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ABSTRACT: 

 

Monitoring of engineering structures is important for ensuring safety of operation. Traditional surveying methods have proven to be 

reliable; however, the advent of new point cloud technologies such as terrestrial laser scanning (TLS) and small unmanned aerial 

systems (sUAS) have provided an unprecedented wealth of data. Furthermore, simultaneous localization and mapping (SLAM) is now 

able to facilitate the collection of registered point clouds on the fly. SLAM is most successful when applied to indoor environments 

where the algorithm can identify primitives (points, planes, lines) for registration, but it can be problematic in outdoor settings where 

there is absence of constructed features. This work includes the collection of SLAM-based LiDAR data along a levee for the purpose 

of inspection and monitoring. Due to the outdoor setting and absence of man-made features, the resulting point cloud was considerably 

distorted due to erroneous drift in sensor orientation. A correction algorithm is proposed that relies on reference TLS point cloud data 

to remove drift distortions identified in the SLAM LiDAR. Results indicate an alignment between the corrected SLAM LiDAR and 

TLS data of around ±10cm, which is sufficient for general inspection and multi-epoch monitoring of levees. The algorithm is based on 

common points identified in the TLS and SLAM data and necessitates that the SLAM LiDAR is collected in individual, one-way lines 

to allow correction of distortions as a function of distance from the starting point. This approach increases the efficiency of LiDAR-

based levee monitoring by reducing the time required to survey the levees.  

 

 

1. INTRODUCTION 

Monitoring of engineering structures (e.g., dams, levees, and 

bridges) is an important surveying task for ensuring safety of 

operation and integrity of structures. Monitoring of structures and 

deformation estimation has significantly been enhanced in the 

past decade thanks to the development of point cloud 

technologies such as terrestrial laser scanning (TLS) and small 

unmanned aerial systems (sUASs) (e.g., Bakula et al., 2016; 

Bakula et al., 2020; Akiyama et al., 2021). With respect to levee 

monitoring, these technologies provide faster data acquisition 

and dense point cloud datasets that can support high resolution 

quantitative analyses. In recent years, simultaneous localization 

and mapping (SLAM) light detection and ranging (LiDAR) has 

experienced rapid advancement and application in surveying for 

the kinematic acquisition of dense point clouds. Currently, 

SLAM LiDAR works best in indoor environments thanks to the 

existence of geometries that can be modelled mathematically 

(e.g., walls can be represented by planes, and the intersection of 

two walls as lines) and distinct features (such as corners and other 

well-defined points or features). In such indoor environments, 

SLAM algorithms keep track of the geometry and deliver point 

clouds with cm-level accuracy (Leica Geosystems 2021; Zou et 

al., 2021). Use of SLAM in outdoor environments can become 

challenging in the absence of well-defined geometries and 

correspondences, which can lead to decreased accuracy and in 

some cases, failure of the SLAM algorithm (Lenac et al., 2017). 

                                                                 
* Corresponding author  

In the case of decreased SLAM performance, the resulting point 

cloud may present large mismatches due to drifts of the inertial 

measurement unit (IMU). For instance, Akiyama et al. (2021) 

used SLAM LiDAR for monitoring an 800 m levee section and 

the achieved accuracy was around 0.3 m to 0.5 m due to 

accumulated errors.  

 

The efficient data collection (simply walking with the sensor) 

provided by SLAM LiDAR makes this technology attractive for 

inspection and monitoring of levees. Conversely, TLS would 

require numerous, time-consuming setups, especially for LiDAR 

points to achieve higher vegetation penetration and reach the 

ground (e.g., Bolkas et al., 2021). While sUAS surveys offer an 

efficient solution for capturing levee geometry, inefficiencies are 

often introduced through the flight approval process and the 

nature of surveying long linear alignments. In the case of a levee 

alignment, numerous flights from various take-off locations 

would likely be required in order to maintain visual line of sight 

of the aircraft at all times. Additionally, the inherent hazards of 

sUAS operation must be considered in situations where non-

participating personnel and/or personal property may be present. 

