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ABSTRACT:

Efficient deforestation detection techniques are essential to monitor and control illegal logging, thus reducing forest loss and carbon 
emissions in the Amazon rainforest. Recent works based on Deep Learning (DL) models have been proposed for that purpose. 
DL-based methods, however, are known to require large amounts of training data to be properly trained. Moreover, the deforestation
detection application is characterized by a high class imbalance, as recent deforestation areas usually represent a small fraction of the
geographic extents being monitored. In order to produce a lightweight architecture in terms of the number of learnable parameters
and address the high class imbalance of the deforestation detection application, we propose a DL model based on the GhostNet
architecture, which combines Ghost modules in a fully convolutional architecture. The proposed architecture also includes Spatial
Attention Mechanisms attached to the skip connections of the GhostNet in order to better capture the spatial relationships among
class features. Experiments were carried out using Sentinel-2 images of a region in the Pará state, Brazil, in the Amazon rainforest.
The results obtained show that the proposed model achieves accuracy levels that are superior to those delivered by state-of-the-art
DL architectures, with a lower computational cost due to the smaller number of learnable parameters.

1. INTRODUCTION

Comprising 5.5 million km2, 60% of which located in Brazilian
territory, the Amazon is the largest rainforest, and one of the
most biodiverse ecosystems on Earth (Lorenz et al., 2021).
Unfortunately, in the past decades the biome has experienced
sustained threats caused by human intervention. The large scale
use of land for agricultural activities have induced biodiversity
loss and degradation, carbon emissions, water pollution and
deforestation (Morris, 2010). In particular, deforestation in
the Brazilian Legal Amazon (BLA) has increased considerably
and alarmingly annually (Lorenz et al., 2021). According
to (Pereira et al., 2020), if deforestation reaches around
40% of the total forest area it can produce an increase in
global temperatures of up to 4° Celsius, and that catastrophic
scenario can happen in this century if the current rates are kept.
Therefore, the implementation of wide-reaching monitoring
systems is of paramount importance to understand the nature
and effects of the underlying processes, and to efficiently
combat illegal logging.

The Brazilian National Institute for Space Research (INPE)
monitors the annual deforestation rates in the BLA since
1988 through the Program for Deforestation Monitoring in
the Brazilian Legal Amazon (PRODES) (INPE, 2021).
As classification accuracy is extremely important in that
application since the reported figures are official ones,
PRODES’s methodology still involves significant human
intervention. In this regard, automatic solutions are necessary
in order to reduce human effort as well as the time taken to
perform the underlying tasks.
∗ Corresponding author

In recent years, DL-based methods have become the
state-of-the-art in many computer vision fields, including
image classification, object detection, and semantic
segmentation (Alam et al., 2021). With Deep Neural Networks
(DNNs) it is possible to learn robust representations that can
improve prediction accuracies (Srivastava and Biswas, 2020).
However, to achieve suitable performances, conventional
DNNs demands large volumes of training samples, and
are characterized by large numbers of parameters and high
computational costs (Paoletti et al., 2021).

Indeed, one of the recent trends in DL is the design
of high performance DNNs with portable and efficient
architectures (Han et al., 2020). For instance,
MobileNet (Howard et al., 2017), ShuffleNet (Zhang et
al., 2018) and GhostNet (Han et al., 2020) employ depthwise
and pointwise convolutions to replace traditional convolution
layers, and drastically reduce the number of weights to be
learned during training. Those structures allow creating
efficient architectures, with fewer learnable parameters and
state-of-the-art performance.

In this work we propose a new Fully Convolutional Network
(FCN) architecture, inspired by the GhostNet and containing
attention modules. The architecture was evaluated in a
deforestation detection task, in a particular region of the
Amazon forest. The model was designed to comprise a reduced
number of parameters and calculations, as well as to deal with
high class imbalanced scenarios, as it is the case of the target
application, since recent deforestation areas usually represent
a small fraction of the geographic extents under study. We
further compared the outcome of the proposed method with
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those delivered by alternative architectures, and analyzed the
uncertainty in the predictions generated by all the methods.

