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ABSTRACT:

Land surface water is the most active part of the earth's surface layer and plays an important role in material balance and energy
transformation. The monitoring of dynamic changes in surface open water helps to grasp the distribution and changes of water
resources, which is important for understanding the impact of human activities on water resources and safeguarding the ecological
security of the basin. In the study, 72,520 Landsat images were processed using the Google Earth Engine (GEE) cloud platform to
study the long-term changes of the open surface water in the Yellow River Basin (YRB) from 2000 to 2020. The results show that (1)
The multi-index water body extraction rules (MIWER) is suitable for long-term and large-scale surface water mapping based on
Landsat images; (2) From 2000 to 2020, both permanent and seasonal water in the whole YRB and sub-basins have increased. In
general, the total open surface water in the YRB show an increasing trend with obvious spatial heterogeneity; (3) The changes of
open surface water in the YRB are related to climate change and intensive human activities, but the influencing factors vary in
different regions and need to be further studied in the future. The findings of this study can be used to help the policy-makers
understand changing water resources and their driving mechanism and provide a reference for water resources management,
agricultural irrigation, and ecological protection.

1. INTRODUCTION

The hydrosphere is the supplier of the Earth's water cycle and
an important mediator of material transport and energy
exchange between the atmosphere, lithosphere, and biosphere,
contributing to the integrity of the geographic environment
(Kang et al., 2007). Among them, surface water, an important
component of the hydrosphere, is a valuable water resource for
humans, providing a wide range of services such as industrial
and agricultural production, regional climate regulation and
ecosystem maintenance (Pekel et al., 2016; Vörösmarty et al.,
2010). Surface water plays an indispensable role in the
hydrological and biogeochemical cycles at local, national, and
global scales (Wang et al., 2019). However, with global
warming and drought, water pollution and water shortage have
become two major problems to be solved in water resources
conservation. Long-term monitoring of surface water, analyzing
their dynamic changes, and proposing corresponding solutions
can provide a theoretical basis for rational development,
utilization, and protection of water resources (Cao et al., 2021;
Che et al., 2019).
Remote sensing technology has the advantages of wide
coverage and high timeliness and is used in resource surveys
(Avtar et al., 2020), environmental evaluation (Lloyd et al.,
2018; Zhang et al., 2011), urban research (Li 2021), disaster
monitoring (Cao et al., 2021; Jacobs et al., 2019; Rudorff et al.,
2018) and other fields have achieved wide applications. At
present, remote sensing technologies are making great progress,
such as the continuous improvement of optical remote sensing
and microwave radar, the increased spatial resolution of remote

sensing data, and the extraction algorithms of water bodies.
These provide technical support for the accurate and rapid
extraction of surface water bodies as well as dynamic
monitoring.
Currently, the main methods for water extraction are the index
threshold method and classification method. Classification
methods mainly use a series of predictor variables, including
original spectral bands and water indices, to build a
classification model, which in turn distinguishes water bodies
from non-water bodies. Common classification models include
support vector machine (SVM) (Meng et al., 2019), maximum
likelihood (ML) (Jay et al., 2014), random forest (RF) (Rao et
al., 2018), etc. For these classification models, the accuracy of
the model is influenced by the training samples, predictor
variables, and model parameters. In addition, classification
models often require more time to produce classification results.
Water index threshold methods are widely used to extract
surface water bodies, and these common water indices include
the Normalized Difference Water Index (NDWI) (McFeeters
1996), Modified Normalized Difference Water Index (MNDWI)
(Xu 2006), and Automatic Water Extraction Index (AWEI)
(Feyisa et al., 2014). However, the ideal single threshold for
distinguishing water bodies from non-water bodies is difficult to
determine due to the varying spatial and temporal characteristics
of the spectra of water bodies (Cui et al., 2012). A detection rule
combining multiple water body indices can extract surface
water bodies with high accuracy and efficiency. However, this
detection rule is rarely used to extract surface water at present.
Therefore, there is an urgent need to develop new water
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detection rules to grasp the distribution and change of surface
resources in YRB.
In this study, we integrated all the available time-series Landsat
images (TM/ETM+/OLI) of China during 2000 to 2020 in GEE
to: (1) develop a simple but robust method to map surface water;
(2) apply this method to generate maps of surface water in
China during 2000 to 2020 based on the GEE platform and
Landsat historical images; (3) analyze the spatial distribution of
surface water in YRB from 2000 to 2020.