For this reason, this paper explores the combination of TLS and 

SLAM LiDAR for the inspection and monitoring of levees. As 

discussed later in this paper, the TLS dataset is used as a reference 

for registration and correction of the SLAM LiDAR point clouds. 

Future data acquisitions will be based only on the SLAM LiDAR 

data, using the reference TLS for registration and correction of 
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the SLAM data, reducing the time spent in the field and 

increasing monitoring efficiency. Since the TLS and SLAM 

LiDAR data were collected at different times, they are also 

compared to quantify any geometric changes over time. An 

algorithm was developed for the co-registration of the SLAM and 

TLS LiDAR point clouds followed by removal of geometric 

distortion identified in the SLAM LiDAR data. The following 

sections provide information about the study area, the acquisition 

of the TLS and SLAM LiDAR datasets, and the geometric 

distortions identified in the SLAM LiDAR data. Next, we present 

the algorithm developed for the co-registration and distortion 

removal of the SLAM LiDAR, results of the TLS and SLAM 

point cloud comparison, and the conclusions of this work. 

 

2. STUDY AREA AND DATASETS 

2.1 The Kingston Levee System  

The Luzerne County Flood Protection Authority is tasked with 

the operation and maintenance of the 26-km long Wyoming 

Valley Flood Risk Management Project, along the Susquehanna 

River near Wilkes-Barre, Pennsylvania.  A component of this 

flood protection system is the Kingston to Edwardsville levee 

reach which is located along the east bank of the river.  The study 

area is located near the upstream portion of this levee reach, and 

the segment in question has a length of about 750 m, width that 

ranges from 40 m to 50 m, and a height of about 8 m. 

  

2.2 Control Network  

A network of twenty (20) control points was established to 

facilitate TLS and future sUAS surveys (Figure 1). Two of the 

twenty control points are located at a distance of 200 m from the 

study area to provide external control for the multi-epoch 

datasets. The control points were surveyed using rapid static 

Global Navigation Satellite System (GNSS) observations. 

Standard deviations of the post network adjustment were at the 

2-3 mm level, for both horizontal and vertical coordinates. 

Considering a miscentering at the level of few-mm, then the 

accuracy of the control points is expected to be at the 1 cm level. 

 

 
 

Figure 1. Study site and control network in Kingston, 

Pennsylvania. Triangles depict the approximate location of 

control points. 

 

 

2.3 TLS Datasets  

The TLS dataset was acquired using a Leica Scan Station P50. 

The San Station P50 is a panoramic scanner that offers fast scan 

rates of up to one million points per second (Leica Geosystems 

2021b). Scanner range accuracy is 1.2 mm + 10 ppm, and scanner 

angular accuracy is 8ʺ horizontal and 8ʺ vertical. The scanner has 

a dual axis compensator with an accuracy of 1.5ʺ.  

 

TLS registration was achieved through resection at a minimum 

of three control points for redundancy. Standard deviations of the 

resection solutions did not exceed the 1 cm level, with an average 

of ± 4 mm. This indicates that positioning accuracy of the point 

cloud is at the 1 cm level, and most error in the point cloud will 

originate by data gaps due to line-of-sight obstructions and laser 

penetration of vegetation, which can deteriorate accuracy (e.g., 

Bolkas et al., 2021).  

 

The scanner resolution was set to 1 cm at 20 m, and a total of 26 

scans were collected, with an average ground point spacing of 3 

cm. However, due to line-of-sight obstructions, some data gaps 

exist at the top of the levees, which are up to around 0.5 m in 

largest dimension. Only a few scans were collected on the top of 

the levees, as most of the focus was placed on identifying changes 

at the foot of the levees. 