The remainder of this paper is structured as follows: Section 2
reviews related works about deforestation detection and
attention mechanisms. Section 3 introduces the proposed
method and the uncertainty metrics used in this work. Section 4
describes the experimental protocol and discusses the obtained
results. Finally, the main conclusions drawn from the
experimental analysis are presented in Section 5.

2. RELATED WORKS

2.1 DL-Based Deforestation Detection

Some recently published works have demonstrated promising
results for deforestation mapping using FCN architectures.
Specifically considering deforestation detection in Amazon
sites, Bem and co-authors (de Bem et al., 2020) evaluated
different FCN architectures including SharpMask, U-Net and
ResNet. They also compared those techniques with the
traditional machine learning (ML) algorithms, i.e., Random
Forest and Multilayer Perceptron, showing that the DL models
significantly outperformed the ML algorithms.

Similarly, (Ortega et al., 2021) compared three established
FCN architectures, namely U-Net, ResU-net, and a Siamese
Network, employed for deforestation detection in the BLA
using data from different sensors: Landsat-8, Sentinel-2, and
Sentinel-1. In most cases, the ResU-Net architecture delivered
the best results and identified the deforested areas with higher
precision.

Additionally, a number of similar works employed the U-Net
model for deforestation mapping, and reported interesting
results, e.g., (Wagner et al., 2019, Bragagnolo et al., 2021b,
Bragagnolo et al., 2021a). All the previously mentioned
works, however, are based on deep CNN architectures
characterized by a large number of trainable parameters, and
thus dependant of large sets of labeled training samples in
order to avoid over-fitting and produce good performances,
especially considering the class imbalance in deforestation
detection application.

2.2 Deep Attention Mechanisms

In the context of DL, attention mechanisms (AM) attempt
to mimic the way the human brain processes information
(Ghaffarian et al., 2021). One of the key characteristics of
human perception is that we tend not to process all available
information at once. Indeed, humans have a tendency to
selectively focus on one piece of information when and where
it is needed, while ignoring other perceptual information (Niu
et al., 2021).

AM was proposed by Bahdanau and co-authors in the
context of neural machine translation (Bahdanau et al., 2014).
Subsequently, the underlying structures and adaptations were
employed in other applications, including computer vision,
image processing and remote sensing (Koščević et al., 2019,
Zeng et al., 2020, Zhang et al., 2020, Niu et al., 2021). Recent
works have demonstrated the potential of AM to improve the
DL approaches, e.g., (Gao et al., 2020, Li et al., 2020, Qing and
Liu, 2021, Xue et al., 2021). The fundamental idea of an AM is
to assign different weights to different pieces of information,

thus allowing DL models to focus on and identify relevant
features for particular tasks (Hu et al., 2018).

Recent literature show encouraging results of AM employed
in remote sensing, and in particular in change detection
applications (Chen et al., 2020, Jiang et al., 2020, Lu et
al., 2021, Guo et al., 2021). In that context, AM is
used to enhance feature representation of image information,
improving discrimination between changed and unchanged
regions. Those studies seem to indicate that the inclusion
of AM can improve the performance of state-of-the-art DL
approaches applied to deforestation detection. Indeed, in (Tovar
et al., 2021), a siamese network with Spatial Attention
Mechanism (SAM) and Channel Attention Mechanism (CAM)
was evaluated for detecting deforestation in a region of the
Amazon rainforest. The results showed that these dual AM
improved the performance of the network. In addition, the
authors reported that the spatial information is more relevant
for AM than the channel information. However, as it is a
conventional network, it requires a large number of learnable
parameters, which can be optimized with more efficient
networks.

3. METHODOLOGY

In this section, we explain the proposed method, starting
with the description of the proposed Multi-attention GhostNet
architecture. In sequence, we describe the metrics used in
the experimental analysis to measure the uncertainty of the
method’s predictions.

3.1 Multi-attention GhostNet

Inspired by the GhostNet architecture, introduced in (Han et al.,
2020), we propose a fully connected architecture that includes
a Spatial Attention Mechanism (SAM), for the deforestation
detection task. As we are concerned with detecting changes,
the network receives as input two co-registered images acquired
at different dates, represented as IT0 and IT1 . The images
are stacked along the spectral dimension, producing a tensor
I ∈ RH×W×C , where H and W denote the spatial dimensions,
and C the number of image channels.

