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ABSTRACT: 

 

Clouds limit the potential use of optical images. Proper clouds and cloud shadows detection are necessary steps for optical image 

applications. Few algorithms are flexible in detecting clouds in images with a limited number of bands, such as the Wide-Field 

Imager (WFI) sensor on board the China-Brazil Earth Resources Satellite (CBERS-4), which has four spectral bands (blue, green, 

red, and near-infrared). Therefore, this work aims to assess the accuracy of two cloud detection algorithms: CMASK and ATSA, and 

evaluate the influence of the ATSA configuration parameters. We selected four regions in Brazil for our analysis. In all cases, ATSA 

presented overall accuracy (OA) superior to CMASK. While the ATSA obtained OA greater than 0.91 for all analyzes, the OA from 

CMASK did not exceed 0.84. CMASK presented commission errors for the No Clear class (combination of Cloud and Cloud 

shadow) and inclusion errors for the Clear class close to zero. However, many errors of omission of clouds misclassified as the Clear 

class was observed. The ATSA algorithm presented a better balance between inclusion errors and omission errors. Our results can be 

used as guidance for choosing a cloud mask algorithm for the CBERS-4 WFI images and for analysis considering the images from 

WFI on board CBERS-4A and Amazonia-1, as they have similar characteristics. 

 

 

1. INTRODUCTION 

Optical satellite imageries are widely used to map land use and 

land cover (LULC), monitor crops and ecosystems, and estimate 

land surface parameters, enabling a better understanding of the 

Earth system's functioning and how it has changed over time 

(Cohen and Goward, 2004; Ennouri et al., 2019; Gómez et al., 

2016; Hansen and Loveland, 2012; Wulder et al., 2018, 2015; 

Zhu and Helmer, 2018). Nonetheless, in optical remote sensing 

images, clouds and their corresponding shadows are inevitable 

and limit the potential of the imagery for ground information 

extraction (Li et al., 2019). Estimates show that the global mean 

cloud cover over land surfaces is greater than 55% (King et al., 

2013; Rossow and Schiffer, 1999). In tropical regions, this 

value can be even higher, as in the Amazon region, where the 

frequency of cloud cover is higher than 80% in the wet season 

(Prudente et al., 2020). Many applications need remote sensing 

data periodically, as is the case of LULC change and 

agricultural monitoring, and cloud contamination of optical 

imagery presents a major limitation (Hansen and Loveland, 

2012; Whitcraft et al., 2015). 

 

Thus, accurately extracting clouds and cloud shadows from 

cloud-contaminated images can help reduce the negative 

influences that cloud coverage brings to the application of the 

imagery (Li et al., 2017). This becomes essential in applications 

that require dense time series, such as agricultural monitoring 

(Bendini et al., 2019). Furthermore, due to the large amount of 

data required for multi-temporal and large-scale studies, it is 

important to acquire cloudless images automatically (Sun et al., 

2017). Therefore, masking clouds and cloud shadows is often 

the first and most necessary step of image pre-processing in 

optical remote sensing applications (Baetens et al., 2019; 

Braaten et al., 2015; Zhu and Helmer, 2018).  

 

Automatic and accurate detection of clouds and cloud shadows 

is challenging (Li et al., 2017; Zhu and Helmer, 2018; Zhu and 

Woodcock, 2014, 2012). Different clouds with different spectral 

signatures (Bian et al., 2016) can be easily confused with some 

cloud-free bright objects on the land surface (Zhu and Helmer, 

2018). Furthermore, the spectral signature of thin clouds can be 

similar to the signature of the land surfaces underneath, as the 

observed reflectance contain a mixture of cloud and land 

signals, making them more difficult to identify (Baetens et al., 

2019; Zhu and Woodcock, 2014). Cloud shadows are another 

challenge as they are easily confused with dark land surfaces 

due to the spectral similarity between them (Zhu and Helmer, 

2018; Zhu and Woodcock, 2012). 

