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ABSTRACT: 
 
In deep learning based synthetic aperture radar (SAR) change detection, selecting samples of high quality is a crucial step. In this 
work, we have proposed a refined sample selection algorithm for unsupervised SAR change detection. The propose and 
incorporation of volume control factors and multi-hierarchical fuzzy c-means (MH-FCM) algorithm generate samples of large 
diversity and high confidence, thus satisfying the needs for high quality samples. The method includes two phases: firstly, an 
enhanced difference image is constructed according to the difference consistency between single pixels and their neighbourhoods, 
and a triangular threshold segmentation method is then proposed to determine the volume control factors for sample selection. MH-
FCM is developed to classify the log mean ratio difference image into 4 classes. Secondly, a dual-channel convolution neural 
network with an adaptive weighted loss is adopted to learn and predict the input and to obtain the change detection result. 
Experimental results of the Gaofen-3 dataset in Beijing have validated the effectiveness and usefulness of the proposed method. 
 

1. INTRODUCTION 

Since synthetic aperture radar (SAR) possesses the merits of not 
being influenced by insufficient light and climatic conditions, 
making it the optimal acquisition method for certain scenes in 
remote sensing (Cui et al., 2019; Zhang et al., 2016). As one of 
the most representative research topics in SAR, SAR change 
detection has been applied in forest monitoring (Marshak et al., 
2019; Pantze et al., 2014), crop monitoring (Khabbazan et al., 
2019; Teimouri et al., 2019), urbanization research (Ban and 
Yousif, 2012; Hu and Ban, 2014), especially in disaster 
detection, e.g. forest fire detection (Wei et al., 2018; Zhou et al., 
2019) and flood detection (Li et al., 2018; Lu et al., 2014; 
Schlaffer et al., 2015).   
 
The unique imaging mode of SAR brings difficulties to manual 
interpretation, thus unsupervised methods have become the 
mainstream trends in SAR change detection, either traditional or 
deep learning based algorithms. Bruzzone and Prieto (Bruzzone 
and Prieto, 2002) summarised the traditional unsupervised SAR 
change detection method into a classic paradigm: image pre-
processing, difference image (DI) construction and analysis. Of 
these, generating and analysing DI are the primary research 
directions. Additionally, unsupervised deep learning methods 
can usually be used in two steps—selecting samples in 
unsupervised ways and constructing deep models for learning 
and prediction. 
 
As a crucial step in traditional change detection algorithms, the 
quality of DI generation is closely related to the quality of 
detection, among which logarithmic ratio (LR) (Dekker, 1998) 
is the most widely used algorithm. The likelihood ratio 
algorithm (Xiong et al., 2012) utilises the statistical 
characteristics of the pixel neighbourhood to construct the 
likelihood ratio and to reduce the noise effect caused by isolated 
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pixels. Besides, Zhang et al. (Zhang et al., 2018) proposed to 
use the shearlet transform and Gaussian LR to build differential 
expressions for saliency detection and Gabor feature extraction. 
 
Commonly used DI segmentation methods include thresholding 
and clustering methods. Thresholding methods are widely used 
for its simplicity and efficiency. Typical examples include the 
generalised Gaussian model adaptive minimum error algorithm 
(Bazi et al., 2005) and the Gaussian model expectation 
maximization algorithm (Bazi et al., 2007). Commonly adopted 
clustering methods include the fuzzy local information C-means 
(Krinidis and Chatzis, 2010), and the Markov random field 
fuzzy C-means (FCM) (Gong et al., 2014).  
 
Compared to traditional methods, deep learning based SAR 
change detection possess better learning and feature extraction 
abilities. To reduce human interference, several unsupervised 
methods have been proposed. Gong (Gong et al., 2016) used the 
FCM-based joint pre-classification method to generate labels, 
and then selected samples and performed characterization 
learning through deep models to obtain predictions. In (Liu et 
al., 2017), a dual-channel convolutional neural network 
(DCCNN) was developed for change detection. Gao et al. (Gao 
et al., 2017) utilised hierarchical FCM (H-FCM) segmentation 
to determine the changed, unchanged, and intermediate samples. 
The selected unchanged and changed samples were then used to 
train the network for predicting intermediate pixels. 
Furthermore, various deep networks were also used in change 
detection, such as self-step learning (Shang et al., 2018), Gabor 
principal component analysis net (GaborPCANet) (Gao et al., 
2016), PCANet (Li et al., 2018), and stacked autoencoders (Liu 
et al., 2019). 
 
