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ABSTRACT: 

A landslide inventory map is one of the essential sources of geospatial information for land resource management. This study proposes 

an interval-based landslide detection strategy using satellite images' time series vegetation index. Landslide trends to be abruptly 

changed with the landscape can be clearly detected using the time series vegetation index. The proposed adaptive landslide interval 

detection (LID) method is a two stage algorithm. The first stage extracts local extremes and divides the time series to obtain 

discriminative intervals. Then, a predefined threshold is applied to determine whether a landslide occurs in each interval. The 

experiment compares the proposed scheme and the traditional time series forest (TSF) algorithm on a pre-labeled dataset. In the 

comparison of the results obtained from TSF and LID, the validation results show that the proposed LID has better discriminative 

ability in real scenarios, and the landslide detection rate for large areas reaches 85%. But the TSF can only provide good results on 

well-defined and unmixing datasets. In addition, LID does not require a large number of training datasets and can be applied to irregular 

time series with various lengths. In summary, this study demonstrated that the LID global pattern concerned splitting strategy is more 

effective than TSF random interval segmentation. 

 

 

1. INTRODUCTION 

Landslides often pose a serious threat to people, property, and the 

environment. The causes of landslides are complex, including 

earthquakes, volcanic activities, rainfall, and different kinds of 

human actions. As a result, it is challenging to accurately predict 

landslide occurrence time and location. Nevertheless, areas that 

have experienced large-scale landslides have a high probability 

of repeated landslides due to weakened geological conditions and 

difficulty in vegetation recovery. Landslide detection is 

indispensable for making a complete and accurate landslide 

inventory map for management. 

 

Traditional landslide detection methods can be divided into 

geomorphological field surveys and visual interpretation using 

stereoscopic aerial photographs (Guzzetti et al., 2012). The 

former is limited by the available stations and can only obtain 

partial information; the latter requires expert experience, 

professional training, and a unified detection standard. Besides, 

the traditional method requires huge labor costs and is time-

consuming. 

 

Nowadays, large area landslide detection is mainly based on 

remote sensed image data, and various methods are developed 

according to different sensor mechanisms. For instance, satellite 

SAR data have been widely used to interpret slope failures 

(Shibayama and Yamaguchi, 2014; Handwerger et al., 2020). 

The use of optical remote sensing images is another mainstream 

for landslide detection (Danneels et al., 2007; Cheng et al.,2013; 

Chen et al., 2017). In addition, many studies combined both SAR 

and optical images for landslide investigation (Furuta and 

Tomiyama, 2008; Plank et al., 2016). 

 

Most of the landslide detection methods use bitemporal satellite 

images, which means that they employ pre- and post-event 
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images as the basis for detection. For example, Herrera (2019) 

used Sentinel-2 optical images to extract landslide diagnostic 

features which were computed using band rationing and 

subtraction of pre-/post-event images. Then Herrera combine 

object-based image analysis (OBIA) and machine learning 

algorithms to develop an automatic landslide detection method. 

Konishi and Suga (2017) also extracted damaged areas caused by 

debris flow using normalized difference sigma naught index 

(NDSI) from bitemporal COSMO-SkyMed images. The 

limitation of using bitemporal images for landslide detection is 

highly time-dependent. Moreover, optical image acquisition 

should consider cloud coverage. Besides, if the landslide area 

becomes bare soil and then recovers to vegetation within the 

selected time interval, a landslide might not be successfully 

detected.  

 

Time series satellite images overcome the problem of data 

continuity for land cover changes in bitemporal imagery. 

Landslide detection using chronological observations can be 

regarded as binary classification of time series (Hu et al., 2018). 

