦,𝛾𝑖)

∑ 𝐼𝑋(𝑥,𝑦,𝛾𝑗)𝑙
𝑗=1

− 𝑙𝑜𝑔
𝐼𝑋(𝑥,𝑦,𝛾𝑖)

∑ 𝐼𝑋(𝑥,𝑦,𝛾𝑗)𝑙
𝑗=1

] (3) 

 

Where, 

            IX : generate image 

            IY  : ground truth image 

           I(x,y,gi): spectral reflectance at pixel of image of band i 

           m*n*l: image dimensions  

            x = 1,…,m 

            y = 1,…,n 

            gi (i= 1,…,l) 

 

2.4.4 Correlation Coefficient (CC): CC computes the linear 

correlation of each pixel of the generated image with its ground 

truth image averaged over all 03 bands. Positive one indicates the 

positive correlation between generated and original image. 

 

As for the comprehensive comparison of spectral values, 

histograms and scatter plots of generated and corresponding 

ground truth images are also included where it’s necessary. Index 

values are estimated for all three bands (red, green, blue) used in 

the true colour composites.  

 

3. RESULTS AND DISCUSSION 

This section presents the model performance at validation and 

test phase. Analysis has carried out and results are summarised 

qualitatively and quantitatively as per the availability of ground 

truth data. For EXP1 quantitative results are given in terms of 

mean and standard deviation of the evaluation indices presented 

in sub section 2.4.  Further, a validation of reflectance values of 

super resolved images were carried out for selected image 

samples from test data sets of EXP1 and EXP2 by comparing 

histograms and scatterplots of their corresponding ground truth 

samples.     

 

3.1 Validation Results 

This sub section discusses the qualitative and quantitative results 

achieved at validation phase of each experiment. Results are 

presented in the forms of figures as well as tables for a thorough 

analysis. Qualitative analysis followed by a quantitative analysis.  

 

3.1.1 Qualitative Analysis: The performance of trained 

model at each experiments was assessed by visually comparing 

the super resolve image output of the model with HR ground truth 

images along with LR input image. All images used in EXP1 and 

HR images for EXP2 were created through a stepwise down-

sampling of original WV3 images with bi-cubic interpolation 

method by a factor of 2.   

 

Figure 8 shows validation results of results of EXP1. It is clearly 

evident from the visual inspection that results shown in Figure 

8(b), separation of original image and generated image is quite 

unlikely at first sight. From the close inspection it’s clear the 

objects of the inference output is sharper and the original texture 

is preserved to greater extent. Moreover, model’s capability to a 

recreate the finer image details from road signs to vehicles is 

comprehensive.  

 

Figure 9 further emphasized the model’s potential to super 

resolve images by generating sharper object details and realistic 

texture information with a negligible difference with its ground 

truth even from a coarse resolution images.  

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-53-2022 | © Author(s) 2022. CC BY 4.0 License.

 
56



 

 
 

Figure 8. Validation results of EXP1 (a) WV3 LR image (1.2 m) 

(b) Inference output (0.3m) (c) WV3 Ground truth image (0.3m).  

 

 
 

Figure 9. Validation results of EXP2 (a). S2 LR image (10.0 m) 

(b). Inference output (2.5m) (c). WV3 Ground truth image 

(2.5m).  

 

3.1.2 Quantitative Analysis: In the quantitative analysis, a 

discussion on model performance evaluated with respect to 

corresponding ground truth sample based on the six widely used 

image evaluation scales discussed in the above sections is 

included. Table 3 summarizes quality matrix results for all 

experiments. Quality matrix results in Table 3 provides a 

generalized summary of all image samples used at validation 

phase. UIQI and CC obtained a relatively higher values for EXP1 

and EXP2 where as other indices deviated much from the 

expected value as per the apparent quality at visual inspection. 

Index values tend to get lower values for the image tiles with low 

NDVI and NDSI values. Thus, a much deeper analysis along the 

spectrum such as histogram comparison is required.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Quality matrix results of three experiments at validation 

phase. 

3.2 Test Results 

EXP1 of this study investigated the potentials of ESRGAN 

models for super resolving downgraded WV3 images to its 

original resolution. And in EXP2 resolving S2 images by 4x with 

WV3 spectral characteristics was examined. Ground resolution 

of satellite image used for the testing phase in EXP1 was 0.5 m. 

Therefore, image was down sampled into 2m for the test data set 

creation. Further, a performance compassion to super resolve S2 

images with models trained at EXP1 and EXP2 also included to 

emphasize the need of a model trained with original resolution of 

S2 images for a better performance in super resolving coarser 

images. Histogram analysis is also included along with the scatter 

plots in the test phase for a thorough analysis on spectral quality 

of the generated image with corresponding HR image.    