There are two main issues in sample selection for unsupervised 
SAR change detection. Firstly, algorithms could generate 
unstable results in analysing DI for constructing sample data, 
causing failures of high-confidence sample selection and further 
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model learning. Secondly, due to that unchanged areas often 
occupy most of the image, leading to imbalanced sample classes. 
To solve these, this paper presents an unsupervised SAR change 
detection method based on refined sample selection (flowchart 
shown in Figure 1). Based on volume control factors and 
hierarchical clustering, a refined sample selection method has 
been developed for effectively avoiding instability and 
imbalance in sample selection and producing high quality 
samples. Then a DCCNN with an adaptive weighted loss (AWL) 
has been trained to detect changes, further balancing 
contributions of sample classes. 
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Figure 1.  Flowchart of proposed method. 

 
2. METHOD 

2.1 Refined sample selection 

To limit the number of pixels in each class, a volume control 
factor is proposed for refined sample selection. Firstly, we 
propose an enhanced DI generation method that combines the 
difference consistency of single pixels and the neighbourhoods. 
According to the statistical characteristics of the histogram of 
the DI, a triangular threshold segmentation method is then 
proposed to calculate the volume control factor. 
 
2.1.1  Enhanced difference image: The enhanced detector 
is constructed by LR and the logarithmic likelihood ratio (LLR), 
where LR and LLR reflect the single pixel and neighbourhood 
differences, respectively (Cui et al., 2019). Assuming that the 
two images are 1I  and 2I , the LR difference of pixel ( , )i j  is: 
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where ,i jΩ  is the neighbourhood of ( , )i j , and 1,2 ( , )I m n  is 

the pixel intensity in ,i jΩ .Concerning the consistency of two 
equations above, the enhance DI is constructed by multiplying 

LRD  and LLRD  as: 
 
 ( , ) ( , ) ( , )LR LLRD i j D i j D i j= ×  (3) 

 
Figures 2(a), (b) and (c) display the histograms of LR, LLR and 
the enhance DI, respectively. Different from the other two 
methods, in Figure 2(c), the unchanged grey levels are much 
closer to 0, and the change area is loosely distributed along the 
long tail. Thus, the homogeneous pixels are more concentrated, 

which is beneficial for more accurately ascertaining the volume 
of changed pixels. 

 
(a)                                (b)                                (c) 

Figure 2. DI histograms of (a) LR, (b) LLR, and (c) the 
proposed method. 

 
2.1.2 Triangular threshold segmentation: Incorporating 
the unique shape of DI histogram, a Douglas-Peucker method 
(Douglas and Peucker, 1973) based triangular threshold 
segmentation method is proposed, and further used as a volume 
control factor of different classes. 
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Figure 3. Schematic illustration of triangular threshold. 

 
Suppose that 1 2 max, ,...,L L L  are the different grey levels, and 

1 2 max, ,...,H H H  represent their corresponding frequencies. As 

shown in Figure 3, nh is the intersection point between 

1 maxH H and the extension line n nh L of n nL H  ,  1a  is the angle 

between 1 maxH H and max maxL H , 2a is the angle between 

1 maxH H and the extension line n nh L  of n nL H , and n nD H  is the 

perpendicular distance from point nH to line 1 maxH H  . Based 

on the DP algorithm, the grey level nL , corresponding to the 

maximum value of n nD H  , is set as the threshold: 
 
 2sinn n n nD H h Hα= ×  (4) 
 

n n n n n nh H h L L H= −  (5) 
 
with the similar triangles 
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where max maxL H is the maximum frequency, 1 maxL L  represents 

the grey level corresponding to max maxL H , 1 nL L  is the grey 

level of nL , and n nL H  denotes the frequency corresponding to 

1 nL L . In this case, nL  becomes the segmentation threshold. 

Similarly, a grey level mL  can be derived as the threshold of the 
right side of the histogram peak. Therefore, pixels with grey 
levels between nL  and mL  are unchanged, and pixels with grey 

levels greater than mL  or less than nL  are changed pixels. 

Assuming Num  is the number of pixels in changed area, the 
value of Num  is used to calculate the volume control factor, 
and the thresholds that limit the number of changed and 
intermediate pixels are set as lowT  and highT , respectively. 
 