Many time series classification (TSC) algorithms have been 

developed to extract useful information. Bagnall et al. (2017) 

classified TSC algorithms according to the types of 

discriminatory features as follows: (1) whole series; (2) 

shapelets-based; (3) dictionary-based; and (4) interval-based 

TSC. The whole series method, such as dynamic time warping 

(Müller, 2007), expects the overall behavior of the timing to be 

similar and therefore compensate small misalignments. The 

shapelet is a recognizable time series subsequences which can 

maximally represent a class (Ye and Keogh, 2009). It can be used 

for template matching on time series, for example, time-lagged 

cross-correlation (Shen, 2015). On the contrary, dictionary-based 

methods identify the repetition frequency of subseries (Schäfer, 

2015).  
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Instead of using entire series, the interval-based method utilizes 

one or more intervals to divide the time series. Discriminative 

features are then extracted by key intervals or by summarizing 

multiple intervals. Deng et al. (2013) proposed a time series 

forest (TSF) algorithm, employing a random forest approach with 

summary statistics features of each interval in time series 

classification. There are also several interval-based TSC 

algorithms like time series bag-of-features (TSBF) (Baydogan et 

al., 2013) and learned pattern similarity (LPS) (Baydogan and 

Runger 2016).  

 

However, the characteristics of landslide time series include 

different occurrence times, different durations, and no regular 

frequency. The whole series and shapelets-based methods 

usually fail in time series landslide detection. We assume that an 

irregular landslide behavior includes three intervals: pre-event, 

landsliding, and post-event. Therefore, it is a more appropriate 

way to detect a landslide using an interval-based method. The 

subseries segmentation methods of TSF, TSBF and LPS are all 

based on random intervals without considering the global time 

series pattern.  

 

In this study, we split the time series data into several intervals 

by every identified peak and valley of time series. Based on this, 

a simple landslide detection method is proposed, which can also 

operate on time series of arbitrary length. This discrimination 

procedure can be applied for landslide detection. Hence, the 

contribution of this research is to perform global pattern 

concerned landslide detection by interval-based TSC. To 

demonstrate the capability of the proposed method, the 

experiment also compares the proposed scheme with the 

traditional TSF algorithm in time series landslide detection. 

 

2. METHODOLOGY 

This study aims to detect landslides using time series satellite 

images. The proposed method includes three major works: (1) 

image preprocessing; (2) time series preprocessing; and (3) 

landslide detection. The flowchart is shown as Figure 1. 

 

 
Figure 1. Workflow of the proposed method. 

 

2.1 Image Preprocessing 

The Google Earth Engine (GEE) is a cloud-based platform with 

massive remote sensing data and powerful cloud-computing 

capabilities (Gorelick et al., 2015). The GEE is designed for 

planetary-scale geospatial analysis. Therefore, large-scale and 

multi-temporal data can be easily retrieved by GEE. This study 

obtained multi-temporal and multispectral Landsat-8 (LS8) 

satellite images using GEE. We use the atmospherically 

corrected surface reflectance from the LS8 OLI/TIRS sensors to 

avoid atmospheric influences. In addition, the quality assessment 

(QA) bands generated using the CFMask (Foga et al., 2017) 

algorithm can be used to exclude cloud regions. Once the cloud 

mask for each image is established, the time series normalized 

difference vegetation index (NDVI) can be obtained by 

calculating band rationing. 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 (1) 

 

NDVI is a normalized index with a value between -1.0 and 1.0. 

NIR stands for near-infrared band and R for red band. High 

NDVI values about 0.6 to 0.9 correspond to dense vegetation; 

Moderate NDVI values about 0.2 to 0.5 may indicate sparse 

vegetation or senescent crop; An NDVI value lower than 0.1 may 

represent bare soil or rock (Brown, 2015). The image product and 

band information used in the study are shown in Table 1. 

 

Table 1. LS8 band info. 

Sensing time Provider Image Collection 

2016/01/01-2018/12/31 USGS LANDSAT/LC08/C01/T1_SR 

Band Resolution(m) Wavelength Description 
B2 30 0.45 - 0.51 µm Blue 
B3 30 0.53 - 0.59 µm Green 
B4 30 0.64 - 0.67 µm Red 
B5 30 0.85 - 0.88 µm NIR 

BQA 30  QA Bitmask 

 

2.2 Time Series Preprocessing 

Landslides often occur in mountainous areas and usually cause 

sudden changes in land cover. The most common phenomenon is 

transforming vegetation area to bare soil (Deijns et al., 2020). 