 

2.4 SLAM LiDAR Datasets  

In addition to the TLS scans, SLAM LiDAR was collected using 

a Leica BLK2GO system. The Leica BLK2GO uses a 

combination of LiDAR, visual SLAM, and an inertial 

measurement unit (IMU) to facilitate kinematic LiDAR 

collection. The BLK2GO uses both visual- and LiDAR-based 

SLAM to track the scanner’s movement in space. The visual 

SLAM capability relies on the three integrated panoramic 

cameras to track the scanner’s movement in space and the IMU 

is used to calculate the change in position and orientation 

throughout the survey (Leica Geosystems 2021a).  

 

 
 

Figure 2. SLAM data collection (a) using a closed loop 

acquisition scheme (ending survey at the starting point) (b) 

using multiple linear surveys without loop closure. 
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The BLK2GO scanner has an indoor accuracy of 1 cm; however, 

outdoor accuracy can vary greatly due to the lack of easily 

identifiable features, presence of vegetation, and variable lighting 

conditions. In addition, for SLAM kinematic LiDAR systems, the 

pace of forward movement can affect accuracy. It is important to 

maintain a relatively slow and consistent pace to allow the 

algorithm to correctly identify correspondences in the 

surrounding environment. The manufacturer also recommends 

that a survey closes the loop by returning to the beginning point. 

Closing the loop allows for the SLAM algorithm to estimate a 

misclosure and correct for IMU drifts (Leica Geosystems, 2020). 

These requirements may be easy to satisfy in indoor 

environments; however, it becomes more challenging and, in 

some cases, impractical in outdoor environments. In this study, 

the levees span for hundreds of meters having a predominantly 

linear shape. Furthermore, for this study closing the loop did not 

perform better than individual survey lines. Two SLAM scans 

forming loops were collected (Figure 2a). Because of the 

requirement to walk slow, it took about 20 minutes to walk each 

loop. Three linear SLAM scans were also collected, one on the 

protected side, one on the top of the levee, and one on the river 

side (Figure 2b). 

 

3. DISTORTION IN SLAM LIDAR 

SLAM relies on the identification of similarities and common 

geometries or features in real time to register the LiDAR points 

as the user walks / scans. If the process of identifying such 

similarities and correspondences deteriorates with time / 

distance, so will the registration accuracy of the point cloud. The 

magnitude of registration inaccuracies (inaccuracies in 

orientations and translations) will depend on distance or time.  

 

Most levee alignments are laid out in a linear fashion following 

the boundaries of a river. Such outdoor environments often have 

few or no distinct features (e.g., buildings, bridges, walls) and 

they are mostly characterized by low vegetation and trees. 

Therefore, both visual- and LiDAR-based SLAM are expected to 

have difficulty in identifying similarities and correspondences. In 

addition, IMU position and orientation are expected to drift with 

time.  

 

Figure 3 and 4 shows the BLK2GO scans following a loop 

pattern and returning to the same point. Two loops were obtained 

to get a complete point cloud of the levees (Figure 2a), but the 

mismatches of one loop are shown in Figures 3 and 4. Large 

mismatches are found at the starting / ending location both 

horizontally and vertically. We attribute this to the outdoor 

environment and the long length (hundreds of meters) of the 

surveyed levee segment. Identifying and removing such 

distortions can be challenging, as there are no time tags 

associated to the individual points of the point cloud.  

 

4. DISTORTION REMOVAL 

To remove the geometric distortions identified in the SLAM 

LiDAR data, an empirical approach was utilized that relies on 

reference TLS point cloud data and requires manually identified 

common points found in both datasets. The TLS data are used as 

reference, as it a trusted surveying technique with high accuracy. 

Note that in future data acquisitions only SLAM-LiDAR need to 

be collected, and distortion correction of the SLAM data will be 

based on the reference TLS dataset showed here; thus increasing 

monitoring efficiency. The manual identification of common 

points has the potential to be automated in the future, enhancing 

the algorithm’s efficiency and applicability for levee monitoring. 

The flowchart in Figure 5 summarizes the main algorithm steps 

for removing point cloud distortions due to drift. 