2.1.3 LMR difference image: The segmentation result is not 
used to accurately obtain the change area but to evaluate and 
limit the number of pixels in different classes. Although the 
enhanced DI has better threshold separability, the DI itself is not 
suitable for clustering analysis due to the large difference 
degree between potential different classes. Thus, a multi-
hierarchical FCM (MH-FCM) based on log mean ratio (LMR) 
is proposed for sample selection. LMR operator is defined as: 
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where 

1
( )Iµ Ω  and 

2
( )Iµ Ω  represent the mean of the 

neighbourhood in 1I  and 2I , respectively. 
 
2.1.4 Multi-hierarchical FCM: Compared with traditional 
FCM, H-FCM uses a layered fusion strategy to segment the 
image into unchanged pixels (UPs), changed pixels (CPs), and 
intermediate pixels (IPs). Compared to the direct three-class 
clustering, H-FCM generates fewer IPs and selects CPs and UPs 
with higher confidence, and improves model training. However, 
as UPs often occupy most of the image, the number of UPs is 
much larger than CPs in unsupervised sample selection. 
Moreover, most of the unchanged regions are easy to classify, 
leading to imbalanced sample classes and model learning. If the 
FCM binary segmentation result of the DI is directly used to 
determine the upper limit of the number of CPs, multiple false 
detection pixels will appear and decrease the sample quality. 
Therefore, an MH-FCM algorithm is developed by introducing 
the Num , the thresholds lowT  and highT  (derived from section 
2.1.2) as volume control factors, and to control the pixel volume 
in different classes. Pixels in the DI are classified into 4 groups: 
CPs, IPs, UPs, and high-confidence unchanged pixels (HUPs) to 
reduce the effect of UPs that are easily distinguished and 
meanwhile balance the sample set. The process of the MH-FCM 
algorithm is presented as following: 
 
(1) The upper limit of the number of CPs should be less than 

_CP max lowNum Num T= × , where lowT  is set to 0.8. 
(2) Use multi-class FCM to segment the DI. Pixels in the DI is 
divided into 6 classes, arranged as 1 2 6, ,...,C C C , according to 
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where the upper limit of the number of IPs, highT , is set to 1.2. 

The number of the classes in IPs is it . 

(5) The number of UPs is 
6
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(6) If 6c i ut t t+ + < , all pixels in the initial segmentation that 
have not been assigned labels will be regarded as HUPs. If 

6c i ut t t+ + = , there is no HUP in the sample selection. 
 
2.2 DCCNN 

In this section, the input is constructed, and a DCCNN with 
AWL for calculating the difference between the corresponding 
input patches is utilised. 
 
2.2.1 Data construction: Dual-channel patches are retrieved 
as blocks centered at pixels classified as different classes from 
the segmented image. Overlapping patches of sizes of 1 1n n× are 
collected using a sliding window with a step size of 1, and dual-
channel images are formed by concatenating two patches 
extracted on the same position of the multitemporal images 
across channels. And the number of patches equals the size of 
the original image. Thus, the relationship between the dual-
channel patch and the class in the sample selection result is 
established, and the dual-channel patch is used as the input data. 
Patches centered at CPs and UPs are used as training samples, 
and patches center at IPs are used as test data. As the class 
attribute of patches centered at HUPs are easily determined with 
weak learnability, they are ignored in network training. It is 
noted that the large gap between the number of different 
training classes still may remain. 
 
2.2.2 Network architecture and loss function: Taking into 
account of the input size, a two-layer DCCNN was utilised to 
evaluate the degree of difference between patches. Figure 4 
displays the network architecture, in which 3×3 and 2×2 kernels 
are used in convolutional and pooling layers, respectively. 
Although patches centered at HUPs are discarded, the 
imbalance between samples in the two classes still affects the 
performance of proposed method. Generally in deep networks, 
the weight of each sample is defaulted to be the same; therefore, 
the model automatically tilts towards the majority class and 
ignores the minority if there was a huge gap in between. In this 
paper, the AWL is applied, allocating larger weights to changed 
samples. If the number of unchanged and unchanged samples 
are 

u
NumΩ  and 

c
NumΩ , respectively, the weight factor is: 

 
c

u

Num
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Figure 1. Architecture of the neural network. 

 
3. EXPERIMENT 

3.1 Datasets 

Original images of sizes of approximately 13,000×22,000 pixels 
from Beijing Gaofen-3 SAR were acquired in April, 2017, and 
May, 2018, respectively. Seasons for the acquisition dates are 
similar, thus vegetation changes have little effect on the 
backscattering. Several pre-processing steps, such as calibration, 
registration, geocoding, and cropping were completed.  After 
the following multi-look processing of 2×3, the azimuth and 
distance resolution are approximately 7.8m. Owing to the 
considerably large size of the entire image, three representative 
sub-regions were selected for evaluation (Figure 5).  
 