 

3.2.1 Qualitative Analysis: Model performances at test phase 

were assessed by visually comparing the inference results with 

their respective ground truths. Test results of EXP1 (Figure 10) 

and EXP2 revealed that both models were successful in resolving 

4x images from down sampled WV3 and S2 images at small scale 

comparisons. However, at large scale comparison in Figure 11 

demonstrated that the model has confused in resolving snowy 

image patches as a consequence of their absence during the 

training phase. Except that, the model performance at test phase 

was relatively well regardless of the fact that model was 

originally trained for super resolve 1.2 m images and images 

taken at ideal conditions than the image used at test phase. Test 

has been carried out at worst case scenario as authors’ intention 

was to thoroughly investigate the potentials of ESRGAN model 

for super resolving satellite data taken at non-ideal situations 

such as emergency image captures with higher tilt angels during 

a disaster. A point to noteworthy in EXP2 is that even though the 

model was trained with extremely less amount of training 

samples, ESRGAN model has learnt extensively to achieve 

results which are unattainable with conventional resampling 

methods (Figure 12). 

 

 
 

Figure 10. Test results of EXP1 (a) LR image (2.0 m)  

(b) Output (0.5m) (c) Ground truth image (0.5m).  

 

 
 

Figure 11. Recreation of snowy image patches of EXP1 (a) 

ground truth image (0.5 m) (b) Output (0.5m).  

Index  EXP1 EXP2 

PSNR mean 29.6489 25.7144 

std 2.5896 1.9144 

SSIM mean 0.5362 0.4799 

std 0.1425 0.1023 

UIQI mean 0.9621 0.9207 

 std 0.0698 0.0769 

SAM mean 0.2897 0.2954 

std 0.0782 0.0961 

SID mean 0.1986 0.2075 

std 0.0986 0.0956 

CC mean 0.9862 0.9687 

std 0.0765 0.0985 
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Figure 12. Comparison of interpolated (bicubic interpolation) 

and model output (a) interpolated image (0.5m) (b) EXP1 model 

output (0.5m) (c) interpolated image (2.5m) (b) EXP2 model 

output (2.5m).  

 

 
 

Figure 13. Test results of EXP2 for Nihonmatsu image (a) LR 

S2 image (10.0 m) (b) Output (2.5m) (c) Ground truth image 

(2.5m).  

 

Test results of EXP2 with S2 Nihonmatsu image emphasize the 

negative impact of relatively longer time lag between LR images 

with the HR image. Moreover, seasonal bias of the training data 

set has also affected to the performance of ESRGAN model in 

super resolving image sample captured during early spring. 

Further, the absence of snow and cloud covered image samples 

during training phase and the mountainous landscapes in the test 

samples might have contributed adversely to the model 

performance. Aforementioned facts are further confirmed by the 

comprehensive model performance with Ichihara S2 image tiles 

(Figure 14) where the image is taken at ideal conditions at which 

the model is well trained for.   

 

 

 

 

 

 

  

 

 

Figure 14. Test results of EXP2 for Ichihara image (a) LR S2 

image (10.0 m) (b) Output (2.5m) (c) Google Earth image 

(18/12/2020).  

 

 
 

Figure 15. Comparison EXP1&2 test results for S2 (a) GR 10m 

input (b) EXP1 model output (c) EXP2 model output and (d) 

Google Earth HR image taken at 2015/10/8. 

 

Relatively high naturalistic appearance of Figure 15(c) than 

Figure 15(b) emphasize the necessity of a model trained at 

original resolution of S2 for coarser resolution images regardless 

of the fact that the EXP1 model was trained with about 6-7 times 

higher number of samples than EXP2. However, observed 

relatively sharper object boundaries at Figure 15(b) than the 

features on Figure 15(c) highlighted the requirement of 

qualitatively and quantitatively improved training data set 

addressing the issues such as seasonal bias, time lag etc. for better 

performance in EXP2. In general, test results of EXP2 with S2 

data revealed that there is a great potential to generate high 

resolution naturalistic images from coarser images with tested 

SISR technology. Yet, the suitability of the generated images for 

remote sensing applications need to be further investigated  

 

3.2.2 Quantitative Analysis: In this section, comprehensive 

analysis with specific emphasis on spectral quality of the 

generated image was carried out. Histogram comparisons of 

original and generated images for selected image patches also 

included for a thorough analysis. Quantitative analysis of EXP2 

only carried out with WV3 image of Nihonmatsu. In all other 

cases quantitative values are given in terms of mean and standard 

deviation of the indexes mentioned in the text.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Quality matrix results of EXP1 and EXP2 at test phase. 

 

From Table 4 results it is obvious that the model performance at 

test phase is quite alleviated from its validation phase. Such 

performance much likely for the EXP2 than EXP1 due to larger 

time lag between tested LR S2 images with its HR counterpart. 

Authors assume such lower index values as a consequence of the 

snow, cloud conditions and insufficient model training for the 

land use type found in the Nihonmatsu image. However, higher 

SAM and SID values even at the validation phase for EXP1 in 

comparison to similar works carried out by Romero et al., (2020) 

might greatly affected by the absence of NIR band in this study.  

 

Relatively weaker performance of trained model in EXP2 both in 

validation and the test phase probably caused by the insufficient 

amount of training data. Similar works carried out by Romero et 

al., (2020) and Galar et al., (2019) have used about 7-8 times 

larger data sets which led to obtain a comparatively better results. 