2. MATERIALS AND METHODS

2.1 Study area

The YRB is situated in northern China (30–42°N, 94–120°E;
Figure 1) with a total area of up to 7.95 × 105 km2; it is one of
the most important basins in China and is formed by the Yellow
River, which is the second-largest river in China, second only to
the Yangtze River. Based on topographic variations (high in the
west and low in the east), the YRB is usually divided into upper
(UYRB), middle (MYRB), and lower reaches (LYRB). From
the source of the Yellow River (point A in Figure 1) in the
Bayankara Mountains at about 4,800 m above sea level, it
descends to Hekou County at 1,000 m (B), Zhengzhou City at
400 m (C), and finally flows to the Bohai Sea (D) (Figure 1).
The upper reaches receive water from melting glaciers on the
Tibetan plateau. Due to the different altitudes between the upper
and middle reaches, the middle reaches of the Loess Plateau and
Ordos Plateau have poor land and severe water erosion; the
lower reaches consist of alluvial plains, which are suitable for
growing crops, high population density, and dense urban areas.
However, the lower reaches suffer the most from flood disasters.

Figure 1. Yellow River Basin, the study area. The red line
delineates three areas (UYRB: upper reaches of the Yellow
River Basin; MYRB: middle reaches of the Yellow River Basin;
LYRB: lower reaches of the Yellow River Basin). A continuous
blue bolded curve shows the Yellow River, which passes from
the Tibetan Plateau through the Alashan Plateau, the Ordos
Plateau, and the Loess Plateau before finally joining the Bohai
Sea. Points A, B, C, and D are the key points of the Yellow
River. B is the dividing point between upstream and midstream,
and C is the dividing point between midstream and downstream.

2.2 Data and processing

The YRB area is covered with 74 tiles (path/row) of the Landsat
Worldwide Reference System (WRS-2) (Figure 2 (a)). We
acquired a total of 72,520 Landsat surface reflectance images
(21,312 Landsat 5 images, 37,296 Landsat 7 images, and 13,912
Landsat 8 images) for all available Landsat images in the GEE
platform from January 1, 2000, to December 31, 2020. Surface
reflectance datasets for Landsat 5 and 7 were generated by the

Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) algorithm (Claverie et al., 2015), and the Landsat 8
surface reflectance products were generated by the Landsat
Surface Reflectance Code (LaSRC) algorithm (Vermote et al.,
2016). In this study, six spectral bands of Landsat series images,
such as blue band, green band, red band, near-infrared band,
short-wave infrared band 1 (SWIR1), and short-wave infrared
band 2 (SWIR2) with a spatial resolution of 30 m, were used for
extracting water bodies.
We used the Cloud_Cover score in the Landsat metadata to
remove images with high cloud cover, and used the Landsat
quality assessment (QA) band (pixel_qa) to mark observations
with poor quality (e.g., clouds and cloud shadows) for each
image. In addition, we used the Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model (DEM) (Farr et al.,
2007), the solar azimuth, and the zenith angle of each image,
and the ee.Terrain.hillShadow algorithm in GEE to identify and
remove terrain shadows (Zou et al., 2018). Ultimately, 26,681
high-quality Landsat images (7,288 Landsat 5 images, 13,987
Landsat 7 images, and 5,406 Landsat 8 images) were generated
for the study area, and the temporal (year and month) and
spatial distribution of these data are shown in Figure 2.
In addition, Sentinel-2 images with a spatial resolution of 10 m
were used to assess the accuracy of the water bodies extracted
in the YRB. The study shows that high spatial resolution image
data can be used to validate low-resolution image data for
extracting feature information. ERA5 is the fifth generation
ECMWF (European Centre for Medium-Range Weather
Forecasts) atmospheric reanalysis of the global climate (Urban
et al., 2021). Reanalysis combines model data with observations
from across the world into a globally complete and consistent
dataset. To analyze the temporal trends of precipitation in the
YRB, annual and monthly ERA5 precipitation products with a
spatial resolution of 0.25° were collected for the period from
2000 to 2020. In addition, GlobalLand30 (Global 30-meter land
cover remote sensing data product) data
(http://www.globallandcover.com/) and SRTM DEM data
(https://srtm.csi.cgiar.org/srtmdata/) were collected to show the
land cover and elevation of the YRB.