 
Figure 2. Image of Beijing dataset. 

 
Area A is the Yamenkou area of size of 400×400 pixels, in 
which urban construction and displacement of trains are the 
main changes. Figures 6(a) and (b) show the multi-temporal 
images, and Figure 6(c) shows the reference image. 
 

     
(a)                               (b)                                   (c) 

Figure 3. Yamenkou dataset. (a) Image acquired in April 2017. 
(b) Image acquired in May 2018. (c) Reference image. 

 
Area B is the Luchengxiang area of size of 400×400 pixels. 
Construction and demolition of artificial structures are the main 
cause of changes. Relevant images of Luchengxiang are shown 
in Figure 7. 

 

     
(a)                               (b)                                   (c) 

Figure 4. Luchengxiang dataset. (a) Image acquired in April 
2017. (b) Image acquired in May 2018. (c) Reference image. 

 
Area C - the Weishanzhuang area - has a size of 248×215 pixels, 
where changes are primarily caused by the update of 
construction. Images are displayed in Figure 8. 
 

     
(a)                               (b)                                   (c) 

Figure 5. Weishanzhuang dataset. (a) Image acquired in April 
2017. (b) Image acquired in May 2018. (c) Reference image. 

 
3.2 Experimental design 

For validating the effectiveness of the algorithm, we compared 
the proposed method with several state-of-the-art algorithms, 
including the FCM algorithm based on LR (LR-FCM), extreme 
learning machine based on neighbourhood ratio (NR-ELM) 
(Gao et al., 2016) and GaborPCANet. Moreover, to verify the 
advantage of the AWL, results of non-adaptive weighted loss 
(NAWL) were also presented as baseline. 
 
For comprehensive analysis, several evaluation criteria were 
applied to assess the detection accuracy: (1) false positives (FP) 
corresponding to the number of UPs that have been erroneously 
identified as CPs; (2) false negatives (FN) denoting the number 
of CPs that have been incorrectly rejected; (3) overall error (OE) 
representing the number of wrongly classified pixels as the sum 
of FP and FN; (4) percentage correct classification (PCC) as the 
ratio between the amount of correctly detected pixels and total 
amount of pixels; and (4) Kappa coefficient (KC). 
 

4. RESULTS AND DISCUSSIONS 

4.1 Results and analysis 

4.1.1 Yamenkou dataset: Results of the Yamenkou dataset 
are shown in Figure 9 with comparisons of quantitative analysis 
presented in Table 1. LR-FCM result was severely influenced 
by noise owing to the lack of neighbourhood information 
(Figure 9(a)), explains why the three-class FCM result was 
abandoned in sample selection. The results of NR-ELM and 
GarborPCANet shown in Figures 9(b) and (c) were slightly less 
affected by noise than LR-FCM. Figure 9(d) shows the result of 
the non-adaptive method, similar to the result shown by the 
proposed method in Figure 9(e). From Table 1, the non-adaptive 
result was better than the proposed method in PCC; as for KC, 
the proposed algorithm was better. Generally, the proposed 
methods greatly decreased the occurrence of false detections 
with a PCC of 98.49%, and the KC of 59.03%. 
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4.1.2 Luchengxiang dataset：Visual results of multiple 
methods of the Luchengxiang dataset are shown in Figure 10 
with quantitative results displayed in Table 2. Changes within 
the region are mainly caused by the transitions between 
buildings, vegetation, and bare land. As shown in Figures 10(a), 
(b) and (c), results of LR-FCM, NR-ELM and GaborPCANet 
were to some extent influenced by noise. Compared with 
reference image, the proposed method (results shown in 
Figure10(e)) could basically detect all changed areas with little 
noise, indicating more balance of FP and FN and controlling 
false and missed detections within 0.5%. When incorporating 
the NAWL, only the sample pixels were detected as CPs, 
largely caused by the imbalance between the numbers of 
changed and unchanged samples; this tilted the model weight 
towards the unchanged samples and prevents the model from 
correctly classifying the input. Therefore, the AWL is necessary. 
 
