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ABSTRACT: 

 

Bushfires are an intrinsic part of the New South Wales’ (NSW) environment in Australia, especially in the Blue Mountains region 

(11400km2), that is dominated by fire prone vegetation that includes heathland. Many of the Australian native plants in this region are 

fire-prone and combustible, and many species even require fire to regenerate. The classification of the lateral and vertical distribution 

of living vegetation is necessary to manage the complexity of bushfires. Currently, interpretation of aerial and satellite images is the 

prevalent method for the classification of vegetation in NSW. The result does not represent important vegetation structural attributes, 

such as vegetation height, subcanopy height, and destiny. This paper presents an automated method for the three-dimensional modelling 

of heathland and important heathland parameters, such as heath shrub height and continuity, and sparse tree and mallee height and 

density in support of bushfire behaviour modelling. For this study airborne lidar point clouds with a density of 120 points per square 

meter are used. For the processing and modelling the study is divided into a point cloud processing phase and a voxel-based modelling 

phase. The point cloud processing phase consists of the normalisation of the height and extraction of the above ground vegetation, 

while the voxel phase consists of seeded region growing for segmentation, and K-means clustering for the classification of the 

vegetation into three different canopy layers: a) heath shrubs, b) sparse trees and mallee, c) tall trees.  

 

 

1. INTRODUCTION 

The Blue Mountain region in is one of the most fire-prone regions 

in the world and it is renowned for its fire prone vegetation (New 

South Wales Rural Fire Service, 2021). Heathland is one of the 

many vegetation groups that is present in the Blue Mountains. 

Heathland is structurally complex, vertically non-uniform, and 

discontinuous and occurs in patches of three to four hectares 

(Hammill and Tasker, 2010; Sullivan et al., 2012). It is dominated 

by shrubs ranging between 0.5 meter (m) to 2 m in height, while 

trees are absent or sparsely scattered, rarely exceeding 10 m in 

height, or they may be present as mallee (multi-stemmed 

eucalyptus) (Keith et al., 2014).  

 

Heathland is notorious for its high flammability. The presence of 

flammable terpenes and waxes in the foliage of some shrubs and 

mallee along with the ladder type structure of heathland, 

propagating surface to crown fire, create a complex fire 

behaviour. Bushfire behaviour models are essential for 

controlling such complex bushfires, requiring three-dimensional 

geoinformation. A primary input parameter for heathland 

bushfire modelling is vegetation height or bulk density. Currently 

aerial photography and satellite imagery are utilised in the 

classification of heathland in NSW. These two-dimensional 

techniques are leveraged off the geometric arrangement and 

illumination conditions of the vegetation. The drawback with 

such models is that even with high spatial resolution, important 

heathland parameters such as the canopy height, canopy 

continuity and density, cannot be modelled.  This is specifically 

important for heathland as it is slightly unique in that it can be 
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floristically consistent but structurally variable. An example of 

this is the Eastern Suburbs Banksia Scrub that is an endangered 

ecological community of heath vegetation in Sydney (Figure 1). 

 

 

 
 
Figure 1. Heathland a) Exposed sites with heights of 1.2 m or 

less, b) Closed sites with heights in excess of 2 m and sparse 

trees 

 

Three-dimensional techniques have many merits compared to 

two-dimensional techniques, since they allow for the separation 

of objects found at different heights above the Earth's surface 

(Wagner et al., 2008). Point clouds acquired from Airborne Laser 

Scanner (ALS) and Mobile Laser Scanners (MLS) are a 

prominent technique for the characterisation and estimation of 

three-dimensional vegetation elements within forested and city 

environments (Chen et al., 2016; Morsdorf et al., 2006; Xu et al., 

2021).  The lidar beams can penetrate through the upper canopy 

foliage to provide three-dimensional spatial coordinates (x,y,z) 

of the upper canopy, understorey vegetation and terrain. From the 

acquired point clouds different vegetation layers can be 

modelled, and accurate estimation of vegetation height, cover, 
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and canopy structure is possible. These vegetation parameters are 

important and can improve the reliability of heathland fire 

behaviour models (Anderson et al., 2015). This is because wind 

speed, an important weather parameter that is applied in 

heathland bushfire behaviour modelling, is directly impacted by 

objects (i.e. trees) and their porosity (their density). For example, 

a dense object has no porosity and can reduce wind speed. Thus, 

this influences the rate of spread and the intensity of a fire (Cruz 

et al., 2015).  