 

Despite the challenges mentioned above, various methods have 

been developed to detect clouds and cloud shadows. The 

methods for masking cloud and cloud shadows can be divided 

into two categories according to the single or multi-temporal 

images that the algorithms use (Li et al., 2017). Most single-

image methods screen clouds in individual images using 

predefined or adaptive thresholds (Zhu and Helmer, 2018). 

Single images methods require fewer input data than multi-

temporal methods, being more popular (Li et al., 2017). In 

multi-temporal methods, the temporal information in the images 

acquired at different times is used to detect clouds and shadows 

(Zhu and Helmer, 2018). The idea of these algorithms is that 

clouds and cloud shadows will cause sudden changes to the 

reflectance, and by comparing the image analysed with a 

reference without clouds, the clouds and cloud shadows will be 

easily detected (Zhu and Woodcock, 2014). Multi-temporal 

methods usually achieve a higher cloud detection accuracy by 

requiring more scenes over a short period (Li et al., 2017). But 

this may cause problems for applications like change detection 

because LULC change will also result in sudden changes in 

satellite observations (Zhu and Woodcock, 2014). 
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Most of the methods for detecting clouds and cloud shadows 

were designed for images of a specific sensor. Fmask, for 

example, was originally designed for cloud screen and cloud 

shadows in Thematic Mapper (TM) and Enhanced Thematic 

Mapper (ETM+) sensors on board Landsat satellites (Zhu and 

Woodcock, 2012). Later, this algorithm was improved to be 

used on Landsat-8 OLI (Operational Land Imager) and Sentinel-

2 MSI (Multispectral Instrument) images (Qiu et al., 2019; Zhu 

et al., 2015). Other algorithms are image processors, which 

generate the cloud mask as part of the converting radiance 

process at the top of the atmosphere to surface reflectance 

(Sanchez et al., 2020). This is the case of the Sen2Cor algorithm 

(Louis et al., 2016), developed for Sentinel-2 MSI images. 

However, these algorithms use specific bands that many other 

sensors do not have (e.g., cirrus, SWIR, thermal) (Zhu and 

Helmer, 2018). 

 

The Wide-Field Imager (WFI) on board the CBERS-4 satellite 

(China-Brazil Earth Resources Satellite) is a sensor that has four 

spectral bands (i.e., Blue, Green, Red, and Near-infrared-NIR) 

with a spatial resolution of 64 m and a revisit period of 5 days 

(Pinto et al., 2016). A WFI sensor with similar characteristics to 

the instrument on board the CBERS-4 is also on board the 

CBERS-4A and the Amazonia-1 satellites. The CBERS-4 WFI 

imageries have been used for agricultural and environmental 

monitoring (Chaves et al., 2021; Picoli et al., 2020), and they 

are the primary data source for the Real-Time Deforestation 

Detection System (DETER), which aims to generate data to 

support Brazil's actions in protecting Amazon rainforest against 

deforestation (INPE, 2019). Due to the limited number of 

spectral bands, detecting clouds and cloud shadows in WFI 

images is even more challenging, and few algorithms have been 

developed for such characteristics. For example, the Fmask 

needs SWIR and thermal spectral bands in older versions and at 

least SWIR and cirrus bands in newer versions (Zhu et al., 

2015; Zhu and Woodcock, 2012). These bands are not present 

in the WFI sensor, which makes the Fmask unfeasible to be 

applied to the images of this sensor. The Automatic Time-Series 

Analysis (ATSA) (Zhu and Helmer, 2018) is suitable for 

sensors such as the WFI since it needs a minimum number of 

bands and fewer predefined parameters. This algorithm can be 

applied for areas with persistent clouds. 

 

The reliability of the cloud mask is also a key element that 

determines the noise present in the reflectance time series 

(Baetens et al., 2019). In practice, performance assessment is 

done by selecting representative images and assessing how well 

each algorithm performs in each image (Sanchez et al., 2020). 