Figure 2. Spatial distribution of the number of good-quality
observations within individual pixels of Landsat 5/7/8 images
from 2000 to 2020 and Landsat WRS-2 path/rows (gray boxes)
in the study area (a). Annual (b) and monthly (c) distribution of
the number of good-quality observations of Landsat 5/7/8
images from 2000 to 2020.

2.3 Sample Collection

Surface reflectance exhibits intra-annual variability due to
differences in feature and sun angles (Zhu et al., 2015).
D'Odorico et al., (2013) showed that the percentile synthesis
method can be used to generate images of seasonal variability.
In statistics, a percentile is a score below which a given
percentage of scores in its frequency distribution falls (exclusive
definition) or a score at or below which a given percentage falls
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(inclusive definition) (Yu et al., 2021). In this study, the
percentile synthesis method was used to obtain images of
seasonal changes in the study area.
First, among the 74 Landsat tiles covering the entire YRB area,
10 tiles representing different land cover types were randomly
selected, as shown in Figure 3. These tiles cover typical surface
open water bodies in the YRB region, such as high-elevation
lakes (e.g. Zhaling Lake), high-elevation rivers and reservoirs
(e.g. Longyangxia Reservoir), low-elevation lakes (e.g.
Wulangsu Sea), low-elevation rivers and reservoirs (e.g. Qianhe
Reservoir), plain lakes (e.g. Dongping Lake), and plain rivers
and reservoirs (e.g. Xiaolangdi Reservoir); then, all images
from 2000 to 2020 in each tile were combined into one image
collection and the surface reflectance percentages in each band
were calculated for each pixel in each image collection; finally,
six single spectral bands (blue band, green band, red band, near-
infrared band, short-wave infrared band 1, and short-wave
infrared band 2) in each image collection were synthesized into
one multispectral image. Percentile synthetic images ranging
from 10% to 90% were calculated for each tile in this study.
As shown in Figure 3, observing the different percentile images
representing the Hongjiannao Lake(Landsat tile No. 127033)
and Xiaolangdi Reservoir (Landsat tile No. 125036), it is easy
to find that the percentile images show a more significant
seasonal variation, i.e., the lower percentile has a greater chance
of representing surface water bodies. The 90% percentile
synthetic images in this study represent the minimum range of
surface water pixels for randomly generated water body samples,
and the 10% percentile synthetic image set represents the
minimum range of non-surface water pixels for randomly
generated non-water body samples. A total of 685,445 samples,
including 252,832 water samples and 432,613 non-water
samples, were collected in this study and used to establish water
extraction rules.

Figure 3. Spatial distribution of sampled tiles and composite
images of the three percentiles (10%, 50%, and 90%) (false
color shows RGB: NIR, Red, Green). The numbers in the
sampled plots indicate the paths (first three digits) and rows
(last three digits) of Landsat WRS-2. The land cover type data
are from GlobalLand30.