 

Lidar point clouds are applied in a range of studies for the three-

dimensional modelling and estimation of vegetation structural 

attributes (Xu et al., 2021). They are applied in individual tree 

modelling (Leiterer et al., 2012), tree position and tree species 

modelling (Huo et al., 2021; Lee and Lucas, 2007), canopy height 

(Coops et al., 2007), tree diameter distribution (Liang et al., 

2018), foliage and wood density and stand volume modelling 

(Hall et al., 2005) or for spaces estimates (Wang et al., 2020; 

Wang et al., 2021) . However, raw point clouds can be very large 

(number of points in the millions), noisy, sparse and unstructured 

and featuring uneven point densities (Remondino, 2003). This 

unstructured nature of point clouds is a bottleneck for pre-

processing and manipulation. Furthermore, point clouds do not 

contain sematic, topological, or geometrical information about an 

object. To derive localised information about point clouds, 

neighbourhoods between points must be defined, but this requires 

expensive computations when performed on the raw point 

clouds.  

 

Voxels (VOlumetric piXELs), the 3D analogue to 2D pixels, 

resolve current drawbacks that are experienced with point clouds. 

They provide a structured and efficient method to represent three-

dimensional objects in a topologically explicit three-dimensional 

array while reducing processing time and memory space. This is 

achieved by combining qualitative information, such as a discrete 

vegetation layer, with quantitative information, such as volume. 

They allow for straightforward and efficient processing 

algorithms for the extraction of three-dimensional features 

through voxel neighbourhood connectivity. When applied in 

heathland modelling, they can represent important heath shrub 

connectivity and discontinuity. 

 

Voxel-based modelling is frequently applied in a variety of point 

cloud applications, showing great potential and value in 

vegetation modelling. Voxels are applied at both a single tree 

level and area-based level vegetation modelling. At a single tree 

level, Gorte and Pfeifer (2004) and Gorte and Winterhalder 

(2004) applied voxels to extract tree stems and major tree 

branches from the tree topology skeletons by morphological 

operations and connectivity analysis. At an area based level, 

Kükenbrink et al. (2017) applied a voxel method for mapping and 

a voxel traversal method for quantifying occluded forest canopy 

volume by tracing ALS laser pulses through a pre-defined 1 m 

voxel grid. Bienert et al. (2010) applied a voxel method to model 

stand height, tree density and plant area density (PAD). This 

latter work shares similarities with our approach, but for the 

application of fire modelling a classification of vegetation is 

necessary too.  

 

Although methods for the modelling of vegetation using both 

point clouds and voxels exist, currently a method based on the 

implementation of a series of algorithms for the three-

dimensional modelling of heathland and mallee parameters does 

not exist. Current methods for the modelling of single trees and 

forests are based on extracting important parameters such as 

different canopy layers and the different canopy structures, while 

in automated point cloud canopy model methods, cylindrical 

shape or vertical orientation are applied for the modelling of 

trees. This is too time consuming and programmatically 

extensive, and is expected to be less robust than voxel-based 

algorithms, because it requires more assumptions (e.g. extent of 

point coverage per stem). Furthermore, heathland is different in 

shape and structure compared to other vegetation groups such 

that it is without a shape and structurally complex, predominantly 

composed of shrubs with the presence of sparsely scattered trees 

and mallee. Since heathland does not have a distinct geometric 

structure (like cylindrical tree stems), voxels are the preferred 

method for the modelling of heathland. Therefore, this paper 

presents a new automated method, composed of a series of 

algorithms, for the three-dimensional modelling of heathland and 

important heathland parameters such as heath shrub height and 

continuity, and sparse trees and mallee height and density, in 

support of bushfire behaviour modelling in NSW.  

