SUPER RESOLUTION FOR SINGLE SATELLITE IMAGE USING A GENERATIVE ADVERSARIAL NETWORK
Keywords: Super Resolution, Satellite Imagery, Generative Adversarial Network, Residual Network
Abstract. Inspired by the immense success of deep neural network in image processing and object recognition, learning-based image super resolution (SR) methods have been highly valued and have become the mainstream direction of super resolution research. Base on the recent proposed state-of-art convolution neural network (CNN) super-resolution methods, this paper proposed a generative adversarial network for single satellite image Super Resolution reconstruction. It built on a trained deep residual network to generate preliminary SR images, combined with a discriminative network learns to differentiate preliminary SR images and High resolution samples. The experiments results show that our method can use existing model parameters to refine SR image performance.