The NDVI time series can be used to distinguish the land with 

and without a landslide in mountainous areas (Figure 2). 

Therefore, the NDVI time series can be applied to landslide 

detection. The time series preprocessing procedures include error 

elimination, Gaussian smoothing, and resampling.  

 

  
(a) 2017 LS8 RGB image  (b) 2018 LS8 RGB images 

 
(c) NDVI time series of landslide and non-landslide 

(blue: non-landslide；orange: landslide) 

Figure 2. Illustration of time series NDVI. 
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Error elimination mainly removes obvious errors in the series. A 

possible reason for the error is the thin clouds, which are more 

likely to not be detected by the CFMask algorithm. Therefore, an 

incorrect NDVI value (close to 0) may be computed because the 

area covered by the cloud is not entirely excluded. In this case, 

the value of that timestamp will be eliminated while the NDVI 

value is less than 0. Then, we apply Gaussian smoothing to 

reduce the effect of high-frequency noise. The last procedure of 

time series preprocessing is a cubic interpolation, which aims to 

regularize time series with different lengths. In this study, each 

time series was resampled to one value per week (53 timestamps 

per year). The visualization results of time series preprocessing 

are shown in Figure 3. 

 

 
Figure 3. Time series preprocessing 

 

2.3 Landslide Detection 

TSF is an interval-based tree-ensemble classifier and the TSF 

classifier can be regarded as a random forest classifier for time 

series, which splits the time series into multiple random intervals. 

After extracting features (such as mean, standard deviation, and 

slope) in each interval, each decision tree is trained from the 

extracted features. Finally, ensemble learning is used to combine 

these weak classifiers to improve the accuracy of classification. 

The algorithm also introduces a new method for calculating 

information gain called Entrance gain, which is superior to the 

algorithm using Entropy gain (Deng et al., 2013). Furthermore, 

the TSF used the temporal importance curve to quantify the 

importance of different intervals for time series classification. 

The TSF algorithm is summarized as follows: 

 

Algorithm 1 TSF Classifier 

Input: A list of n cases with series length m. 

Parameters: number of trees s, minimum length of an interval l. 

1:  Assume forest F = (𝐹1, 𝐹2, ⋯ , 𝐹𝑠−1, 𝐹𝑠) 

2:  for i=1 to s do 

3:      𝑡1 =  𝑟𝑎𝑛𝑑(1, 𝑚 − 𝑙) 

4:      𝑡2 =  𝑟𝑎𝑛𝑑(𝑡1 + 𝑙, 𝑚) 

5:      Split the series into √𝑚 intervals by 𝑡1 and 𝑡2 timestamps 

6:      Extract features (mean, std and slope) from each interval 

7:      Train decision tree 𝐹𝑖 on the extracted 3√m features 

8:  end for  

9:  Output Ensemble the trees with averaged probability estimates 

 

Since the landslide behavior does not have a regular period, the 

time interval change from dense vegetation to bare land also 

varies for each landslide region. Therefore, this study applies an 

interval segmentation method based on local extrema to extract 

the discriminated local features of time series. This study 

proposed a simple and adaptive time series landslide algorithm 

called landslide interval detection (LID). The LID algorithm 

detects landslide intervals from a time series with arbitrary 

length. The LID algorithm is based on two assumptions. The first 

is the need for high quality preprocessing procedures, such as 

error elimination, smoothing, and resampling. The second is to 

set reasonable parameters for the algorithm. The parameters 

required for LID include tolerance of local changes and NDVI 

threshold. The former is mainly used to identify the peaks and 

valleys within time series intervals. Once the local changes 

exceed the minimum threshold, it is regarded as a new 

peak/valley. The latter determines whether the time series 

between local extremes can be interpreted as a landslide. The 

details of LID are shown as the pseudo-code in Algorithm 2. 

