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ABSTRACT: 

 
Optimal discretization of continuously valued attributes is an uncertainty problem. The uncertainty of discretization is propagated and 

accumulated in the process of data mining, which has a direct influence on the usability and operation of the output results for mining. 

To address the limitations of existing discretization evaluation indices in describing accuracy and operation efficiency, this work 

suggests a discretization uncertainty index based on individuals. This method takes the local standard score as the general similarity 

measure in and between the intervals and evaluates discretization reliability according to the relative position of individuals in each 

interval. The experiment shows the new evaluation index is consistent with commonly used metrics. Under the premise of guaranteeing 

the validity of discrete evaluation, the proposed method has greater description accuracy and operation efficiency than extant 

approaches; it also has more advantages for massive data processing and special distribution detection. 

 

 

1. INTRODUCTION 

The discretization of continuously valued attributes is an 

essential and important step during data mining. Many existing 

data mining algorithms only target discrete attributes and when 

these algorithms are applied, the continuous attributes are first 

discretized. There is a plethora research on discretization effect 

evaluation, and many classical evaluation coefficients have also 

been widely used. According to different evaluation objects, the 

existing evaluation of discretization effects can be divided into 

two levels: global evaluation and individual-based evaluation. 

The global evaluation method evaluates the overall rationality of 

the discretization interval. The commonly used coefficients, such 

as the Dunn validity coefficient proposed by Dunn et al., 

calculate the ratio of the maximum distance in the interval to the 

minimum distance between the intervals. Superior discretization 

should have a large distance between the intervals, and the 

cohesion in the interval is strong. Chou et al. proposed the CH 

coefficient, and evaluated the discretization effect by calculating 

the sum of the squared distances of the data distances in the 

interval and the square of the distance between the center points 

of the entire data set. Similarly, the I coefficient proposed by 

Davies and Bouuldin also evaluates discretization by calculating 

the distance within the interval and between the interval. 

However, the global coefficient quantitatively evaluates only one 

coefficient value for a column of data, and it is impossible to 

describe and analyze the discretized structural details. Therefore, 

individual-based assessment can effectively compensate for this 

deficiency. For example, Rousseeuw raised the Silhouette Index 

to calculate the coefficient values for each object in the data set, 

and evaluate the discretization superiority of each object. 

However, facing the large data sets, the method of Silhouette 

Index requires more time to perform multiple calculate on an 

object-by-object basis. With the rapid increase in data size and 

the increasing complexity of data forms, there is an urgent need 

for new discretization assessment methods that adapt to massive 
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data sets and complex data patterns. 

 

Therefore, a new discretization uncertainty coefficient evaluation 

method based on local standard score construction was proposed 

in this paper. This method uses the standard score to construct the 

overall similarity measure of the data within the interval and 

between the intervals, and evaluates the discrete reliability by 

considering the relative position distribution of the individual in 

each interval. 

 
1.1 The source of continuous attribute discretization 

uncertainty 

In the process of discretization of continuous attributes, the 

distribution characteristics of the original data set will be changed 

due to the concept level of the attribute. Mapping continuous data 

to several discrete intervals loses the continuous change details 

of complex data, and the amount of information contained in the 

data is also reduced, resulting in uncertainty in discretization 

results and application analysis. The uncertainty description in 

the discretization result consists of two parts: the discretization 

term set X and the probability distribution U(X)  [0, 1] of this 

set. For a data set containing m consecutive attributes, the number 

of data entries in the attribute value range is recorded as n. The 

uncertainty of the discretization interval corresponding to any 

record X under each successive attribute is represented by a 

discrete interval value representing the attribute i in the record j, 

Uij indicates its corresponding uncertainty. 

 

Therefore, the uncertainty in discretization is a kind of 

uncertainty derived from the data itself and the concept. Each 

record in the data set (each attribute value field) can be 

represented by the corresponding uncertainty probability. The 

uncertainty can be divided into two aspects: the degree of 

cohesion within the interval (reflecting how closely the objects in 

the interval are closely related) and the degree of separation 
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between the segments (reflecting where a certain interval is 

different from other intervals). 

 

Discretized cohesion and resolution are manifested in this 

relationship. The effectiveness evaluation of the results of 

discretization alone with cohesion or resolution is unreliable. The 

more division intervals there are, the greater the degree of 

separation between the intervals, and the smaller the degree of 

cohesion within the interval. Under extreme conditions, each 

object corresponds to a subinterval, with itself as the center of the 

interval. At this time, the error in the interval is 0, and there is no 

uncertainty, but the ideal discretization is actually not discretized, 

which is not conducive to subsequent calculation and analysis. 