4.1.3 Weishanzhuang dataset：Figure 11 shows the results 
of Weishanzhuang dataset; the evaluation indicators are 
displayed in Table 3. Changes in this area are all from buildings 
and vegetation. As displayed in Table 3, all the methods, except 
LR-FCM, achieved good results. LR-FCM (result shown in 
Figure 11(a)) missed many changed pixels, primarily due to 
poor anti-noise ability. As shown in Figures 11(b) and (c), NR-
ELM and GaborPCANet results could detect most of the main 
change area. The non-adaptive method showed more missed 
areas caused by the imbalance sample class. Figure 11(e) shows 
that the proposed method could basically detect all change areas 
with a KC (91.69%) slightly better than that of other methods. 

 
Methods FP FN OE PCC KC 
LR-FCM 11.76 0.36 12.12 87.88 15.44 
NR-ELM 5.23 0.14 5.37 94.63 34.80 

GaborPCANet 10.99 0.04 11.03 88.97 20.60 
NAWL 0.71 0.68 1.39 98.61 58.58 

Proposed  0.94 0.57 1.51 98.49 59.03 
Table 1. Results (%) and comparison of various methods on 

Yamenkou dataset. 
 

Methods FP FN OE PCC KC 
LR-FCM 10.26 0.23 10.48 89.52 17.47 
NR-ELM 3.88 0.13 4.01 95.99 39.55 

GaborPCANet 4.25 0.08 4.33 95.67 38.32 
NAWL 0.01 1.14 1.15 98.85 38.83 

Proposed 0.47 0.48 0.95 99.05 67.98 
Table 2. Results (%) and comparison of various methods on 

Luchengxiang dataset. 
 

Methods FP FN OE PCC KC 
LR-FCM 0.88 2.51 3.40 96.60 83.15 
NR-ELM 0.86 1.01 1.88 98.12 91.18 

GaborPCANet 0.94 1.14 2.08 97.92 90.21 
NAWL   0.25 2.16 2.41 97.59 87.91 

Proposed 0.58 1.16 1.74 98.26 91.69 
Table 3. Results (%) and comparison of various methods on 

Weishanzhuang dataset. 
 
4.2 Parameter sensitivity analysis 

Three aspects are discussed in this section: (1) the quality of 
selected samples, (2) the neighbourhood size of input patch, and 
(3) the sample imbalance. 
 

4.2.1 The quality of selected samples：In sample selection, 
two issues must be addressed: (1) determining the number of 
selected samples; (2) selecting samples that would achieve a 
high accuracy. However, when the sample was selected in an 
unsupervised manner, wrong samples will be generated. For 
method validation, we compared the quality of selected samples 
between the proposed and 6 various sample selection methods, 
including: NR-FCM3, LMR-FCM3, LR-FCM3, LR-HFCM, H-
LMR-HFCM, and NR-HFCM, where FCM3 represents the 
three-class FCM used in DI. Parameters in Table 4 were used to 
calculate the sample selection accuracy. The vertical axis 
denotes its corresponding class in the reference image (the first 
letter), while the horizontal axis represents the pixel class in 
sample selection (the second letter). The number of pixels 
correct classified in sample selection (initial correct volume, 
ICV) and the sample accuracy (SA) were calculated: 
 
 ICV CC UU= +  (11) 
 CC UUSA

CC UU UC CU
+

=
+ + +  

(12) 

 

   
(a)                               (b)                                   (c) 

   
(d)                               (e)                                   (f) 

Figure 6. Results of Yamenkou dataset: (a) LR-FCM. (b) NR-
ELM. (c) GarborPCANet. (d) NAWL. (e) Proposed. (f) 

Reference image. 
 

   
(a)                               (b)                                   (c) 

   
(d)                               (e)                                   (f) 

Figure 7. Results of Luchengxiang dataset: (a) LR-FCM. (b) 
NR-ELM. (c) GarborPCANet. (d) NAWL. (e) Proposed. (f) 

Reference image. 
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(a)                               (b)                                   (c) 

   
(d)                               (e)                                   (f) 

Figure 8. Results of Weishanzhuang dataset: (a) LR-FCM. (b) 
NR-ELM. (c) GarborPCANet. (d) NAWL. (e) Proposed. (f) 

Reference image. 
 

    
(a)                     (b)                    (c)                     (d) 

     
(e)                     (f)                    (g)                     (h) 

Figure 9. Sample selection results of (a) NR-FCM3; (b) LMR-
FCM3; (c) LR-FCM3; (d) LR-HFCM; (e) LMR-HFCM; (f) 

NR-HFCM; (g) Proposed method before merge; and (h) 
Proposed method after merge. 

 
 Changed Intermediate Unchanged 

Changed CC CI CU 
Unchanged UC UI UU 
Table 4. Relationship matrix between result and reference. 
 