 

To begin this paper provides a review on current automated 

methods for vegetation modelling and classification using point 

cloud and voxels in the following section. Section 3 follows with 

a presentation of the proposed methodology and the algorithms 

for the classification of heathland. Section 4 discusses the point 

cloud processing phase. While section 5 discusses the voxel-

based processing phase. The analysis and results are discussed in 

section 6. Finally, the paper concludes with intentions for further 

research. 

 

2. RELATED RESEARCH  

Lidar point clouds are commonly applied for three-dimensional 

vegetation modelling and canopy layer classification. Novo et al. 

(2020) applied an automated approach for horizontal and vertical 

classification of vegetation for fire hazard modelling. The study 

focused on the classification of vegetation in two categories; 

shrubs and trees. Lee and Lucas (2007) applied lidar point clouds 

for the delineation of forest canopy at an individual tree or cluster 

level. Furthermore, they identified tree stem and height in the 

overstorey and sub-canopy layer of a multi-layered wooded 

savanna forest in Australia. Ferraz et al. (2012) classified ALS 

point clouds into three different categories of ground vegetation, 

understorey and overstorey vegetation group. This research also 

included obtaining the thickness of the main vegetation layers, 

but also the spatial arrangement and size of the individual plants 

that compose each stratum. Amiri et al. (2016) applied ALS point 

clouds for change detection at the lower canopy layers. This 

study specifically focused on the estimation of single tree 

regeneration coverage below 5 m. 

 

Voxels are another method for the three-dimensional modelling 

and classification of different canopy layers. Voxels quantify 

point clouds into a structured three-dimensional composition for 

the modelling of homogeneous vegetation connectivity. Vetter et 

al. (2011) applied a 1x1 m2  horizontal and 0.5 m vertical voxel 

structure method to count the number of echoes within each voxel 

cell. This study delineated homogeneous vegetation roughness 

based on the spatial discretisation of the laser echoes and 

aggregation of the points into cells, voxels, and connections. 

Mücke (2014) applied volumetric spaces referred to as density 

pixels that resemble a voxel but from a programming point of 

view, all the calculations were based on the pixel. Through the 

calculation of the number of ALS echoes inside one height level 

divided by the total number of ALS echoes inside the pixel 

column, a density pixel is calculated. Based on pre-defined 

parameters a series of pixels of one height represent the presence 

of the abundance of subdominant vegetation layers. A 

significance test results in the binary classification of the pixels 

and by setting a threshold the pixels are divided into different 
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canopy layers. Brolly et al. (2021) applied a voxel-based 

approach in a multi-layered stand for identifying different tree 

parameters. A seeded region growing algorithm was applied for 

the segmentation of individual trees.  

 

Voxels are also applied for the modelling of occluded 

understorey vegetation in dense multi-layered forests (Barton et 

al., 2020; Kükenbrink et al., 2017; Mücke, 2014). Barton et al. 

(2020) utilised a voxel method for measuring fuel load in a multi-

layered forest in Newcastle, Australia, with the aim to quantify 

vertical fuel layers for hazard reduction burning. Connected 

component labelling (CCL) was applied for the segmentation of 

different canopy layers while a thresholding approach was 

applied for the classification of the vegetation.  

 

The current methods that are listed for the modelling of 

vegetation are for the classification of canopy layers such as 

forestland and woodland. Currently to our knowledge there are 

no studies that can be found on the three-dimensional modelling 

of heathland.   

 

3. METHODOLOGY 

A method is proposed for the three-dimensional modelling of 

heathland.  This method consists of two phases. Phase one of this 

method relates to direct point cloud processing. It consists of the 

normalisation of the height and the above ground vegetation 

classification. Phase two consists of voxelisation of the point 

clouds, followed by segmentation and classification of the voxels 

(Figure 2).  