Therefore, the discretization uncertainty assessment needs to be 

based on a combination of cohesion and resolution, and finding 

a balance between the cohesion within the interval and the 

resolution between the intervals, so as to evaluate the 

discretization results. 

 
1.2 Discretization uncertainty coefficient 

During an individual-based uncertainty assessment, each object 

in the discretization result is calculated for its uncertainty in the 

discrete interval to which it belongs. The concept of standard 

scores is introduced in this study to evaluate the degree of 

cohesion in the interval and the degree of separation between 

intervals. 

 

The standard score is the measure of the discrete distribution 

between the object and the mean in units of standard deviation. 

Firstly, compare the original value of an object in the discrete 

interval with the average level of the interval, and then judge the 

continuous distribution level of the object from the whole by the 

standard deviation. It can be seen that the standard score is a 

quantification of the distribution level of an object in this discrete 

interval. Compared with the average distance, the calculation of 

the standard score can reflect the relative standard distance of the 

object distance interval or the neighborhood interval, so that the 

deviation distribution level of the individual object in the 

discretization can be better evaluated. The individualized degree 

of cohesion is measured by calculating the standard score of each 

object's distance from the center of the interval in the interval 

based on the individual's uncertainty coefficient, and the 

individual score is measured using the standard score of each 

object from the center of the nearest neighbor. The value of the 

coefficient is obtained by the ratio of the degree of aggregation 

to the degree of separation. 

 

For a given continuous attribute 1 2{ , ,... }, nX x x x=  , n is the 

number of data objects in X. Using some discretization algorithm 

to divide X into k intervals, the discretization result is recorded 

as 1 2, ,..., kI I I  . For the ith object 

, [1, ], [1, ])(i i j i n jx x I k  , the uncertainty coefficient is: 
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Where ia  is the standard score of ix  relative to its associated 

interval jI  , and ib   is the standard score of ix  relative to its 

neighborhood interval -1 +1j jI I， . If  jI  is the boundary interval, 

the single adjacent interval is only taken. The uncertainty 

coefficients 
kUI for discrete intervals are defined as follows: 
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Where n is the number of objects in the data set, and k (the 

average uncertainty coefficient) is the number of discrete 

intervals, which is a measure of the overall uncertainty of the 

partitioning of the entire data set. The value of the uncertainty 

coefficient varies from 0 to 1. A value of 1 indicates that the 

discrete distribution of the object relative to its interval is equal 

to or greater than the degree of dispersion of the relative 

neighborhood interval, and the uncertainty reaches the highest. 

The closer the value is to 0, the smaller the uncertainty of the 

object. 

 
1.3 Comparison of discretization evaluation coefficients and 

characteristics of uncertain coefficients 

There have been many results on the evaluation of discretization 

effects as well as on classical evaluation coefficients. Although 

the starting points of these two methods are different, they are 

both based on the overall similarity of the data between the sub-

intervals and sub-intervals in the discretization results. The 

distance of the data represents the degree of difference between 

the data. According to the discretization requirement, the result 

of the discretization of the continuous attribute should make the 

distance of the data between the intervals as large as possible, and 

the distance of the data in the interval smaller. According to 

different evaluation objects, the existing discriminant effect 

evaluation can be divided into two levels: global evaluation and 

individual-based evaluation. The existing mature evaluation 

coefficient is compared with the construction principle of the 

uncertainty coefficient proposed in this study. The results are 

shown in Table 1 below. 

 
 

Compared with the existing discretization evaluation coefficient, 

the uncertainty coefficient proposed in this paper has the 

following characteristics.  

 

(1) Consider the contribution of each individual's 

discretization to uncertainty.  

 

The uncertainty coefficient is calculated in units of individuals, 

which fully reflects the heterogeneity of the discrete individuals. 

The average uncertainty coefficient is obtained from the 

discretization uncertainty of each individual. Compared with the 

traditional global evaluation coefficient, it has a significant 

improvement in the granularity and flexibility reflecting the  
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Table 1. Comparison of discretization evaluation coefficient 

 

degree of discretization reliability. Therefore, extensive analysis 

of the refined uncertainty distribution can be explored. 

 

 

(2) Efficiency improvement 

 

Compared to the current individual-based contour coefficient, the 

uncertainty coefficient significantly improves operational 

efficiency. The contour coefficient needs to scan the data 

repeatedly during the calculation. However, the calculation of the 

uncertainty coefficient is based on the standard score as the 

dimension of the degree of cohesion and resolution, which 

greatly simplifies the time complexity of the coefficient 

calculation, thereby improving the evaluation efficiency and 

better service to the analysis and application of massive data. 