 

Algorithm 2 LID 

Input: A time series S with length m. 

Parameters:  
Min. relative change required to define a peak, thr_up 

Min. relative change required to define a valley, thr_down 

Min. NDVI to identify as pre-event data, vmin 

Max. NDVI to identify as post-event data, vmax 

Min. difference between pre- and post-event NDVI, vdiff 

1:  initialize trend (+1or -1), last𝑑 = S[0], and a landslide interval 

list L 

2:  for i=2 to m do 

3:      d =  𝑆[𝑖] 
4:      𝑟 =  d/last𝑑 

5:      if trend =  −1 then 

6:          if 𝑟 ≥  thr_up then 

7:              trend =  1, last𝑑  =  d, last𝑖  =  i 

8:              if S[last𝑝𝑒𝑎𝑘] ≥ vmin  

& S[last𝑝𝑒𝑎𝑘] − S[i − 1] ≥  vdiff then 

9:                   L.append([last𝑝𝑒𝑎𝑘 , i − 1 ]) 

10:            end if 

11:         if d < last𝑑 then 

12:             last𝑑 = d and last𝑖 = i 

13:         end if 

14:     end if 

15:     if trend =  1 then 

16:         if 𝑟 ≤  thr_down then 

17:            trend = −1, lastd = d,  
last𝑖  =  i, and last𝑝𝑒𝑎𝑘  = i − 1  

18:         end if 

19:         if d > last𝑑 then 

20:             last𝑑  =  d and last𝑖  =  i 
21:         end if 

22:     end if 

23:  end for  

24:  output L 

 

3. TRAINING AND TEST DATASETS 

For the evaluation of time series landside classification 

algorithms, we selected well-defined training and test samples 

through a two-stage procedure. In the first stage, we obtained the 

landslide areas through the vector difference between the 

landslide inventory maps (provided by Forestry Bureau, Council 

of Agriculture, Executive Yuan, Taiwan) in the years 2016, 2017 

and 2018. These landslide inventory maps were manually 

digitized by Formosat-2 multispectral satellite images with a 

spatial resolution of 8m. Most of the landslide polygons are small 

and fragmented. Therefore, if the LS8 images with 30m spatial 

resolution are calculated pixel-wise, mixed pixels will affect it. 

To ensure the correctness of the samples, we set two criteria to 

select suitable training and test regions for LS8: (1) The area of 

the vector difference ≥  3600𝑚2 ; and (2) The radius of the 

maximum inscribed circle of the polygon ≥  30m. The center of 

the inscribed circle is the coordinates of the time series retrieval 

(Figure 4). 

 

The yearly landslide inventory map does not provide the 

landslide occurrence time. The area obtained in the first stage 

contains some non-landslide areas. Therefore, we manually 

interpret the landslide by the geomorphic changes and the 
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difference between pre-/post-event optical images in the second 

stage. The time series retrieval is from 2016 to 2018, and a total 

of 149 time series per year are obtained for training and testing. 

The above procedure ensures that the acquired time series has 

indeed experienced landslides. In binary classification, non-

landslide samples need to be generated to maximize the 

difference between landslide and non-landslide samples for 

classification. The non-landslide sample of this study is the 

hillside area that has not collapsed, including land that is always 

covered in vegetation and land that is always bare. We also 

manually selected 149 non-landslide samples to balance the 

number of landslide and non-landslide training samples. 

 

 
Figure 4. Coordinates selection for time series retrieval 

 

4. EXPERIMENTS AND RESULTS  

This section describes the experimental results from the two 

aforementioned methods (i.e., TSF and LID) and presents 

classification results on the same dataset. The time series used in 

both methods goes through the same preprocessing procedure. 