 

 
 

Figure 2. Workflow of the three-dimensional modelling of 

heathland, rectangular boxes indicate algorithms. 

 

The novelty in this proposed approach is that a series of 

algorithms are assembled for the purpose of deriving important 

heathland parameters, such as heath shrub height and continuity, 

and sparse tree and mallee height and density, specifically in the 

voxel-based processing phase. Using the voxel-based method, 

segmentation and classification steps are applied to extract 

features. The segmentation step measures the similarity of 

features based on voxel neighbourhood connectivity, while the 

classification step derives the semantic details of the features. 

 

4. POINT CLOUD PROCESSING 

The first phase of this approach focusses on the point cloud 
processing, which consists of two primary steps, 1) the 
normalisation of the height to the Digital Terrain Model (DTM) 
and, 2) the classification of all above ground vegetation and the 
extraction of the DTM from the dataset. The point cloud process 
is completed using the scientific software OPALS (Orientation 
and processing of Airborne Laser Scanning) (Pfeifer et al., 2014). 
 
4.1 Normalisation of Height   

Generating an accurate DTM is the first step in producing a three-

dimensional vegetation model (Hodgson and Bresnahan, 2004). 

This involves converting the lidar ellipsoidal heights (Z) to 

orthometric heights (H). The correct estimation of the DTM is 

critical for an unbiased estimation of vegetation height otherwise 

it can contribute to underestimation of canopy height. This can 

lead to errors in the range of several decimetres. The 

normalisation of the height includes removing the influence of 

the terrain on the above ground measurements 

 

4.2 Above Ground Vegetation Classification and Terrain 

Removal  

Following the normalisation of the height all above ground 

vegetation are extracted. The canopy height model (CHM) is 

applied for the extraction of all above ground vegetation. It is the 

height or distance between the ground and the topmost echoes 

such as the top of a tree and it is calculated as the difference 

between the DSM and the DTM. The DSM is a representation of 

the topmost surface visible from an aerial platform. This is 

represented by the first echo returns while the DTM represents 

the elevation on the ground surface.  

 

The next step is to perform the echo ratio estimation. The echo 

ratio is a good indication on the level of roughness and allows for 

classification of vertical vegetation point clouds such as trees and 

shrubs from artificial objects such as buildings (Höfle et al., 

2009). It is also useful for removing other types of solid objects 

from the dataset. The echo ratio is defined by Höfle et al. (2009) 

as the ratio between the number of neighbouring echoes in a fixed 

search distance in 3D (a sphere) and all echoes located within the 

same search distance in 2D (a cylinder).  

 

The output from the echo ratio displays flat surfaces such as 

grassland, buildings, and roads with a value close to 100%. This 

is because their geometric appearances are similar, and their point 

density ratios are less. Transparent objects such as trees and 

shrubs have lower echo ratio values due to having neighbouring 

point clouds in horizontal and vertical planes. Through these 

values two different classes of data can be extracted, objects with 

a high echo ratio value and objects with a low echo ratio value.  

 

The advantage of using the echo ratio for this dataset is its 

application to remove solid objects, but the disadvantage is that 

grassland is separated into a different category from the 

vegetation group. This does not create a problem for this dataset 

as our data is focused on shrubs and trees.  
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5. VOXEL BASED VEGETATION MODEL 

Phase two of this research is the voxel-based framework for 3D 

modelling of heathland. This phase consists of three steps; 1) 

structuring the point clouds into a voxel space, i.e. voxelisation 

2) segmentation based on the seeded region growing algorithm, 

and 3) K-means clustering for the classification of all above 

ground vegetation (Figure 2).  

 

The voxelisation step is applied following the extraction of all 

above ground vegetation. This step requires defining a voxel 

resolution and a minimum voxel density. The next step in this 

phase is the segmentation and classification of the occupied 

voxels into three different vegetation height classes, 1) heath 

shrubs, 2) sparse trees and mallee, 3) tall trees.  