 

2. METHODOLOGY 

2.1 Discretization uncertainty coefficient verification 

2.1.1 Effectiveness verification 

 

To verify whether the uncertainty coefficient proposed in this 

study can effectively evaluate the reliability of the discretization 

results, this paper compares the uncertainty coefficient with the 

existing evaluation coefficient in the global evaluation and 

individual evaluation. The experimental data includes one set of 

simulation data and one set of actual data. The experimental 

hardware comprises an Intel Core i7 with 3.60GHz CPU and 

8GB memory. The operating system platform is Microsoft 

Windows 7 Ultimate, and the software programs are Microsoft 

Visual C++ 6.0 compiler and Matlab R2014a. 

The experimental data verified by the global evaluation is 

simulated data and contains 500 samples. Four range partitions 

were added to the continuously evenly distributed data to form  

five separate intervals, as shown in Figure 1. The experimental 

data known for discrete distributions were discretized into 2-10 

classes using EW, K-means and FCM algorithms. In addition to 

the uncertainty coefficient U, the global evaluation coefficient 

(Dunn coefficient, CH coefficient, I coefficient) is used to 

evaluate the discretization effect, so as to verify the validity of 

the uncertainty coefficient applied to the discretization evaluation. 

The relevant data is shown in Table 2. 

 

 
Figure 1. Distribution of simulated data 
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 EW  K-means  FCM 

Dunn CH I U  Dunn CH I U  Dunn CH I U 

2 0.01  1443.69  0.92  0.30   0.02  1488.64  0.98  0.258   0.01  1450.02  0.92  0.30  

3 0.01  1991.61  1.29  0.33   0.01  2006.55  1.51  0.330   0.00  1916.32  1.38  0.32  

4 0.01  2250.22  2.04  0.36   0.02  2687.70  2.94  0.301   0.01  2702.74  3.00  0.29  

5 0.95  11486.75  9.40  0.14   0.01  2081.66  2.24  0.297   0.95  11486.75  9.40  0.14  

6 0.02  9627.19  7.60  0.18   0.03  11102.38  8.87  0.160   0.03  11041.21  8.73  0.16  

7 0.03  10282.79  7.24  0.15   0.03  9600.77  7.21  0.164   0.01  11209.40  7.59  0.17  

8 0.02  9599.05  5.84  0.14   0.00  7361.49  5.62  0.169   0.01  10191.86  7.00  0.17  

9 0.00  6739.45  3.64  0.16   0.03  7289.95  4.77  0.166   0.02  10575.11  7.03  0.20  

10 0.01  9606.84  6.45  0.17   0.02  6470.23  3.91  0.167   0.01  10314.64  7.96  0.21  

Table 2. Effectiveness evaluation of simulated data under three discretization algorithms 

 
Considering the dimensional difference between the coefficients, 

the four series of values obtained by the four coefficients are 

normalized, so that the evaluation coefficients are applied to the 

simulation data and the effects of discretization into 2-10 

intervals under different discretization methods are evaluated and 

compared. Specifically, the method is to subtract the minimum 

value in the column from the calculated value of each coefficient 

evaluation, and then divide by the difference between the 

maximum value and the minimum value of the data in the series. 

For the value trend of the uncertainty coefficient U and the 

existing coefficient (U=1-U), the larger the value, the more 

reasonable the discretization. Figure 2 shows the comparison 

between the results of the four coefficient evaluations after 

standardization. 

 

Since the metrics for cohesion and resolution vary, the calculation 

results of the existing evaluation coefficients are different. The 

evaluation of the discretization results can be divided into two 

aspects: the detection of the optimal number of discrete intervals 

and the comparison of the discretization methods. Take Figure 2 

(a) as an example, the EW method is used to discretize the 

simulation data into two-ten intervals. The four evaluation 

coefficients show that the discretization is most reasonable when 

the simulation data is divided into five discrete intervals of equal 

width. This is consistent with known discrete distribution 

characteristics of data. The uncertainty coefficient U proposed in 

this study is consistent with the calculation results of the current 

classical coefficients in the detection of the optimal number of 

discrete intervals. 

 

By comparing the optimal number of simulation data under the 

three discretization methods of EW, K-means, and FCM and the 

values of the four evaluation coefficients, the following can be 

known.  

 

（1）For the EW method and the FCM method, the four 

coefficients show that the best discretization effect is achieved 

when divided into five discrete intervals, and the interval range 

is completely the same; that is, the simulated data is divided into 

five equal parts with the same volume. K-means is best when 

segmenting the simulated data into six intervals. 