 

 
Figure 3. Horizontal mismatch in the SLAM data for loop 1. 

 

 
Figure 4. Vertical mismatch in the SLAM data for loop 1. 

 

 

The initial step is to approximately register the SLAM LiDAR 

point cloud to the TLS reference. To facilitate efficient algorithm 

processing, a segment of around 10-20 m in length is selected 

from one of the two ends of the SLAM point cloud and identified 

as the “start” of the SLAM data. Based on visual inspection of 

the data, we assume that distortions present in the initial 10-20 m 

segment is minor. An iterative closest point (ICP) (Besl and 

McKay 1992) fit is conducted as implemented in Cloud Compare 

(Cloud Compare 2015). Figure 6 shows an example of this initial 

alignment between the TLS data and the SLAM LiDAR data of 

the first scan line shown in Figure 2b. Figure 6d shows the 

segment that was used for the initial alignment, while Figures 6a, 

6b, and 6c highlight the mismatches between the TLS and the 

SLAM data at the other end of the dataset.  

 

Next, manual identification of points takes place, and the 

coordinates of the TLS and SLAM point cloud are recorded. 

Because the approach was developed for outdoor environments, 

where there is an absence of easily identifiable objects, 

identification of corresponding points is expected to be 

challenging. Our experience so far indicates that approximate 

identification at the one-meter level is sufficient; although, more 
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accurate identification of corresponding points should be sought, 

if possible. Figure 6a shows 17 points that were identified in the 

TLS and SLAM datasets for the first scan line of Figure 2b. 

 

 
Figure 5. Algorithm flowchart for registering the SLAM point 

cloud onto the TLS point cloud. 

 

 

 

Figure 6. Initial ICP registration between the TLS and SLAM 

LiDAR data using the ending segment of the first scan line. (a) 

top view showing the manually identified common points 

(white squares) in the TLS and SLAM datasets; (b) profile 

view; (c) cropped view of (b) highlighting the vertical mismatch 

after initial registration in the one side of the scan line; (d) 

segment used for initial ICP registration. 

 

In the next step, using the first identified point as reference (e.g., 

we use the rightmost point in Figure 6a as reference), we compute 

the azimuth of each point with respect to that reference point. 

This is done for both the TLS and SLAM points. The difference 

between the two azimuths corresponds to a 2D angle of rotation 

for each line. The rotations values for each line are plotted against 

their distance from the starting point, and a polynomial model is 

fitted to de-trend the point cloud (Figure 7a). 
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Figure 7. Polynomial fit for drift correction (a) azimuth 

correction; (b) offset in x-axis; (c) offset in y-axis; (d) offset in 

z-axis. 

 

In addition, we compute the translations in each direction i.e., x- 

y- and z-axis. The translations are also plotted against their 

distance from the starting point, and polynomial models are fitted 

again (Figure 7b,c,d). The polynomial models in our trials have 

been simple linear models to fourth order polynomials, 

depending on the drift / distortion in each case. The SLAM point 

cloud is then de-trended for rotation and translation in the x- y- 

and z-axis. The following equation shows the four polynomial 

model corrections that are considered here: 

 

𝐴𝑧𝐶𝑜𝑟𝑟 = 𝛼0 + 𝛼1𝐷 + 𝛼2𝐷
2 +⋯+ 𝛼𝑛𝐷

𝑛 (1a) 

𝑂𝑓𝑓𝑠𝑒𝑡_𝑥 = 𝛼0 + 𝛼1𝐷 + 𝛼2𝐷
2 +⋯+ 𝛼𝑛𝐷

𝑛 (1b) 

𝑂𝑓𝑓𝑠𝑒𝑡_𝑦 = 𝛼0 + 𝛼1𝐷 + 𝛼2𝐷
2 +⋯+ 𝛼𝑛𝐷

𝑛 (1c) 