 

5.1 Voxelisation  

The point clouds are structured using the Python  library routines 

NumPy (Harris et al., 2020) and Laspy (Python Package Index- 

PyPI, 2022). The first voxelisation step is the calculation of the 

bounding box over the point clouds  using the Poux (2020) voxel 

code. The bounding box is further discretised into smaller cubic 

grids (voxel cubes) by defining the voxel resolution.   

 

Defining a fitting voxel resolution is an integral part of the 

representation of the data. This is because voxelisated objects are 

subject to a bias in the estimation of surface areas, which causes 

a misrepresentation of objects that are not aligned with the grid. 

Hence, it is important to select a fitting voxel resolution for the 

data. A large voxel resolution can aggregate the data and result 

in the loss of significant geographic data. Though a small voxel 

resolution can represent geographical features more accurately to 

achieve a higher level of detail, it can create too many voxels 

such that each point in the point cloud has a voxel grid.  

 

5.2 Segmentation of occupied voxels  

Segmentation algorithms originating in two-dimensional image 

processing can easily be applied for object-based voxel 

segmentation, unlike point cloud segmentation which is mostly 

based on recognition of a simple shape in point clouds.  

Following the voxelisation of the point clouds, all occupied 

voxels are segmented.  

 

The segmentation of the voxels is based on voxel neighbourhood 

connectivity. Seeded region growing or connected component 

labelling (CCL) are the two preferred algorithms. Both 

algorithms are based on voxel neighbourhood connectivity, while 

the former searches for an additional similarity trait. In a voxel 

space the seeded region growing algorithm assumes that all 

voxels that belong to one object are connected and have similar 

attributes. Therefore, the seeded region growing algorithm is the 

preferred algorithm for this research as it provides the option to 

introduce other attributes to the segmentation process at a later 

date.  

 

The voxel neighbourhood connectivity is a common voxel 

property to consider. It defines how the voxels are linked. In 

three-dimensional space, neighbouring voxels, are connected to 

each other through either 6, 18 or 26 voxel neighbourhood 

connectivity. The different neighbourhoods directly impact the 

cluster (object) output. Strongly connected voxels with 18 or 26 

neighbourhood connectivity result in thinner objects with shorter 

lengths or areas while a 6 voxel neighbourhood connectivity 

results in a thicker object output (Aleksandrov et al., 2021). 

Homogeneous vegetation clusters are extracted through the voxel 

neighbourhood connectivity.  A strong voxel neighbourhood 

connectivity, such as 18 or 26 neighbourhood connectivity, 

results in less segmentation clusters compared to a 6-voxel 

connectivity. The voxel neighbourhood connectivity is an 

effective method to estimate the connectivity and discontinuity 

of heath shrubs. While tree heights are estimated from the 

segmentation of tree crowns in the voxel-space.   

 

The Hancock (2017) seeded region growing code is utilised for 

this study, in which a minimum voxel density can be defined 

during the processing (Algorithm 1). This density threshold can 

directly impact the connectivity and cluster output. Thus, 

consideration should be taken of the voxel size and density prior 

to defining this limit. 

 

Algorithms 1: Seeded region growing  

Input: voxel boundary, seed, density threshold 

Output: Segment clusters  

 

Grow function (seed, density threshold): 

    Append seed to segment  

    Check that seed in checked equals to true  

   Get the seed, checked and dimension neighbourhoods and add 

them to needs check 

 

    While the length of needs check is greater than zero: 

        Pop points from needs checked  

        If point is checked then set to true and continue 

        If point in the voxel boundary and points in the voxel 

boundary are equal to and greater than the density threshold: 

            Append points to segment  

            Delete points in voxel boundary 

            Get the neighbourhoods for point, checked and dimension 

and add them to needs check 

            End If 

    End While  

    Return segmentation 

End Grow function    

 

5.3 Classification of the Segmented Voxels  

All segmented voxels are classified following the seeded region 

growing segmentation, using the SciKit, K-means clustering 

python machine learning library (Pedregosa et al., 2011). This 

process assigns and defines regions to specific classes based on 

different criteria. The K-means clustering is an unsupervised 

algorithm to identify a set of clusters (objects) in a dataset based 

on their similarities. These clusters of objects are loosely defined 

as a group based on their computed distances to defined 

centroids. The expected result from the K-means clustering 

algorithm is three different canopy height levels: a) heath shrubs, 

b) sparse trees and mallee, c) tall trees.  