 

 

（2）Comparing the coefficient values of the three discretization 

methods under the optimal interval number, it can be seen that 

the values of the Dunn coefficient, the CH coefficient and the I 

coefficient of the K-means method are lower than the EW method 

and the FCM method, but the coefficient U is not determined. 

Figure 2 (b) shows that the coefficients in the corresponding 

graphs of the EW method and the FCM method are the 

normalized maximum value 1 at the 5th interval. However, the 

K-means method reaches the series maximum at the 6th interval, 

but both are less than 1, and the Dunn coefficient is even 0.03, 

 

 

 
Figure 2. Evaluation of discrete effect of simulated data 
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whose discretization effect is worse than the other two methods. 

Therefore, the discretization of the simulated data should be 

divided into five discrete intervals using the EW or the FCM 

method, which is consistent with the known data distribution 

characteristics.  

 

Through the experimental evaluation and comparison of the 

known discrete distribution simulation data, it can be seen that in 

the comparative evaluation of the detection and discretization 

methods of the optimal discrete interval number, the uncertainty 

coefficient U proposed in this study is compared with the 

evaluation result of the current coefficient. Consistency with the 

actual distribution characteristics of the data is an effective way 

to evaluate the results of discretization.  

 
2.1.2 Individual evaluation 

 
The individual evaluation verification uses the IRIS data set to 

compare the existing discretization evaluation methods and the 

evaluation results of the uncertainty coefficients. IRIS data, also 

known as the iris flower dataset, is recognized as the most famous 

dataset for data mining. The data set consists of 150 data 

consisting of four consecutive attributes, which are the length of 

the flowerbed, the width of the flower, the length of the petals, 

and the width of the petals. 

 

In the experiment, the K-means algorithm is applied to discretize 

the four consecutive attributes in the IRIS data set, which are 

divided into three categories for comparison. A comparison of 

discretization evaluation coefficients (see section 2.3) reveals 

that only the contour coefficients and the uncertainty coefficients 

proposed in this study can evaluate the discretization uncertainty 

of each data, and verify the validity of the proposed uncertainty 

coefficient applied to discretization evaluation. The contour 

coefficient calculates the average distance to other individuals in 

the dataset and to all individuals in the most adjacent interval for 

each individual in the data set, thereby jointly evaluating the 

discretization superiority of each individual. 

 

The K-means algorithm is used to discretize the four attributes 

respectively to obtain the S and U coefficients of each individual, 

then the individual uncertainty evaluation is conducted. Since the 

contour coefficient S and the uncertainty coefficient U are 

opposite in the evaluation reliability, the difference between the 

effective analogy uncertainty coefficient U and the current 

evaluation method is that U is taken as 1-U; if the value is larger 

the discretization is more reasonable. The results of comparison 

of the similarity between S and U during the individual 

evaluation are shown in Figure 3. The abscissa indicates the 

number of data records, and the ordinate indicates the calculated 

contour coefficient S and the uncertainty coefficient U proposed 

in this study. 

 

The four consecutive attributes in the IRIS data set, the S and U 

coefficients can effectively reflect the uncertainty of each of the 

data in the discretization. For each discrete interval, the 

individual discretization reliability in the middle of the interval is 

higher, and the individual's uncertainty increases when it is closer 

to the segmentation point. Furthermore, it is understood that the 

contour coefficient S and the uncertainty coefficient U each have 

a strong similarity of 0.8 or more in each experimental data when 

the Pearson correlation of the S and U coefficient sequences are 

calculated. During the individual-based discretization 

uncertainty assessment, the uncertainty coefficient U based on 

the local annotation score and the existing contour coefficient S 

have an extremely high distribution similarity, and the 

discriminant uncertainty evaluation effect for each individual is 

consistent. 

 

 

 
Figure 3. Comparison of individual evaluation 
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2.2 Superiority verification 

2.2.1 Calculation efficiency 

 
It can be seen from the experiment in section 3.1 that the 

proposed uncertainty coefficient U is basically consistent with 

the rule mining result obtained by evaluating the discretization 

reliability of the existing contour coefficient S. For the 

uncertainty coefficient method, since it simplifies the time  

 

 
Figure 4.  Running-time experiment of Silhouette coefficient 

and uncertainty coefficient 

 
 

complexity of the algorithm, it will achieve higher processing 

efficiency in the face of massive data. Take analog data as an 

example, a random number of normal distributions are generated 

in Matlab, and the amount of data is gradually increased from 100 

to 40,000. The data set is discretized into three intervals by the 

K-means algorithm. In Matlab, the validity of each simulation 

data set is verified by the contour coefficient S and the 

uncertainty coefficient U. As the amount of data increases, the 

calculation time is as shown in Table 3. It can be seen that with 

the increase of data volume, the uncertainty coefficient U 

proposed in this study has significant time superiority as shown 

in Figure 4, which greatly reduces the time consumption of 

individual evaluation and improves the efficiency of data 

processing. 