The proposed model follows a symmetric encoder-decoder
architecture with skip connections, as can be observed in
Figure 1(a). The encoder network is composed of several Ghost
blocks blocks with residual mappings. The structure of a Ghost
block is illustrated in Figure 1(b)), it consists of two stacked
Ghost modules, with a conventional (Conv) and a depthwise
convolution (DWConv). The structure of a Ghost module is
shown in Figure 1(c). This module starts by applying a primary
convolution to produce the intrinsic feature map. Then, a series
of cheap linear operations (Φi) are applied to obtain the final
ghost feature map, through a depthwise convolution. During
this process, an identity mapping is employed to preserve the
intrinsic feature maps. The Spatial Attention Mechanisms
(SAM) included in the skip connections help to combine
low- and high-level feature maps (Section 3.2). The decoder
network is composed of sequence of bilinear up-sampling and
convolution operations, and its output is a tensor with the
posterior class probabilities for all spatial locations.

3.2 Spatial Attention Mechanism (SAM)

The Spatial Attention Mechanism (SAM) (Woo et al., 2018)
leverages from inter-spatial relationships of features to produce
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Figure 1. (a) Multi-attention DL architecture. (b) Ghost block, (c) Ghost module, Φ represents the cheap operations. (d) Residual
block.

a spatial attention map. Its structure is presented in Figure 2.
To highlight informative regions, first average-pooling and
max-pooling operations are computed and their results
concatenated. That is followed by a convolution and a sigmoid
layer, resulting on spatial attention Ms features, which are
multiplied by the input F to generate the output feature tensor
F’.

3.3 Uncertainly

In this section we present the three metrics used to quantify the
predictive uncertainty: predictive variance, predictive entropy,
and mutual information. In this work, we employed deep
ensemble modeling, which is an effective strategy to measure
uncertainty performance of supervised learners (Abdar et al.,
2021). We trained several models, with the same architecture,
but with different random weight initializations and random
batch selections.

3.3.1 Predictive Variance
Let’s denote

{
y(i)(p)

}n

i=1
as the set of n different predictions

(softmax) at pixel coordinate p for all K classes. Also, y(i)
k (p)

stands for the i−th element of yi(p) corresponding to the
prediction for class k at pixel coordinate p. Then, the final
prediction µk(p) for pixel p and class k is the average over
all n predictions yi

k(p) in a pixel-wise fashion (Seeböck et al.,
2019):

µ(p) = 1

n

n∑
i=1

y
(i)
k (p) (1)

The variance for each class k is computed by:

σ2
k(p) =

1

n

n∑
i=1

(
y
(i)
k (p)− µk(p)

)2

(2)

The final predictive variance for pixel p is obtained by
averaging all estimate over the k class-specific variances:

u(p) =
1

K

k=1∑
K

σ2
k(p) (3)

3.3.2 Predictive Entropy
Entropy provides a measure of the average level of information
or uncertainty inherent to the probable outcomes of a random
variable (Shannon, 2001). Predictive Entropy can be defined as
follows:

H(y(p)|x(p)) ≈ − 1

K

K∑
k=1

µk(p)log(µk(p)) (4)

3.3.3 Mutual Information
Mutual information measures non-linear relations between two
random variables. It expresses how much information can be
obtained from a random variable by observing another random
variable. The mutual information for a pixel p is the difference
between the predicted entropy computed on the final prediction
and the average of the entropies of each prediction:

MI (y(p)|x(p)) = H (y(p)|x(p))−

1

n

n∑
i=1

H(i)
(
y(i)(p)|x(i)(p)

) (5)
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Figure 2. Spatial Attention Module.

4. EXPERIMENTS

In the following sections we present the design and results of
the detect deforestation experiments carried out in this work.
We start by describing the dataset used to train and evaluate the
proposed method. Next, we detail the experimental setup, and
finally, we analyze the effects of including the spatial attention
mechanism (SAM) in the network architecture. For that
purpose, we compared the accuracy obtained with the proposed
Multi-attention GhostNet with that of the fully convolutional
GhostNet without SAM. To serve as baselines, we also trained
and evaluated two variants of a compact ResU-Net model (with
the same number of layers of the implemented GhostNet), with
and without SAM.