The TSF model needs to be trained. We used 80% of the dataset 

as training data, while the remaining 20% is used as independent 

test data. As a result, the training dataset has 238 time series, and 

the test dataset has 60 time series. The accuracy assessment is 

based on the same criteria, so LID uses the same test data as TSF. 

Figure 5 demonstrates the time series of test data with their label. 

 
Figure 5. Time series of test data 

 

4.1 Time Series Forest (TSF) 

TSF calculates the features in different intervals by randomly 

splitting the time series and then performs the ensemble learning-

based classification using the Random Forest algorithm. The 

parameters required for training the TSF classifier in this study 

are set as follows: (1) The number of decision trees is 300; (2) 

The minimum length of the interval is about one month, which is 

4 timestamps in resampled series; (3) Bootstrap aggregation was 

applied when building decision trees (bootstrap=True); and (4) 

Estimate the generalization accuracy using out-of-bag error 

(oob_score=True). The confusion matrix computed by the 

prediction of test data is shown in Figure 6. There is only one 

misclassified case each for the non-landslide time series. All 

evaluation indicators (i.e., accuracy, precision, recall, F1-score, 

and Kappa values) show fairly good prediction results using the 

TSF algorithm (Table 2). However, by calculating the importance 

of each interval feature, it is found that the time series slope 

change is the most important feature in the TSF model (Figure 7). 

 

 
Figure 6. Confusion matrix 

of TSF 

Table 2. Evaluation 
indicators 

Accuracy 0.98 

Precision 0.98 

Recall 0.98 

F1-score 0.98 

Kappa 0.96 
 

  

 
Figure 7. Interval-feature importance  

 

4.2 Landslide Interval Detection (LID) 

The LID algorithm assumes sudden vegetation change in the 

landslide region. This algorithm splits the time series into several 

intervals by indicating the peaks and valleys of the series. Once 

the trend of the next timestamp is opposite to the previous one 

and is greater than the minimum of the relative change, the 

timestamp may be indicated as a peak or a valley. As shown in 

Figure 8, the red points are the peaks or valleys of the time series; 

the black line is the connection between the local extremum and 

the starting point/end point of the series; the black dotted line is 

the non-landslide interval; the red line indicates the landslide 

interval using the proposed method. Two critical parameters need 

to be predefined in splitting intervals: the minimum values of the 

relative change required to define a peak or a valley. We 

determined the minimum values for the indication of a peak or a 

valley through extensive experiments to 0.2. The LID algorithm 

can be applied to time series of any length. In identifying 

landslide time series, two empirical parameters are set as follows: 

(1) A minimum NDVI value of 0.6 was used to filter peaks in the 

series. The purpose is to ensure that each detected landslide 

interval is covered by healthy vegetation in the early stage. (2) 

The second parameter is the minimum value of NDVI difference 

between selected intervals. The minimum value of difference is 

given as 0.31 by the minimum change in the landslide time series 

of training data. The hyperparameters used in this study are 

depicted in Table 3. 

 

  
Figure 8. Illustration of landslide interval detection 
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Table 3. LID hyperparameters 

Hyperparameters value 

thr_up 0.20 

thr_down 0.20 

vmin 0.60 

vdiff 0.31 

 

If the time series contains multiple landslides, each interval can 

also be found using the LID algorithm. The LID classification 

results were verified using the same test data as TSF. In the test 

data classification results, LID accurately predicts the label of 

each time series. The confusion matrix is shown in Figure 9, and 

the evaluation indicators are shown in Table 4. 

 

 

 
Figure 9. Confusion matrix 

of LID 

 

Table 4. Evaluation 

indicators 

Accuracy 1.00 

Precision 1.00 

Recall 1.00 

F1-score 1.00 

Kappa 1.00 
 

4.3 Pixel-wise evaluation 

Both TSF and LID achieved high accuracy for the test dataset. 