2.4 Surface Water Extraction Algorithm

The MNDWI (modified normalized difference water index),
AWEI (automated water extraction index), EVI (enhanced
vegetation index), and NDVI (normalized differential
vegetation index) index were used to develop a multi-index
water body extraction rules (MIWER). The pixels are water
bodies when the pixels satisfy (MNDWI - EVI > -0.1 or MNDWI
– NDVI > -0.1) and (AWEInsh – AWEIsh > -0.1); otherwise, they
are the non-water body. 0.5% of water samples were incorrectly
classified as non-water bodies and 3.45% of non-water samples

were incorrectly classified as water bodies in the scatter density
figure (Figure 4) of all sample points.
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Here, ρRed, ρGreen, ρBlue, ρNIR, ρSWIR1 and ρSWIR2 are the reflectance
of the red band, green band, blue band, near-infrared band 1,
shortwave infrared band 1 and 2 of Landsat image, respectively.

Figure 4. Density scatter of water (a-b) and non-water (c-d)
samples.

2.5 Accuracy verification of water extraction based on
Sentinel-2 images

In this study, 10-m spatial resolution Sentinel-2 images were
used to assess the accuracy of surface water bodies acquired by
the Landsat images. Considering the strong dynamic changes of
surface water extent, Landsat images and Sentinel images of the
same date were selected in this study, where the cloud coverage
of the Landsat and Sentinel-2 images did not exceed 30%, and
the same preprocessing as Landsat was applied to Sentinel-2
images, and the Sentinel-2 and Landsat surface reflectance data
were finally obtained separately. Five thousand test samples
were randomly generated by 15 Landsat images, including 2977
water samples and 2023 non-water samples. Sentinel-2 images
were examined visually to check the test samples.
The accuracy of surface water extraction extracted by Landsat
images was tested with a confusion matrix. The recognition
results of Sentinel-2 images are the true values and the
recognition results of Landsat images are the predicted values.
First, the confusion matrix is divided into four categories: TP
(true positive), FN (false negative), FP (false positive), and TN
(true negative). Then, the performance of the proposed method
is evaluated on this basis. For example, the producer's accuracy
(PA) and user's accuracy (UA) indicators are used to indicate
completeness and correctness, respectively. The accuracy (ACC)
and Matthews correlation coefficient (MCC) indicate the
general accuracy of the approach. The MCC considers the four
confusion matrix categories and is thus more informative than
the ACC, especially when the water bodies account for a small
portion of the environment (Yang et al., 2020). In addition, the
KAPPA coefficient was obtained in this study for consistency
testing and can also be used to measure classification accuracy,
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which usually falls between 0 and 1, and higher values indicate
higher consistency (Yang et al., 2020).

2.6 Statistical Analysis

The Mann-Kendall (MK) trend test is applied to analyze time-
series data with a continuous increasing or decreasing trend
(monotonic trend). It is a nonparametric test that applies to all
distributions (i.e., the data do not need to satisfy the assumption
of a normal distribution). The MK test is used to detect
significant changes in long-term permanent and seasonal water
bodies (Mann 1945), and the results are interpreted in terms of a
z-score metric, where the sign indicates the direction of the
trend and the value indicates the magnitude of the trend. In
cases where the MK test determined a significant trend, we used
the coefficient of variation (CV) to analyze the spatially
divergent patterns of multi-year changes in environmental factor
data . Higher CV values indicate greater variation in
environmental factors and less variation otherwise.

3. RESULTS

3.1 Accuracy verification of water extraction

Table 1 shows the quantitative assessment of dynamic surface
water extraction results based on random sample points. The
MCC (84.1%) and the high precision of KAPPA (>0.8) validate
the feasibility and effectiveness of the MIWER method to
obtain surface water in the study area.

samples
Landsat

water non-water Total

Sentinel-2
water 2879 98 2977

non-water 285 1738 2023
Total 3164 1836 5000
PA=96.7% UA=91.0%

ACC=92.3% MCC=84.1%
KAPPA=0.8386

Table 1. Confusion matrix for the accuracy assessment of
surface water extraction results based on random sampling
points.