𝑂𝑓𝑓𝑠𝑒𝑡_𝑧 = 𝛼0 + 𝛼1𝐷 + 𝛼2𝐷
2 +⋯+ 𝛼𝑛𝐷

𝑛 (1d) 

 

Where, 𝐴𝑧𝐶𝑜𝑟𝑟 is the correction in the azimuth direction, 

O𝑓𝑓𝑠𝑒𝑡_𝑥, 𝑂𝑓𝑓𝑠𝑒𝑡_𝑦, 𝑂𝑓𝑓𝑠𝑒𝑡_𝑧 are offset corrections in the x-, 

y-, and z-axis. 𝐷 is the distance of the manually identified points 

from the reference point, and 𝛼0, 𝛼1, … , 𝛼𝑛 are polynomial 

coefficients up to degree 𝑛. 

 

At this stage, the SLAM point cloud is well aligned with the TLS 

point cloud; however, some rotational effects can still be present. 

Due to the nature of the SLAM-based geometric errors, the 

resulting distortions are variable along the surveyed alignment, 

increasing in magnitude with time.  Accounting for this behavior 

and refining the SLAM point cloud registration requires splitting 

the dataset into 20 m long segments (or longer if the data can 

support) and performing the ICP analysis and geometric 

correction for each segment. The individual segments are then 

merged to form the final registered and corrected SLAM point 

cloud. The most time consuming part of the algorithm is the 

manual identification of common points, which takes several 

minutes (10 to 30 minutes). Future work will include automating 

the common point identification process. 

 

Our experience with different segmentation sizes, as high as 50 

m, has showed little change in the accuracy of the corrected point 

cloud. This is important to avoid compromising change detection 

in the presence of considerable levee deformation. In addition, 

we have tested the algorithm with the initial ICP registration 

starting at the opposite side, which does not have well defined 

features (e.g., man-made structures) and the results achieved 

similar accuracy (within 1-2 cm). Because the algorithm depends 

on polynomials defined based on point correspondences, the 

starting side for initial registration has minimal effect. The ICP 

refinement performed on the individual sub-segments also 

ensures to reduce any residual rotational issues. 

 

5. TLS AND SLAM COMPARISON 

The distortions in the SLAM LiDAR surveys were mitigated 

using the process described in the previous section. Table 1 

shows the root mean square error (RMSE) of the comparison 

between the TLS dataset and the corrected / de-trended SLAM 

LiDAR (i.e., the protected side, top side, and river side). The 

comparison is implemented using the model-to-model cloud 

comparison (M3C2) algorithm (Lague et al., 2013). The 

algorithm offers a robust cloud-to-cloud comparison. In all three 

cases, the developed algorithm successfully removed high 

magnitude distortions with RMSE values ranging from 13.0 cm 

to 15.4 cm. We then merged the three SLAM lines to derive a 

single corrected SLAM point cloud dataset, which has an RMSE 

value of 13.4 cm. Note that this comparison is performed in a 

point cloud to point cloud approach. The two datasets are 

expected to be affected by vegetation in a different way. To 

account for this, the SLAM and TLS datasets were gridded using 

a spatial resolution of 30 cm. For each grid cell the minimum 

point height was selected as the elevation to reduce the effect of 

vegetation. The TLS and SLAM LiDAR grids were then used to 

compute revised RMSE values (Table 2). The revised RMSE 

values dropped by a few centimeters ranging from 10 cm to 11 

cm. The merged SLAM point cloud has a revised RMSE of 11.0 

cm when compared to the TLS point cloud, which demonstrates 

a satisfactory agreement between the TLS and SLAM point 

clouds. 

 

 

Dataset  RMSE (cm) 

Protected side 14.5 

Top side 15.4 

River side  13.0  

Merged 13.4 

Table 1. Point cloud comparisons between the de-trended 

SLAM lines and TLS. Comparisons are point cloud to point 

cloud. 