4.1 Study Area

The study area corresponds to a region of the BLA, located in
Pará State, Brazil. The site is centered on coordinates of 06◦

54’ 16” South and 055◦ 11’ 52” West (see Figure 3).

0°0′0.0″ 0°0′0.0″

10°0′0.0″S 10°0′0.0″S

70°0′0.0″W

70°0′0.0″W

60°0′0.0″W

60°0′0.0″W

50°0′0.0″W

50°0′0.0″W

40°0′0.0″W

40°0′0.0″W

Brazilian Legal Amazon Pará State Study Area

N
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Figure 3. Geographical localization of the study area.

The dataset comprise two coregistered Sentinel-2 images,
downloaded and preprocessed using the Google Earth Engine
(GEE) platform (Gorelick et al., 2017). The images were
processed to Level-1C, which means they are orthorectified,
map-projected and contain top-of-atmosphere reflectance data.
The input I to the networks tested here was a stack of image
bands of size 9200 × 17730 × 20, as we only considered the
bands with 10m and 20m of spatial resolutions (we applied
the nearest-neighbor interpolation to the 20m resolution bands).
Moreover, each band was individually normalized to zero mean
and unit variance.

Table 1 shows the acquisition dates of the images. We observe
that as the study area is quite large, so for each epoch the
inputs are mosaics of two Sentinel-2 scenes. The reference

data was obtained from the PRODES database (INPE, 2021). It
represents the deforestation that occurred between the 21 July
2018 and the 24 July 2019.

Image DateT0 DateT1

PRODES Ref. [07-21-2018] [07-24-2019]

Sentinel-2 [07-21-2018],
[07-26-2018]

[07-21-2019],
[07-26-2019]

Table 1. Acquisition dates of the Sentinel-2 images of the Pará
state, and dates of the PRODES reference data.

We observe that the dataset is very unbalanced. According
to the PRODES reference, only about 1.13% of the area
is associated with the deforestation class, that is, with the
deforestation that occurred during the selected period; 61.71%
belong to the no-deforestation class; and 37.16% correspond to
past deforestation, areas deforested prior to the selected period.

4.2 Experimental Setup

The dataset was divided into 20 tiles, each one with a size of
2300 × 3546 pixels, maintaining a distribution of 40% , 10%,
and 50% for training, validation, and test, respectively. The
network was trained on patches. In all experiments, patches of
size 128×128 pixels were extracted from the input image, with
stride equal to 32.

Table 2 shows the GhostNet and ResU-Net architectures, with
detailed information about the network layers. What the table
does not show are the skip-connections between corresponding
encoder and decoder layers (please refer to Figure 1(a)).
Additionally, the following parameter values were used in all
experiments: batch size equal to 32; Adam optimizer with
learning rate equal to 1e−3, and β equal to 0.9. In order to
prevent over-fitting, the early stopping strategy was used.

Considering that the dataset is highly unbalanced, we set
the weighted cross entropy as a loss function with a vector
of weights equals to [0.2, 0.8] for class no-deforestation and
deforestation, respectively. Furthermore, to ensure that all the
patches contain samples from both classes, only patches with
at least 2% of pixels from the deforestation class were used
for training. Data augmentation operations were employed for
the training patches: rotation (90◦), and flipping (horizontal,
vertical) transformations.

In accordance with the PRODES methodology, we ignored
pixels within a two pixel wide buffer at the inner and outer
edges of all polygons identified as deforestation in the reference
data. Those pixels were ignored for training, validation, and
test. The same was done for areas (pixel clusters) smaller than
625 pixels (6,25 ha), and for all past-deforestation pixels.
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Method Encoder Bottleneck Decoder Output Number of Parameters
Without

SAM
With
SAM

ResU-Net

MP(RB(3× 3, 16))
MP(RB(3× 3, 32))
MP(RB(3× 3, 64))
MP(RB(3× 3, 128))