We selected several representative water bodies from the
Yellow River basin, such as high-altitude lakes (Eling Lake)
(Figure 5(a)), high-altitude reservoirs (Longyangxia Reservoir)
(Figure 5(b)), desert freshwater lakes (Hongjiannao Lake)
(Figure 5(c)), the Yellow River (Figure 5(d)), and low-altitude
rivers and reservoirs (Dongzhang Reservior) (Figure 5(e)).
Comparing with the other water body extraction algorithms,
such as Deng (Figure 5(a2-e2)), SVM (Figure 5(a3-e3)), and
MNDWI (Figure 5(a4-e4)), it is intuitively clear that the
MIWER (Figure 5(a1-e1)) extracts water bodies better than
other methods for several specific water body types. It is worth
noting that the Deng and SVM methods are inferior to MIWER
and MNDWI for the effects of ice, snow, and clouds on the
image (Figure 5(b)).
A total of 105 sample points were visually interpreted using
Sentinel-2 data as true values to evaluate the quantitative
accuracy of different water body methods. The MIWER method
had the highest accuracy with overall accuracy of 92.5% and
KAPPA coefficient of 0.856 (Table 3), the Deng and MNDWI
methods were close in accuracy, and the SVM method had the
lowest accuracy.

The SVM cannot efficiently suppress the signal from built-up
surfaces and using an threshold of 0 does not accurately enable
discriminating built-up surfaces from water pixels (Figure 5(c3),
(d3))(Xu 2006). However, the limitation of MNDWI is that it
cannot discriminate water and snow (see Figure 5(a4)), because
although the snow has a generally higher reflectance than the
water in all the visible and infrared channels, the normalized
difference between green and SWIR band for snow is as high as
that of water(Choi et al., 2004; Huang et al., 2018). The Deng
method, although somewhat improved over SVM and MNDWI,
still has the problem of recognizing snow pixels as water pixels
(Figure 5(a2)). Overall, the MIWER method has the highest
accuracy and shows strong advantages for different types of
water bodies.

Figure 5. Comparisons between our method (a1-e1) and other
methods. (a2-e2): the method of Deng et al., (2019); (a3-c3):
SVM; (a4-e4): MNDWI; (a-e): false color RGB image.

Type MIWER Deng SVM MNDWI

Over
accuracy 92.5% 88.5% 83.2% 86.1%

KAPPA 0.856 0.823 0.811 0.815

Table 2. Precision comparison of different water extraction
methods

3.2 Temporal Distribution of the Surface Water

The annual (Figure 6(a-c)) and monthly (Figure 6(d)) variability
of permanent, seasonal, and maximum water bodies (Figure 6)
were investigated in this study. The MK test results showed that
the inter-annual variability of surface water in YRB during
2000-2020 was more pronounced, with a significant upward
trend for permanent water bodies (105.55 km2/yr, p<0.05), a
less pronounced inter-annual trend for seasonal water bodies
(p>0.05), and a more pronounced inter-annual upward trend for
maximum water bodies (153.04 km2/yr, p<0.05). In addition,
surface water has obvious seasonality: the area of the rainy
season is significantly larger than that of the dry season, with
the minimum extent of surface water occurring in January with
a total area of 13,200.35 km2 and the maximum extent of
surface water bodies occurring in August with a total area of
15,150.08 km2.
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Figure 6. Annual and monthly variation of surface water in the
Yellow River Basin from 2000 to 2020. The z value in the
Figure 5(a-c) is the result of the MK (Mann-Kendall) test,
whose symbol indicates the direction of the trend and the value
indicates the magnitude of the trend. p<0.05 indicates that the
MK test result is significant.