 

6. RESULTS 

For this study lidar point clouds collected over Kelly Hills Cave, 

Kangaroo Island, South Australia are utilised. Kangaroo Island is 

4,405 km² in area and is dominated by heath and mallee 

vegetation. The Kelly Hills Cave lidar data is collected and 

supplied by Airborne Research Australia (ARA) (Airborne 

Research Australia, 2020). The scan for this region was carried 

out following the 2019-2020 bushfires.  The data includes 

hyperspectral data in addition to geometric and radiometric 

attributes (xyz, intensity, Echo Number and Number of Echoes). 

The point clouds are discrete return point clouds, and the data is 

compressed and supplied in laz format, a compressed version of 

las. The data covers 1200 Hectare (ha) and is split in 6 strips. The 
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strip used for this study is 190 ha in area with a point density of 

120 points per square meter (ppsm) (Figure 3).  

 

 
 

Figure 3. Average Lidar point density computed using 2×2 m 

 

6.1 Point Cloud Processing  

Point cloud density is an important attribute to consider for the 
three-dimensional modelling of heathland. ALS or MLS point 
clouds, point cloud density of >100ppsm, are required for 
heathland modelling. Low point density could affect the 
vegetation vertical complexity and the accuracy of heathland 
parameters. A high point density increases the overall ground 
return likelihood and the level of classification and estimation of 
vegetation structure (Hamraz et al., 2017). To analyse the 
penetration of laser echoes through vegetation a quantitative 
analysis using the output of the range between the all-echo 
density and the last echo density was produced in OPALS.  The 
output from this analysis displays the point counts between 0.8 – 
3.2 (Figure 4). It represents a greater point density in the 
vegetated regions while the flatter regions have a lower point 
density. Therefore, this is a representation of the discontinuous 
vegetation pattern of heathland. 
 

 
Figure 4. output from the ratio of the overall echoes and the last 

echo overlayed on the aerial imagery  

Normalisation of Height: 

Different algorithms are available for filtering and classification 

of a DTM (Korzeniowska et al., 2014). The most important 

purpose of the DTM is analysis of the terrain along with the 

normalisation of the height for generation a CHM. For generating 

the DTM the hierarchic robust filtering technique (Pfeifer et al., 

1998) using the the moving plane interpolation is applied.   The 

DTM is calculated from the last echoes with a grid resolution of 

0.5 m, based on the 12 nearest neighbouring points. The 

maximum search distance is set to a large value of 1.25 m in order 

to fill gaps in the data.  

 

Above Ground Vegetation Classification and Terrain 

Removal:  

The next step is generating the CHM. The CHM is the height or 

distance between the ground and the top of the trees. The results 

from the CHM represent many above ground surfaces between 

2-4 m in height. However, a clear peak around 20 m was also 

identified that represented tall trees.   

 

After generating the CHM, the echo ratio is applied. A good 

recommendation for selecting the best fitting search radius, for 

applying the echo ratio, is to double the average point spacing 

(Höfle et al., 2009). As explained by Höfle et al. (2009) this 

guarantees a good representation of neighbourhoods and avoids 

a large neighbourhood selection, which  can result in expanded 

transition zones at the border of two objects with different surface 

structure. A search radius of 1 m is applied. This guarantees a 

good representative number of neighbours, while avoiding too 

large of a neighbourhood, that can cause expanded transition 

zones at the border of two objects with different surface structure.  

The overlay results of the echo ratio output over the aerial 

imagery displays a good representation of trees and shrubs with 

the exclusion of artificial objects (Figure5). A comparison of the 

echo ratio output and the ratio of all-echoes over the last echo 

output (Figure 4) represents matching vegetation coverages. This 

is specifically noticeable on the sides of the road and the dirt road.  