Time difference in HR and LR image samples and presence of 

cloud and snow conditions at Nihonmatsu image have further 

worsen the test phase results of EXP2.    

 

One of the main concerns of GANs applications in super 

resolving remote sensing images is spectral quality of the 

generated images. Quantitative analysis based on pixel-wise 

comparisons are always supportive on this regard. Therefore, 

histogram and scatter plot comparisons have also been 

incorporated in quantitative analysis to provide a broader 

overview of the spectral quality of the generated images. The 

image tiles were selected based on closeness of their quality 

matrix values to respective mean values summarized in Table 3. 

Histograms in Figure 16 corresponds to image tile used in Figure 

10. Figure 16 shows that original histograms are not altered 

drastically even though the model was trained selectively for 

urban landscapes using approximately one third of the total data 

Index  EXP1 EXP2 

PSNR mean 26.5317 19.5152 

std 2.1362 3.0005 

SSIM mean 0.3964 0.2998 

std 0.2145 0.1935 

UIQI mean 0.9489 0.5622 

 std 0.0978 0.1036 

SAM mean 0.2941 0.3144 

 std 0.0896 0.1214 

SID mean 0.2013 0.3998 

 std 0.1003 0.1461 

CC mean 0.9768 0.5153 

 std 0.0980 0.1572 
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set. Observed discrepancies in lower part of histograms and 

greater coincidence of the upper part of the histogram agreed with 

exclusion of larger portion of vegetative samples (Song et al., 

2015) and bias towards urban landscapes (Sun et al., 2017) during 

training phase. 

 

In contrary, through the slight lag between histograms of ground 

truth and generated output in Figure 17, explicitly demonstrated 

aforementioned performance deficiencies at test phase of EXP2. 

Further, it implicated the necessity of a qualitatively and 

quantitatively improved dataset during training process of the 

respective model as the central wavelength of the WV3 and S2 

has a considerable deviation for all 03 bands.  

 

 
 

Figure 16. Comparison of histograms (top) and scatterplots 

(bottom) between ground truth and model generated image of a 

selected test data tile from EXP1. 

 

 
 

Figure 17. Comparison of histograms between ground truth (up 

sampled S2) and model generated image of a selected test data 

tile from EXP2 (correspond to image tile used in Figure 13 (b) 

and (c)). 

 

Overall, authors would like to mention that the model training 

carried out in this study was not at ideal conditions with stricter 

filtering process of data as per the objective of this initial 

communication was to investigate the extent of ESRGAN 

model’s potential to super resolve images for remote sensing 

applications. Finally, qualitative and quantitative analysis results 

conveyed the strong potential of GANs for super resolving 

images for remote sensing applications with preserving original 

spectral quality to an adequate extent by a comprehensive amount 

of training.   

 

4. CONCUSIONS AND FUTURE WORK 

This study was investigated and evaluated the potentials of 

ESRGAN model’s application for remote sensing images in two 

different levels of resolutions. Two individual experiments were 

designed for super resolving down-sampled WV3 images and S2 

images by four folds. Two models were trained at none-ideal 

conditions by excluding stricter data filtering rules due to the fact 

that the overall objective of the study was to develop a 

generalized method to super resolve satellite images taken at any 

conditions. EXP1 model was trained only for an urban 

landscapes. Thus, the image tiles with majority vegetation and 

soil were removed in EXP1 based on 0.5 threshold values for 

NDVI and NDSI.  

 

Overall, trained model performed relatively well for the tested 

urban landscapes even at non-ideal conditions regardless of the 

fact that the data set preparation did not adhere to the general 

practise used by the other super resolution studies carried out on 

remote sensing context. Moreover, from the EXP2 learning 

capacity of the tested ESRGAN model was greatly demonstrated 

which implicated the strong potential in super resolving 

capability of S2 images preserving the original spectral quality 

by a training process with a qualitatively and quantitatively 

enhanced data set. 

 

However, as mentioned in the text this study is an initial 

communication of a series of studies carried out to develop a 

generalized technology to super resolve remote sensing images 

to further extend their applicability. During this study authors 

have found that generating realistic images while preserving 

original spectral quality is a challenging even at the validation 

phase. Further, authors have identified the necessity of spectral 

profiling to be incorporated along with widely used 

quantification methods like indexing to provide a broader 

overview of spectral quality of the generated images for remote 

sensing images. 

 

Further, authors are expecting Spectral Correlation Mapper 

(SCM) method which is a derivative of Pearsonian Correlation 

Coefficient that eliminates the assumption of positive and the 

negative correlations have an equal value of SAM while 

maintains the SAM characteristic varies from –1 to 1 has greater 

potential to provide a comprehensive evaluation of generated 

images for their suitability for remote sensing applications. 

Consequently, authors are expected to extend the robustness of 

the model through improvements in data sets along with 

refinements in model itself for multichannel usage and 

incorporating a comprehensive image quality analyser for 

improved performance in ESRGAN model as SISR technology 

to generate images for remote sensing applications.  
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