3.3 Spatial Distribution of the Open-Surface Water

Figure 7 show an overlay of all surface water extraction results
in the YRB over a 20-year period, which can be used to
represent the overall distribution of surface water in the YRB.
The area of permanent and seasonal water bodies in the YRB is
9062.59 km2 and 6918.83 km2, respectively, accounting for
56.7% and 43.3% of the surface water area in the YRB,
respectively. The UYRB has the largest proportion of surface
water bodies at 68.6%, while the MYRB and LYRB have
similar proportions at 16.6% and 14.8%, respectively.
Permanent water bodies in the UYRB and MYRB account for
58.9% and 57.6%, respectively. The proportion of permanent
and seasonal water bodies in the LYRB is 45.5% and 54.5%,
respectively, indicating that the LYRB is dominated by seasonal
water bodies. Overall, the surface water in the YRB is obviously
uneven in spatial distribution and dominated by permanent
water bodies; the surface water varies greatly in different
regions, with the largest proportion of surface water in UYRB,
and permanent water bodies dominate in UYRB and MYRB,
and seasonal water bodies dominate in LYRB.

Figure 7. Spatial distribution of surface water in the YRB from
2000 to 2020. In order to view the details more obviously, some
local typical water bodies are shown with enlargement. (a):
Zhaling Lake and Eling Lake; (b): Longyang Reservoir; (c):
Liujia Reservoir; (d): Hongjiannao Lake; (e): Xiaolangdi
Reservoir; (f): Dongping Lake.

3.4 Analysis of spatial and temporal variation of lakes and
reservoirs in the YRB from 2000 to 2020

The lakes and reservoirs in the YRB have changed significantly
over the 20 years, with 91 new lakes and reservoirs added, 37
on a downward trend, and 66 on an upward trend (Figure 8). In
the three sub-basins of YRB, lakes and reservoirs have
increased, decreased, and added in different degrees. 33 lakes
and reservoirs in UYRB have a decreasing trend, 54 have an
increasing trend and 59 have been added; 3 lakes and reservoirs
in MYRB have a decreasing trend, 3 have an increasing trend
and 24 have been added; 1 lake and reservoir in LYRB has a
decreasing trend, 9 have an increasing trend and 8 have been
added. The results show that the changes of lakes and reservoirs
in the YRB are mainly concentrated in the UYRB area, and
mainly in two regions of the UYRB: the source of the Yellow
River in the west and the northeastern region.

Figure 8. Spatial and temporal trends of lakes and reservoirs in
the YRB from 2000 to 2020.
3.5 Conversion of different water body states in the YRB

The change of permanent and seasonal water was also counted
in this study. Figure 9(a) and 10 show the conversion between
non-water bodies, seasonal water bodies and permanent water
bodies in the YRB. Over 20 years, the area of new permanent
water bodies in the YRB is 2560.04 km2 , of which the vast
majority is from non-water bodies, accounting for 93.31%; the
area of permanent water bodies that disappeared is 343.77 km2,
of which 72.40% of permanent water bodies are converted to
seasonal The area of new seasonal water bodies in YRB is
6829.7km2, of which, the vast majority is converted from non-
water bodies, with a proportion of 96.35%; the area of
disappeared seasonal water bodies is 1345.34km2, of which
87.26% is converted into non-water bodies.
As shown in Figures 10(a-f), over 20 years, the surface water of
Zhaling Lake almost rarely changed; Eling Lake added 74.7km2,
including 42.6km2 of permanent water bodies and 32.1km2 of
seasonal water bodies; Longyangxia and Liujiaxia Reservoir
water bodies change more similarly, the reservoir added
249.8km2, 68.7km2 respectively; the area of the Hongjiannao
Lake decreased by 21.2km2, 29.7% compared to 2000, with an
average annual decrease of 1km2, of which the permanent water
body decreased by 15.1km2 and the seasonal water body
decreased by 6.1km2; the main project of the Xiaolangdi
Reservoir was completed in 2001 and started to store water. The
reservoir area has increased by 224.3km2, of which the
permanent water has increased by 95.8km2 and the seasonal
water has increased by 128.5km2; the area of Dongping Lake
has increased by 7.3km2 and decreased by 17.2km2. Overall, the
changes in the various lakes and reservoirs in the YRB have
varied over 20 years.
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The study also compared the conversion of surface water bodies
in the three sub-basins from 2000 to 2020 (Figure 9(b-d)). The
conversion of non-water bodies to seasonal water bodies was
the largest in the UYRB, MYRB and LYRB regions with
4231.85 km2, 1245.01 km2 and 1071.29 km2, respectively. The
change in area of conversion of non-water bodies to permanent
water bodies and conversion of seasonal water to permanent
water followed closely. However, the conversion of seasonal
water bodies to permanent water bodies in UYRB has the
smallest area of 83.10 km2, the conversion of permanent water
bodies to non-water bodies in MYRB has the smallest area of
29.27 km2, and the conversion of permanent water bodies to
non-water bodies in LYRB has the smallest area of 9.23 km2. In
general, the conversion of surface water bodies in YRB shows a
more obvious spatial heterogeneity.