 

 
Figure 5. CHM output for identifying vegetated regions from 

non-vegetation over aerial imagery of the region 
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Voxel-based Vegetation Modelling: 

The first step as part of the voxelisation phase is to compute a 

bounding box for the point clouds followed by setting the voxel 

size of 0.4 m which represents the vegetation more realistically. 

The result is a dense voxel array composed of empty and 

occupied voxels. To decrease storage space and processing time, 

the empty voxels and the occupied voxels are separated with only 

the occupied voxels remaining. A total of 2844446 voxels out of 

300 million remained with an average point cloud density of 4 

points/dm3 per occupied voxel. This is referred to as a sparse 

voxel array.  

 

Segmentation:  

Following, the voxelisation, seeded region growing is performed 

on the spare voxel array. In this study the region growing is only 

based on the voxel neighbourhood connectivity. Due to the low 

number of points per voxels, average of 4 points per voxel, a 

minimum threshold of zero points per voxel was set in the region 

growing algorithms. Voxel connectivity can be lost by applying 

a threshold for such a low number of point clouds per voxel 

which impacts the final segmentation, resulting in creating 

multiple clusters in a single tree.  

 

A 26-voxel neighbourhood connectivity is set for the seeded 

region growing algorithm. The result of the segmentation creates 

a total of 2415 clusters. A change in the voxel neighbourhood 

connectivity can impact the shape and size of the resulting 

clusters.  

 

Classification: 

The different canopy layers are grouped based on their relative 

height from the DTM. The K-means clustering algorithm cluster 

is set to three and all other clusters are disregarded by the 

algorithm.  Clusters of 2 m in height are the shrub layer. Clusters 

between 2 m and 12 m are the sparse trees and mallee layer. 

While clusters above 12 m in height are the tall trees and region 

where the heathland integrates into woodland.  

 

Figure 6 displays the classification output from the K-means 

clustering. The result is a two-dimensional export in QGIS (QGIS 

Development Team, 2009). The image displays the 2415 

segmentation clusters classified into three layers. A total of 1330 

segments were classified as shrubs. A total of 571 segmentation 

clusters were classified as sparse trees and mallee. While a total 

of 514 segments are displayed in the taller tree layer.   

 

 
 

Figure 6. Classification result of the heathland voxels into three 

categories: 1) shrubs (in green), sparse trees and mallee (in blue) 

and tall trees (in red).   

 

7. CONCLUSION AND FUTURE WORK  

In this paper an automated method based on a series of algorithms 

for the three-dimensional modelling of heathland and important 

heathland parameters was presented. A voxel-based approach 

using 0.4 m voxel size, 26 voxel neighbourhood connectivity, and 

zero-point density threshold is applied on all above ground 

vegetation point clouds. Furthermore, the data is classified into 

three vegetation layers using K-means clustering.  

 

Future work is recommended to further improve the results from 

this paper using  morphological operations to improve the 

segmentation cluster output (Gorte and Pfeifer, 2004). 

Morphological operations will be applied in the point cloud phase 

to increase the point cloud density. This is to improve the 

segmentation output of single objects. Currently, some single 

objects are segmented into multiple clusters. This is due to the 

lack of connectivity in the point clouds.  

 

Subsequently, tests and further estimates on the voxel size and 

selected thresholds for segmentation and classification will be 

applied. The 0.4 m voxel size will be compared with larger voxel 

resolution for the representation of vegetation parameters. The 

segmentation and classification output from the larger voxel sizes 

will be compared using different point density thresholds in the 

segmentation algorithm and the transition of vegetations into 

neighbouring layers will be investigated. Additionally, different 

voxel neighbourhood connectivities will be tested on the data to 

examine different segmentation cluster outputs.   

 

Finally, additional vegetation attributes will be modelled, while 

validation of the data using photogrammetry vegetation 

delineation will be achieved.  
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