The accuracies of these two methods are similar in the test 

dataset, so we used the pretrained model to assess the 

performance of these two methods in a real case. The ground 

truth in the real case is manually digitized from 1.5m high-

resolution bitemporal satellite images. The satellite images were 

taken on February 14, 2015 and March 3, 2016. The mean of the 

landslide area is 2738𝑚2 which is about 3 pixels for Landsat-8. 

Which means, most landslide is relatively small for the Landsat-

8 multispectral image. The distribution of the landslide is shown 

in Figure 9. The evaluation includes qualitative and quantitative 

analysis. The details of data analysis are provided in the 

following sections. 

 

 
Figure 9. Landslide area location 

 

4.3.1 Qualitative analysis 

In the visual inspection, it is found that most of the areas detected 

by the TSF algorithm are rivers. The possible reason is that the 

river basin has undergone cover changes between the wet and dry 

periods. As a result, it was misclassified as a landslide. Although 

the LID method also made some mistakes, the number of 

detected landslides is relatively less than TSF. In the large 

landslide area, LID has better identification ability than TSF, as 

shown in the area selected by the yellow dotted line in Figure 10. 

In addition, it can be found that there are very few areas where 

the TSF predicted area overlaps the ground truth. The pretrained 

TSF model can only correctly extract very few landslides. 

 

 
Figure 10. Visualization of classification results (real case) 

 

4.3.2 Quantitative analysis 

The quantitative analysis calculates the intersection over union 

(IoU) as a quality index. We first use the 20m DEM to simply 

calculate the slope to eliminate the misclassification of the 

drainage lines. Then IoU is calculated by calculating the ratio of 

union and intersection. If the IoU is greater than 0.5, it means that 

the landslide was successfully detected; if the IoU is less than 0.5, 

it means that the omission occurred. Only 3 out of 44 landslides 

were detected by the TSF algorithm, while the LID algorithm 

successfully indicated 18 landslides. In view of the 30m spatial 

resolution of LS8, we also analyzed the relationship between 

different landslide areas and omission error (Table 5). For 

landslides that are smaller than 3600m2 (i.e., 4pixels for LS8), the 

omission errors for both TSF and LID were larger than 0.77. But 

for the landslides that are larger than 3600m2, the omission errors 

for TSF and LID were 0.92 and 0.15, respectively. As a result, 

we found that the overall performance using TSF is poor 

regardless of the landslide area. The discriminative ability of LID 

is much better than TSF in large landslide areas.  

 

Table 5. Relationship between area and omission error 

 Omission error: 

landslide smaller than 

3600m2  

Omission error: 

Landslide larger than 

3600m2 

TSF 29/31 (0.94) 12/13 (0.92) 

LID 24/31 (0.77) 2/13 (0.15) 

 

5. CONCLUSIONS AND FUTURE WORKS 

This study proposed an interval-based time series classification 

method called LID. Besides, we also performed a preliminary 

comparison of LID with another interval-based algorithm (i.e., 

TSF). Both TSF and LID show high accuracy ( ≥ 0.98 ) for 

training and test datasets. However, under pixel-wise 

classification with a real case scenario, the overall accuracy of 

TSF is only 0.07. LID has an overall accuracy of about 0.41, and 

its accuracy is higher than 0.85 in large areas (≥  3600𝑚2). TSF 

is a data-driven supervised classification that relies on 
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discriminative pre-labeled data. Due to the relatively small 

dataset used in this study, the TSF classification accuracy in real 

cases is insufficient. In other words, it may represent that the pre-

trained TSF classifier is not a general model for pixel-wise 

landslide time series. By contrast, the experimental results of LID 

are better than TSF in real cases with pixel-wise classification 

and have better detection ability in large-scale landslides. It is 

worth mentioning that the omission error of LID in a large-scale 

landslide is about 0.15, which can roughly identify the landslide 

area and its occurrence interval. Future work will expand the time 

series dataset and introduce multivariate time series data to 

improve discrimination ability. Moreover, higher spatial 

resolution optical satellites, such as Sentinel-2, will be used to 

reduce the omission in small-scale landslides. 
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