 UU UI UC CU CI CC 
Proposed 93.39 4.12 0.81 0.32 0.61 0.76 

NR-FCM3 44.19 43.89 10.24 0.00 0.12 1.57 
LMR-FCM3 60.42 32.34 5.56 0.05 0.23 1.41 
LR-FCM3 54.84 35.23 8.24 0.23 0.40 1.06 
LR-HFCM 80.24 11.34 6.73 0.06 0.13 1.51 

LMR-HFCM 88.58 6.71 3.02 0.18 0.25 1.26 
NR-HFCM 79.09 12.04 7.18 0.05 0.12 1.52 

Table 5. Proportion (%) of different class obtained on 
Yamenkou dataset. 

 
Yamenkou dataset was chosen to evaluate the quality of sample 
selection. Figure 12 shows comparisons of various sample 
selection methods. The proposed method split the original UPs 
into UPs and HUPs. Figures 12(g) and (h) show the two classes 
of pixels before and after merge. In Figure 12(g), the black, grey, 
and white pixels represent UPs, IPs, and CPs, respectively. In 
Figure 12(h), the black, red, green, and white pixels represent 
HUPs, UPs, IPs and CPs, respectively. The proportion of each 
class obtained using different sample selection methods are 
shown in Table 5. 
 

ICV and SA of various methods were calculated (shown in 
Figure 13). The proposed method obtained the largest number 
of correct samples, and the number of correctly identified pixels 
in the sample selection accounted for 94.15%; SA reached 
98.82%, and both were the highest among all the methods. 
 

 
Figure 10. ICV and SA of various sample selection methods 

on Yamenkou dataset. 
 
4.2.2 Neighbourhood size of input patch：To find the 
optimal neighbourhood sizes of input patch, we varied the 
neighbourhood size from 9×9 to 17×17. Figure14 shows the 
performances of KC against varying neighbourhood sizes on 
Yamenkou, Weishanzhuang and Luchengxiang datasets, 
respectively. For all three datasets, the 13×13 achieved the 
highest accuracies, indicating that moderate neighbourhood size 
is more suitable. It is noted that the neighbourhood size can to 
some extent influence the detection results, and optimal size can 
be empirically chosen. Considering the network structure, the 
optimal patch size was 13×13. 
 

 
Figure 11. Comparisons of KC with varying neighbourhood 

sizes. 
 
4.2.3 The sample imbalance ： The imbalance between 
changed and unchanged samples cannot be ignored, as it largely 
decreases the detection accuracy or leads to model invalidation. 
Therefore, multi-hierarchical clustering and AWL were used to 
address sample imbalance. MH-FCM algorithm was used to 
separate most of HUPs from UPs to reduce the degree of 
imbalance and training cost. Sample volume proportions of 
different classes in the three datasets are shown in Table 6. If 
HUPs were not separated from UPs, the ratio between the 
unchanged and changed samples even reach to 164:1 in 
Luchengxiang dataset, causing the network failure. Figure 15 
shows the proportional relationship before and after HUP 
separation. It can be observed that the proposed refined sample 
selection greatly reduced the sample imbalance. 
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 Yamenkou Luchengxiang Weishanzhuang 
HUPs 83.52 89.12 70.99 
UPs 10.18 7.80 4.95 
IPs 4.72 2.49 1.87 
CPs 1.58 0.59 8.55 

Table 6. Volume proportion (%) of different classes in sample 
selection. 

 

 
Figure 12. Proportion (%) of different samples before and after 

HUP detachment. 
 
Results of using the AWL and NAWL were also compared. As 
shown in Figure 16, the use of AWL effectively improved the 
accuracy, especially in the Yamenkou dataset. 
 

 
Figure 13. Comparisons of AWL and NAWL on three 

datasets. 

 
5. CONCLUSIONS  

This paper introduces the refined sample selection for 
unsupervised SAR change detection, which uses the volume 
control factors and MH-FCM for selecting samples of high 
quality. Then a DCCNN with AWL is constructed to alleviate 
the imbalance between the changed and unchanged samples and 
meanwhile produce the change detection result. The propose of 
refined sample selection method not only optimises the process 
of selecting samples but also reduce the effect due to 
imbalanced sample classes. Moreover, the incorporation of 
volume control factors and MH-FCM algorithm could generate 
high quality samples of large diversity and high confidence. 
Experimental results indicate the effectiveness of the proposed 
method. However, the generation of DI highly relies on the ratio 
operation, and may be sensitive to low scattering regions, 
causing false alarms detections. 
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