Several studies have compared the accuracy of different cloud 

and cloud shadow detection algorithms. For example, Foga et 

al. (2017) assessed the accuracy of multiple cloud masking 

algorithms to determine the best globally applicable algorithm 

to be used in future Landsat quality assurance data products. 

Sanchez et al. (2020) compared four cloud detection methods 

(Fmask 4, MAJA, Sen2Cor 2.8, and s2cloudless) for Sentinel-2 

MSI images in the Amazon region. 

 

Although the remote sensing community is making extensive 

use of CBERS-4 WFI data and the importance of cloud and 

cloud shadow masks for optical analysis of satellite imagery is 

well known, no cloud and cloud shadow masks assessment has 

been documented yet in the literature for this sensor. Thus, the 

objective of this work is to compare two cloud detection 

algorithms for CBERS-4 WFI images: the CMASK and the 

ATSA. The CMASK was previously used to generate WFI data 

cubes (Ferreira et al., 2020), and the ATSA was initially tested 

with Landsat-8 OLI, Landsat-4 MSS, and Sentinel-2 images 

(Zhu and Helmer, 2018). 

 

2. MATERIAL AND METHODS 

2.1 Study sites 

We selected four Military Grid Reference System (MGRS) tiles 

for our analysis (Figure 1). These four tiles have different 

characteristics of LULC and cloud cover incidence. As the 

ATSA algorithm needs a time series, we decided to use subsets 

delimited by the MGRS tiles for our analysis, and for that, we 

clipped every WFI image that intersected with these tiles. 

 

The 20NPH tile is in the Amazon biome. The predominant 

LULC in this region is forest formation and pasture (Souza et 

al., 2020). This tile has a high incidence of clouds all year round 

(Prudente et al., 2020), making difficult to acquire cloud-free 

images. Tiles 21LYD and 23LLG are in the Cerrado biome. The 

predominant LULC in these tiles are intensive agriculture, 

pasture, grassland, and savanna formation (Souza et al., 2020). 

In these two tiles, there are well defined dry and rainy seasons. 

Thus, during December and February, the rainy season, there is 

a high incidence of clouds. However, during the dry season 

(from June to August), clouds have low incidence (Prudente et 

al., 2020). Tile 22JBT is located in the Atlantic Forest biome 

(Souza et al., 2020),  a region with a predominance of annual 

agriculture. In this tile, there is a high incidence of clouds 

between December and January and a medium incidence in the 

rest of the year (Eberhardt et al., 2016; Prudente et al., 2020). 

 

 

 
Figure 1 Location of the four MGRS tiles (red hatched) used as 

study sites and the WFI tiles (unfilled polygons).  

  

2.2 WFI data 

The WFI sensor is one of the four instruments on board the 

CBERS-4 satellite. The WFI sensor is a pushbroom imaging 

spectrometer acquiring data at four spectral bands that include 

blue (450-520 nm), green (520-590 nm), red (630-590 nm), and 

NIR (770-890 nm) (Pinto et al., 2016). WFI has a large field of 

view of ±28.63º, which generates a swath width of 866 km, 
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allowing the revisit capacity of 5 days at the equator with a 

ground resolution of 64 m at nadir. 

 

For our study, we downloaded all the WFI images Level-4 

intersecting the four MGRS tiles from January 1, 2020, to June 

30, 2020, from the National Institute for Space Research (INPE) 

catalog website (http://www.dgi.inpe.br/catalogo/). The surface 

reflectance images were generated by MS3 software (Silva and 

Andrade, 2013). We acquired 54, 68, 62, and 62 images for the 

tiles 20NPH, 21LYD, 22JBT, and 23LLG, respectively.  

 

2.3 Cloud mask and cloud shadow detection algorithms 

2.3.1 CMASK 

 

We used the MS3 software to generated the CMASK in this 

work. CMASK classifies the image as clear or cloudy. CMASK 

is also used by the Brazil Data Cube project to generate ARD 

(analysis-ready data) data cubes for Brazil (Ferreira et al., 

2020). 