Figure 9. The conversion of open-surface water bodies in the
YRB (a) and sub-basins. (b): UYRB; (c): MYRB; (d): LYRB.
NW: non-water; PW: permanent water; SW: seasonal water.

Figure 10. Spatial distribution of conversion of surface water
bodies from 2000 to 2020 in the YRB. In order to view the
details more obviously, some local typical water bodies are
shown with enlargement. (a): Zhaling Lake and Eling Lake; (b):
Longyang Reservoir; (c): Liujia Reservoir; (d): Hongjiannao
Lake; (e): Xiaolangdi Reservoir; (f): Dongping Lake.

3.6 Analysis of the temporal variation of annual
precipitation in YRB

Figure 11(a) shows that the annual precipitation in the YRB is
unevenly distributed spatially, with precipitation decreasing
from south to north. However, the multi-year precipitation in
the upper and northern part of the middle reaches of the YRB
shows a clear upward trend, while the eastern and lower parts of
the middle reach show a clear downward trend (Figure 11(c)).

From 2000 to 2020, the area with the greatest variation for
annual precipitation in the YRB is the northeastern part of the
UYRB, and the lowest variation for annual precipitation is
found in the Yellow River headwaters area (Figure 11(b)).
Figure 11(d) shows a positive trend in annual precipitation in
general (except for 2013), with a 21-year average of 480.5 mm,
the highest value being 638.9 mm in 2003 and the lowest value
401.9 mm in 2001. From 2004 to 2006, the average annual
precipitation in the YRB showed a decreasing trend, below the
21-year average. The average annual precipitation in 2015
decreases abruptly, and then there is a clear upward trend from
2016 to the present. In addition, the correlation between
precipitation and surface water area during 2000-2020 is not
strong (p>0.05). However, the correlation between precipitation
and surface water area varies across time, with the strongest
correlation of 0.92 for 2000-2003, followed by 2016-2020 with
a correlation of 0.78. The weakest correlation is for 2004-2015.

Figure 11. Interannual spatiotemporal variation of precipitation
in the YRB from 2000 to 2020. (a) Spatial distribution of multi-
year mean precipitation. (b) Spatial distribution of the CV
(coefficient of variation) of multi-year precipitation. (c) Spatial
distribution of the trend of multi-year precipitation. (d) Time-
series precipitation and the maximum area of surface water.