 

 

Dataset  RMSE (cm) 

Protected side 11.1 

Top side 11.2 

River side  10.5  

Merged  11.0  

Table 2. Point cloud comparisons between the de-trended 

SLAM lines and TLS. Comparisons are based on gridded 

datasets. 

 

 
Figure 8. Visualization of the M3C2 distance between the 

gridded TLS and merged SLAM datasets. 
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Figure 8 shows a spatial visualization of the M3C2 distances 

between the TLS and the merged SLAM gridded datasets, while 

Figure 9 shows the corresponding histogram. Differences 

between the two datasets are at the 10 cm level with some 

locations having higher error up to ± 40 cm. Higher differences 

are mostly noted along the paved trail sections, where there was 

an absence of TLS data due to data gaps. Figure 10 shows a close-

up comparison of the TLS and merged SLAM point clouds in two 

different locations. Around the building structure we see a good 

agreement between the two datasets. The power poles show 

minor alignment issues with differences being up to 0.5 m at the 

base of the poles. However, of note is that the SLAM point cloud 

faithfully follows the power lines observed by the TLS point 

cloud. The figures highlight the successful removal of significant 

geometric distortions in the SLAM point clouds and the ability to 

create merged point cloud datasets in outdoor environments with 

sufficient accuracy for levee inspection and deformation 

monitoring. Future monitoring will rely on the SLAM-based 

point clouds using the same TLS point cloud as reference to 

correct distortions in the successive SLAM datasets. 

 

 
Figure 9. Histogram of the comparison between the gridded 

TLS and merged SLAM datasets. 

 

 

 

Figure 10. Close up snapshots of the TLS point cloud overlayed 

on the merged SLAM point cloud. The TLS point cloud is 

represented as ‘False’ colors based on intensity, and the merged 

SLAM point cloud as RGB colors. 

 

6. CONCLUSIONS  

Advancements in point cloud technologies provide datasets with 

unprecedented quality and resolution, which are critical for 

multi-epoch monitoring of engineering structures. In recent 

years, SLAM technology has seen significant improvement, now 

able to provide point clouds with cm-level accuracy in indoor 

environments. However, in outdoor environments successful 

operation of SLAM LiDAR is challenging due to the absence of 

well-defined objects (e.g., walls forming planes, and intersection 

of planes) that can be used by the SLAM algorithm to identify 

mismatches and correct distortions. TLS and sUAS 

photogrammetry can provide more accurate and consistent point 

clouds in outdoor environments than SLAM solutions; however, 

they present some significant shortcoming in terms of data 

acquisition. For instance, TLS requires more time spent in the 

field (e.g., days), and flying a sUAS over levee alignments can 

create unnecessary risk for the public and can sometimes require 

time-consuming flight approvals.  

 

This paper combined SLAM and TLS technologies for multi-

epoch monitoring of levees. A custom algorithm was developed 

that is based on an existing TLS point cloud that is used as 

reference. The SLAM LiDAR must be collected in individual, 

one-way lines, as opposed to closing the loop to allow correction 

of distortions as a function of the distance from the starting point. 

Point correspondences between the TLS and SLAM point clouds 

are then identified and used to remove distortions using 

polynomial models in the azimuth direction, and the x-, y-, and 

z-axis. Results indicate that the initial misalignment of several 

meters was successfully reduced to a level of ±10 cm, and a 

merged SLAM point cloud was created to model the levees. 

Future monitoring of this levee site will rely on SLAM LiDAR 

point clouds that are corrected using the same TLS dataset (i.e., 

additional TLS surveys are not necessary for the study site). This 

can considerably reduce time spent in the field and increase 

efficiency of monitoring, making SLAM scanning more 

attractive for long term monitoring.  

 

The algorithm developed in this paper was based on manual 

identification of point correspondences. In the future the authors 

will attempt to automate this step of the algorithm to 

automatically derive point correspondences and incorporate 

other features such as planes. In addition, more datasets will be 

collected to expand the evaluation and assessment of the 

developed algorithm.  
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