 

2.3.2 Automatic Time-Series Analysis (ATSA) 

 

The ATSA was designed to identify clouds and cloud shadows 

in multitemporal optical images, being more suitable for areas 

with persistent clouds, and can be used for sensors with a 

limited number of spectral bands (Zhu and Helmer, 2018). The 

algorithm has five main steps: (i) to calculate cloud and shadow 

indices to highlight cloud and cloud shadow information; (ii) to 

obtain an initial cloud mask by unsupervised classifier; (iii) to 

refine the initial cloud mask by analysing the time series of a 

cloud index; (iv) to predict the potential shadow mask using 

geometric relationships; and (v) to refine the potential shadow 

mask by analysing time series of a shadow index (Zhu and 

Helmer, 2018). 

 

The ATSA algorithm needs a water mask. We selected images 

with less than 5% clouds in the metadata to create the water 

mask. Afterward, we collected samples by visual interpretation 

of these images. We applied the supervised classifier Spectral 

Angle Mapper (SAM) over the stack of these selected images 

(Souza et al., 2013). We extracted the mask of water/no water, 

along with the elevation and azimuth solar angles information 

from the metadata, and we used it as input to the ATSA 

algorithm. 

 

Some parameters need to be configured in the ATSA algorithm. 

First, the longest and shortest distance between the shadow and 

its corresponding cloud must be selected. These values were 

empirically set to 1 and 40 pixels (64 m and 2560 m, 

respectively) after inspection of the images, as recommended by 

Zhu and Helmer (2018). ATSA uses these values to estimate 

shadow zones. Two other parameters, A and B, are the 

thresholds used by ATSA to identify cloud and shadow, 

respectively. We evaluated different combinations of A and B. 

We considered values of A equal to 0.5, 1.0, and 1.5, and B 

equal to 1.0 and 3.0. As the original algorithm was tested with 

Landsat data, and the WFI data has a lower spatial resolution 

(64 m), we changed the filter to remove isolated pixels from 4 

to 2 inside the 3-by-3 neighbourhood, for both cloud and cloud 

shadow. 

 

2.4 Accuracy assessment 

We assessed the cloud mask accuracy for CMASK and ATSA, 

and the accuracy of the cloud shadow mask for ATSA on a tile 

basis. For this, we randomly chose four images in each tile, and 

for each image, we randomly selected 100 sample points. These 

points were tagged by a remote sensing expert through image 

visual interpretation, following previous work (Sanchez et al., 

2020). Thus, each tile had a total of 400 points for accuracy 

assessment. The photo interpreter labeled each sample as 

"Cloud", "Cloud shadow", or "Clear", based on images in a 

true-colour composite (red, green, and blue) and a false-colour 

composite (NIR, red, and green). Furthermore, the interpreter 

was unaware of the classes of the validation sample points in 

the cloud mask. 

 

We generated an error matrices from the random sampling 

points. So the overall accuracy (OA), user's accuracy (UA), and 

producer's accuracy (PA) (Foody, 2002) were derived from the 

error matrices. OA indicates the proportion of correctly 

classified pixels, and it's calculated by dividing the total number 

of correctly classified pixels by the sample size. The PA 

indicates the probability of a reference pixel is correctly 

classified, and it's calculated by dividing the total number of 

correct pixels in a class by the total number of pixels of that 

class. The UA is calculated by dividing the total number of 

correct pixels in a class by the total number of pixels classified 

in that class, it indicates the probability that a pixel classified on 

the map actually represents that category (Congalton, 1991). 

 

While the ATSA classifies images into three classes (Clear, 

Cloud, and Cloud shadow), the CMASK classifies them into 

two classes (Clear and Cloud). Therefore, we initially evaluated 

the accuracy of the ATSA considering the three classes and 

different combinations of parameters A and B (as described in 

section 2.3.2). Afterward, to compare ATSA with CMASK, we 

consider only two classes for the two algorithms: Clear and Not 

clear. So, the Cloud and Cloud shadows classes have been 

grouped into the Not clear class for ATSA. 