 
Data 

size 

100 1000 5000 10000 20000 40000 

S /s 0.016 0.08 0.769 2.76 10.04 36.45 

U /s 0.012 0.016 0.04 0.057 0.131 0.205 

Table 3. Comparison of Silhouette coefficient and uncertainty 

coefficient 

 

2.2.2 Breakpoint recognition 

 
Firstly, a random data set with 1000 entries is generated by 

Matlab2016. Then two partition points are set to the value domain 

partition to form three separate intervals, and the simulated 

dataset of the hierarchical sequence distribution is obtained. The 

K-means method is used to discretize this dataset into low, 

medium and high, which are labeled 1 to 3, and their distribution 

is shown in Figure 5 (a). It can be seen that the 1st interval 

includes a portion with a range of 0-0.1 and 0.4-0.64, which is 

partitioned across a range. The 2nd interval range is 0.64-1.15, 

which is evenly distributed within the interval. The 3rd interval 

range is 1.55-1.7, which forms a value domain fault with the 2nd 

interval. 

 

The uncertainty of the simulated data is evaluated by the contour 

coefficient S and the uncertainty coefficient U, and the results are 

shown in Figure 5 (b) (U takes 1-U). It can be seen that the overall 

distribution of S and U is relatively consistent, the reliability is 

higher in the middle of each interval, and that the uncertainty is 

closer to the boundary area. 

 

Since the distribution of the 1st interval spans a range of faults, 

the fault of the uncertainty coefficient U also appears as a 

reliability fault, and the data of the value range of 0-0.1 is higher 

than the data of the other side of the fault in terms of interval 

separation; the uncertainty is therefore stronger. However, the 

data on the right side of the partition is better than the majority of 

the data in the interval, which shows high reliability. In the 

evaluation of U, the standard score is selected as the unit of 

distance metric, and its value reflects the relative position of the 

individual in the interval, so it can better reflect the uncertain 

distribution of data faults in this interval. The S-evaluation uses 

the average distance as the metric, whose uncertainty evaluation 

is a smooth result, and the intra-segment differentiation cannot be 

detected. Therefore, in the special distribution with data faults, 

the uncertainty coefficient can better evaluate the deviation 

distribution level of individual objects in discretization. 

 
3. CONCLUSIONS 

In this study, a new cross-scale discretization uncertainty 

measure coefficient based on local standard score construction is 

proposed, which realizes the controllable experimental analysis 

of the comprehensive performance of measurement quality and 

computational efficiency of discretization uncertainty. 

Considering the individual's comprehensive contribution rate 

within and between discrete intervals, the distribution of 

discretized uncertainty is detected and evaluated. The 

experimental results show that the evaluation effect on the 

discretization reliability is consistent with the existing commonly 

used evaluation coefficients. Comparing the uncertainty 

coefficient and the existing evaluation coefficient to evaluate the 

operation efficiency of the discretization effect of large-volume 

data, we can see that the uncertainty coefficient proposed in this 

study significantly shortens the calculation time, and the 

calculation efficiency of massive data is better than the existing 

evaluation coefficient. In addition, the uncertainty coefficient 

helps to identify breakpoints and abrupt points in the dataset, 

which is more suitable for discretization evaluation of special 

distributions. Furthermore, the value normalization of the 

uncertainty coefficients constructed using the local standard 

scores varies from 0 to 1, and such evaluation results directly 

support the unified comparative analysis of the discrete degrees 

of uncertainty of different types of attributes. Potentially, the 

statistic of the standard fractional distribution of the standard 

normal distribution N (0,1) (discrete uncertainty coefficient) can 

develop a probabilistic theoretical analysis of the nature of the 

statistical (estimated) amount of data. 

 

Since discretization results are unlikely to form a one-to-one 

ideal mapping for the complex real world, all types of 

discretization bring some uncertainty. Furthermore, when the 

discretization results are applied to data mining, and the  
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Figure 5. Verification of superiority in description of uncertainty coefficient 

 
uncertainty of the previous stage is propagated to the latter stage, 

the result is the accumulation and propagation of uncertainty. 

Therefore, it is of great value to evaluate the individual 

uncertainty in discretization. Although some preliminary 

explorations on evaluating the individual uncertainty in 

discretization has been carried out in this study, there are still 

many areas for improvement in follow-up research.  

Discretization uncertainty assessment can be effectively applied 

to discretization algorithms and interval number selection of 

actual data. 
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