3× RB(3× 3, 128)
US(C(3× 3, 128))
US(C(3× 3, 64))
US(C(3× 3, 32))
US(C(3× 3, 16))

Softmax
(C(1× 1, #CL)) 1.050.659 1.050.956

GhostNet

MP(GB(3× 3, 16))
MP(GB(3× 3, 32))
MP(GB(3× 3, 64))
MP(GB(3× 3, 128))

3× GB(3× 3, 128)
US(C(3× 3, 128))
US(C(3× 3, 64))
US(C(3× 3, 32))
US(C(3× 3, 16))

Softmax
(C(1× 1, #CL)) 611.971 612.268

Table 2. ResU-Net and GhostNet Architectures. Symbols: C (strided convolution), MP (max-pooling), RB (residual block), GB (ghost
block), US (bilinear up-sampling), CL (Output classes). The values in parenthesis refer to (Kernel Height x Kernel Height, Number of

filters).

Finally, we observe that, as we employed a deep ensemble
strategy, we trained independently 10 networks for each
architecture, each with a different random initialization and
random batch selections. Moreover, the classification results
shown in the next section are based on the average probability,
considering all networks in an ensemble, for each pixel
position.

4.3 Results and Discussion

In this section, we present and analyze the results obtained
using four methods: a standard ResU-Net; a Multi-attention
ResU-Net; the fully convolutional GhostNet; and the
Multi-attention GhostNet. The results are summarized
quantitatively in terms of classification accuracy metrics values,
and qualitatively, though deforestation probability maps and
uncertainty maps.

The experimental results in terms of Precision vs. Recall
curves, computed on the average prediction map, are shown
in Figure 4. Additionally, Table 3 reports the Recall,
Precision, F1-Score and Mean Average Precision (mAP) for
the four methods. Observing the curves in Figure 4 it is
possible to notice that the four architectures presented a similar
tendency, close to ideal case (upper-right axis), with a slightly
better performance for the GhostNet and the Multi-attention
GhostNet, which is reflected in the mAP metrics in Table 3. It
can be also observed in Table 3, that the GhostNet variants are
consistently superior to the ResU-Net ones in terms of Recall,
Precision and F1-score; and the Multi-attention GhostNet
produced the best overall results.

Figure 4. Recall vs. Precision curves of the deep learning
architectures.

Method Rec. Prec. F1 mAP
ResU-Net 71.64 89.64 79.63 87.31

Multi-attention ResU-Net 72.29 90.39 80.33 88.26
GhostNet 73.86 90.87 81.48 89.10

Multi-attention GhostNet 73.98 91.30 81.73 89.45

Table 3. Metrics results, in [%], for the four methods evaluated.

Figure 5 shows the deforestation probability maps produced
with the four methods. Those maps also represent the average
prediction map obtained from each model. It presents three
different snips of test tiles. The first two columns on the left
represent the co-registered pair of images from the different
epochs (RGB composition), i.e., T0 and T1. The third column
shows the reference mask, in which the blue color represents
no-deforestation; the red color represents deforestation, and the
black color, past deforestation. The four columns on the right
contain the probability maps produced by each method. In the
prediction maps for snips a) and b) one can notice that the
Multi-attention GhostNet provided more confident values, as
well as better defined polygons. In addition, considering snip
c), it is possible to observe that part of the T1 image is covered
by clouds. The ResU-Net variants identified some cloud parts
as deforestation. The GhostNet variants were able to better
classify those areas, demonstrating their superior robustness in
that type of scenario.

Finally, we analyze the uncertainty associated with the
predictions of the network ensembles in terms of Predictive
Variance, Predictive Entropy and Mutual Information. Table 4
presents the uncertainty scores that correspond to the
classification of pixel positions with each ensemble, by setting a
threshold equal to 0.5 for the averaged output probabilities. The
values in the table are averaged uncertainty values computed for
pixels that correspond to: True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN).