 

3. RESULTS AND DISCUSSION 

In our experiments, when we considered the three classes 

(Clear, Cloud, and Cloud shadows), for all analysed tiles except 

23LLG, the parameter A equal to 0.5 had the higher OA (Figure 

2). For tile 23LLG, the highest value of OA was obtained with 

A equal to 1.0, while the lowest value was obtained with A 

equal to 0.5. Considering parameter B, except for tile 22JBT, 

the highest OA was reached with a parameter value equal to 3.0. 

 

 
Figure 2 Overall accuracy for different A and B parameters 

combinations in ATSA algorithms considering three classes: 

Cloud, Cloud shadow, and Clear. 

When we consider only two classes (Figure 3), Clear and Not 

Clear, the OA is generally greater than in the case of three 

classes (Figure 2). However, the OA patterns for parameters A 

and B are similar. Low values of A result in high OA, except for 

tile 23LLG. Meanwhile, low values of B result in smaller OA, 

except for tile 22JBT.  
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Figure 3 Overall accuracy for CMASK and different 

combinations of A and B parameters in ATSA algorithms 

considering two classes: Clear and No clear. 

Comparing OA between ATSA and CMASK, any combination 

of the A and B parameters in ATSA results in higher OA than 

CMASK. The lowest value of OA was 0.91 in the 23LLG tile, 

considering the combination of A equal to 1.0 and B equal to 

3.0 in ATSA. In comparison, the highest value of OA for 

CMASK was on the 20NPH tile, with the OA equal to 0.84. 

 

For the case of the three classes, increasing the parameter A 

values in ATSA, there is an increase of UA for the Cloud class 

and a decrease for the Clear class (Figure 4). Conversely, 

increasing the parameter A value reduces the PA for the Cloud 

class and increases it for the Clear class. By reducing the 

parameter A value, more pixels are detected as clouds, reducing 

the omission error of the Cloud class. However, this also 

increases the number of clear pixels wrong classified as clouds, 

increasing the commission error of the Cloud class. In most 

cases, the UA and PA for ATSA were higher for the Cloud class 

than for the Cloud shadow class. A similar result was found by 

Zhu and Helmer (2018). 

 

 
Figure 4 User's accuracy (UA) and Producer's accuracy (PA) 

for different combinations of A and B parameters value in ATSA 

algorithm considering three classes: Cloud, Cloud shadow, and 

Clear. 

For the Cloud shadow class, in tiles 21LYD and 22JBT, the PA 

was higher with parameter B equal to 1.0. There was practically 

no difference in PA for the other tiles when parameter B was 

equal to 1.0 or 3.0. For most tiles and the parameter A values, 

the UA was higher when parameter B was equal to 3.0. The 

confusion of the Cloud shadows class occurred when it was 

classified as Cloud, mainly on the edges of clouds, and the 

Clear class was misclassified as Cloud shadow. One of the 

possible causes of confusion in the Cloud shadow class can be 

the replacement of the SWIR band by the NIR band. In the case 

of the tests performed by Zhu and Helmer (2018), they used 

SWIR in the shadow index. However, as WFI does not have a 

SWIR band, we needed to replace it with the NIR band, as Zhu 

and Helmer (2018) suggested. 

 

In the ATSA algorithm, when the Cloud and Cloud shadow 

classes are combined in the No clear class, and the parameter A 

value is increased, there is an increase in the UA and a 

reduction in the PA for the No clear class (Figure 5). On the 

other hand, there is a reduction in UA and an increase in PA for 

the Clear class when the parameter A value is increased. 

Increasing the B parameter value results in an increase in UA, 

for the No clear class, and in PA, for the Clear class, in most 

cases. 