4. DISCUSSION AND CONCLUSION

The main purpose of this study is to design an efficient method
to improve the accuracy of water body extraction and to obtain
long-term open surface water of the Yellow River Basin on the
basis of Google Earth Engine. It includes a percentile-based
image synthesis method to collect training samples and a multi-
index water body extraction rule (MIWER), to rapidly extract
surface water bodies. The study investigates the long-term
changes of open water bodies in the YRB from 2000 to 2020
based on all available Landsat 5/7/8 images in the GEE platform.
The YRB, Upper Yellow River Basin, and Middle Yellow River
Basin were dominated by permanent water bodies. The
permanent water bodies in the YRB increased from 2000 to
2020 as the seasonal water bodies decreased.
The maximum water body has a good correlation (over 0.6)
with annual precipitation, especially the correlation between the
two exceeds 0.7 for both the periods 2000-2003 and 2016-2020.
The results indicate that precipitation is an important factor
controlling the open surface water bodies in the YRB. In
addition, precipitation across the YRB showed an increasing
trend from 2000 to 2020, with more precipitation indicating
more opportunities to convert non-water bodies into permanent
or seasonal water bodies and seasonal water bodies into
permanent water bodies. Thus, from 2000 to 2020, permanent
and seasonal water bodies in the YRB increase as non-water
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bodies decrease, with a conversion area of 2388.74 and 6580.85
km2, respectively, and a smaller area of 171.30 km2 for the
conversion of seasonal water bodies to permanent water bodies.
However, the precipitation trends in the different sub-basins of
the YRB vary considerably (Figure 11). The UYRB experiences
a significant increase in precipitation, increasing its surface
water area. The MYRB experienced a slight increase, resulting
in a slight increase in its surface water area. However, the
LYRB experienced a decrease in precipitation, resulting in a
decrease in its water body. In addition, many scholars suspect
that precipitation is not the only climatic factor. For example,
many studies have shown that the increase in glacial meltwater
due to increasing temperatures has led to the expansion of lakes
on the Tibetan Plateau, including the UYRB (Deng et al., 2019).
As a result, both seasonal and permanent water bodies in the
SYRB have increased from 2000 to 2020.
The correlation coefficient between maximum water bodies and
annual precipitation has decreased from 2004 to 2015, possibly
due to the increase in the impact of human activities on YRB in
the last years. The impact of human activities on surface water
bodies has been demonstrated in many studies (Zhou et al.,
2019). Over the years, the YRB has experienced intense human
activities that have had complex effects on surface water bodies.
On the one hand, surface water bodies have been affected by
human activities due to urban expansion, agricultural production,
and other reasons. As an important desert freshwater lake and
breeding habitat for relict gulls, the Hongjiannao wetland area
has been declining overall in the last 20 years, decreasing by
about 34% between 2000 and 2015. Cao et al., (2021) found
that the decline in groundwater due to the continued
development of nearby mines led to a continuous decrease in
the area of the Hongjiannao Lake (Figure 12(c)). The area of the
Hongjiannao Lake increased year by year after a series of
measures such as artificial rainfall and water replenishment after
2015. On the other hand, human activities can also contribute to
more surface water bodies. As an important lake at the source of
the Yellow River, the water area of the Zhaling Lake and Eling
Lake increased by 80km2 in the last 20 years, and the increase
of runoff into the lake is the main reason for the expansion of
the water surface of the Zhaling Lake and Eling Lake (Figure
12(b)). As a key water conservancy project to manage the
Yellow River, the main project of the Xiaolangdi Water
Conservancy Hub was fully completed at the end of 2001. The
water storage area of the Xiaolangdi Water Conservancy Hub in
2020 is increased by 114.2km2 compared with that in 2000
(Figure 12(a)). The local government has taken a series of water
conservation projects around the Fenhe Reservoir, resulting in
an increase of 8 km2 in the area of the Fenhe Reservoir in 20
years (Figure 12(d)). In the last decade, the water bodies are
expected to increase as China pays more attention to water
conservation of key lakes and reservoirs (Wang et al., 2018).
Generally, results obtained from this study provide the latest
information for fully understanding the spatio-temporal
variation of surface water body area and its driving factors for
the whole Yellow River Basin, which could be used to
effectively manage water resources for protecting the fragile
ecology in the Yellow River Basin. The next step is to extend
this method to global surface waters, which is expected to
provide technical support for global water resources planning
and management.

Figure 12. Typical surface water extent in the YRB in 2000 and
2020. (a): Xiaolangdi; (b): Zhaling and Eling Lake; (c):
Hongjiannao Lake; (d): Fenhe Reservoir.
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