Although expected, it is interesting to observe that for all
architectures the uncertainty associated with the correctly
classified pixels (TP and TN) is much lower than for the
incorrectly classified ones (FP and FN) – the ensembles
usually fail when its components disagree to a larger
extent. Additionally, in the case of the correctly classified
pixels, lower uncertainties occur in the classification of
no-deforestation (TN), that is, the ensembles are less confident
in the classification of the deforestation class (TP). Also
referring to Table 4: in most cases the architectures with
SAM showed lower uncertainties than their counterparts;
the GhostNet-based architectures provided lower uncertainties
than the ResU-Net variants; and the proposed Multi-attention
GhostNet consistently outperformed all other architectures in
terms of the uncertainty of its predictions.
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Figure 5. Deforestation probability maps of three different snips from the test tiles. From left to right: input snip of the 2018 image;
input snip of the 2019 image; reference; probability maps (ResU-Net, Multi-attention ResU-Net, GhostNet, Multi-attention

GhostNet). Blue and red colors represent lower and higher probability of belonging to the deforestation class, respectively. Black
regions correspond to past-deforestation.

For a visual interpretation, Figure 6 shows the uncertainty
maps obtained for each method over snip c). It is easy
to notice that the plain ResU-Net architecture provided the
highest uncertainly values. When SAM is included in the
ResU-Net, however, uncertainly was reduced. Moreover, the
GhostNet variants delivered more confident maps, i.e., with
lower uncertainty values, the best of which are associated with
the proposed Multi-attention GhostNet.

5. CONCLUSIONS

This work introduced a novel fully-convolutional architecture
based on the GhostNet, which includes Spatial Attention
Mechanisms (SAM). The model was employed in deforestation
detection in a particular site in the Amazon region, a problem
that is characterized by a high-class imbalance.

The experimental results demonstrated that the proposed
Multi-attention GhostNet consistently outperformed the
baseline approaches: ResU-Net, Multi-attention ResU-Net,
and GhostNet without SAM, considering all classification
accuracy metrics evaluated. Furthermore, the results also
showed that the inclusion of SAM in both ResU-Net and
GhostNet led to improvements in classification accuracy.

Additionally, according to three uncertainly metrics, we
investigated the predictions of all methods in terms of their
uncertainties. We found that the inclusion of SAM in both the
ResU-Net and GhostNet architectures led to less uncertainty
in the predictions. The GhostNet-based architectures were
superior to the ResU-Net-based ones in that respect. In
conclusion, the Multi-attention GhostNet model produced
the most accurate and less uncertain classification maps in
the deforestation detection task, at least for the study area
considered in this work.

In the future, we plan to enrich the experimental analysis by
considering different sites, with varying types of forest, in the
Amazon and the Brazilian Cerrado (Savannah) biome. We
also want to assess the generalization capacity of the proposed

model and possibly use it as a backbone for Domain Adaptation
solutions. Finally, we plan to investigate ways to employ
uncertainty information to improve semantic segmentation
results in change detection tasks.
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Uncertainly
metric Method TP TN FP FN

Predictive
Variance

ResU-Net 0.0120 0.0012 0.0597 0.0156
Multi-attention ResU-Net 0.0089 0.0006 0.0477 0.0151

GhostNet 0.0082 0.0004 0.0236 0.0125
Multi-attention GhostNet 0.0068 0.0003 0.0231 0.0119

Predictive
Entropy

ResU-Net 0.1220 0.0188 0.2914 0.2789
Multi-attention ResU-Net 0.1151 0.0259 0.2801 0.2749

GhostNet 0.1120 0.0160 0.2574 0.2697
Multi-attention GhostNet 0.1053 0.0153 0.2539 0.2669

Mutual
information

ResU-Net 0.0073 0.0056 0.0516 0.0319
Multi-attention ResU-Net 0.0107 0.0027 0.0633 0.0288

GhostNet 0.0062 0.0026 0.0219 0.0252
Multi-attention GhostNet 0.0051 0.0020 0.0211 0.0238

Table 4. Uncertainly metrics for True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) computed
with the average predictions of the four methods.

Figure 6. Uncertainly maps of snip c), From left to right: reference; uncertanty maps (ResU-Net, Multi-attention ResU-Net, GhostNet,
Multi-attention GhostNet). The rows correspond to: predictive variance, entropy and mutual information. Blue and red colors

represent lower and higher uncertainly scores, black regions correspond to past-deforestation.
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