 

 
Figure 5 User's accuracy (UA) and Producer's accuracy (PA) 

for CMASK and different combinations of A and B parameters 

values in ATSA algorithm considering two classes: Clear and 

No clear. 

CMASK presented UA close to 1.0 for the No clear class and 

PA close to 1.0 for the Clear class. However, it presented an 

omission error between 25% and 36% for the No clear class, 

and commission errors between 29% and 39% for this class. 

Almost all pixels classified in the No clear class are clouds. 

However, the CMASK fails to classify many cloud pixels in the 

No clear class and misclassify them in the Clear class. CMASK 

also doesn't classify cloud shadows, which increases the 

omissions in the No clear class. 

 

As shown in Figure 6a, CMASK fails to classify many clouds' 

edges as Cloud and does not detect smaller clouds. CMAKS 

also does not identify semi-transparent clouds (Figure 6b), in 
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addition to not identifying cloud shadows. This explains the 

large number of omission errors in the No clear class (Figure 5).  

 

 

 
Figure 6 Detail of cloud masks and cloud shadow generated by 

ATSA (with parameter A equal to 0.5, 1.0, and 1.5, and B equal 

to 3.0) and by CMASK over images false-colour composite 

(RGB: NIR-red-green) for the subset of the image of the day 05-

Jun-2020 in tile 21LYD (a) and day 28-May-2020 for the subset 

of tile 23LLG (b). 

The ATSA algorithm can better detect the edges of clouds and 

small clouds, and are able to detect shadows (Figure 6). 

However, when parameter A was equal to 0.5, it presented 

cloud and cloud shadows commission errors (see the southeast 

part of Figure 6). As ATSA calculates the potential shadow 

zones using sun-cloud geometry, commission errors in cloud 

identification can lead to commission errors in cloud shadow 

identification, as in this case. ATSA can detect semi-transparent 

clouds better than CMASK (Figure 6). However, when 

parameter A is equal to 1.5, some edges of semi-transparent 

clouds are not detected either. 

 

In our analysis, the ATSA parameters A and B strongly 

influenced omission and commission errors (Figures 4, 5, and 

6). Therefore, the proper choice of these parameters is 

important. The performance of cloud detection algorithms may 

depend on the region's characteristics where it is being used. 

However, studies targeting specific regions can guide these 

algorithms (Sanchez et al., 2020). In our study, parameters A 

equal to 1.0 and B equal to 3.0 presented a better balance 

between omission and commission errors. However, for the 

regions where we conducted our analyses, and for the case of 

applications sensitive to noise induced by clouds, it may be 

better to choose parameters A equal to 0.5 and B equal to 3.0.  

 

4. CONCLUSIONS 

In this study, we assessed the accuracy of two cloud mask 

algorithms for the CBERS-4 WFI data. The CMASK and the 

ATSA were selected because they are suitable for WFI's 

number of spectral bands (total of four). For ATSA, we also 

evaluated the accuracy with different A and B parameters 

settings. The ATSA showed overall accuracy (OA) superior to 

CMASK. Considering the parameters A equal to 1.0 and B 

equal to 3.0, in all tiles, the ATSA OA was higher than 0.91, 

while for the CMASK, the OA did not exceed 0.84. The 

CMASK had omission errors for the Clear class and 

commission errors for the No clear class close to zero. 

However, there were several omission errors (25% to 36%) for 

the No clear class, failing to classify cloud in this class and 

misclassifying them in the Clear class. ATSA algorithm was 

successful in balancing omission and commission errors using 

the parameters A equal to 0.5 and 1.0 and B equal to 3.0. 

Despite needing an image time series, the ATSA proved 

suitable for screening cloud and cloud shadows in CBERS-4 

WFI imagery. Applying the ATSA algorithm in these images 

can enhance the robustness of the methods used for several 

applications such as agricultural and environmental monitoring 

and deforestation detection. We recommend, in future works, 

the ATSA evaluation also for WFI images from CBERS-4A and 

Amazonia-1. 
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