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ABSTRACT: 
 
Technologically advanced strategies in infrastructural maintenance are increasingly required in countries such as Italy, where 
recovery and rehabilitation interventions are preferred to new works. For this purpose, Interferometric Synthetic Aperture Radar 
(InSAR) techniques have been employed in recent years, achieving reliable outcomes in the identification of infrastructural 
instabilities. Nevertheless, using the InSAR survey exclusively, it is not feasible to recognize the reasons for such vulnerabilities, 
and further in-depth investigations are essential. 
The primary purpose of this paper is to predict infrastructural displacements connected to surface motion and the related causes 
by combining InSAR techniques and Machine Learning algorithms. The development and application of a Regression Tree-based 
algorithm have been carried out for estimating the displacement of road pavement structures detected by the Persistent Scatterer 
InSAR technique. 
The study area is located in the province of Pistoia, Tuscany, Italy. Sentinel-1 images from 2014 to 2019 were used for the 
interferometric process, and a set of 29 environmental parameters was collected in a GIS platform. The database is randomly split 
into a Training (70%) and Test sets (30%). With the Training set, through a 10-Fold Cross-Validation, the model is trained, 
validated, and the Goodness-of-Fit is evaluated. Also, with the Test set, the Predictive Performance of the model is assessed. 
Lastly, we applied the model onto a stretch of a two-lane rural road that crosses the area. Results show that the suggested 
procedure can be used for supporting decision-making processes on planning road maintenance by National Road Authorities. 
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1. INTRODUCTION 

One of the most prominent challenges in infrastructure 
Pavement Management Systems (PMSs) is timely detection 
for applying preventive actions and early recovery. Indeed, 
accurate planning of infrastructure maintenance enhances the 
service life and reduce the total maintenance cost. Non-
Destructive High-Performance Techniques (NDT), such as 
network-scale monitoring devices, are required for allowing 
the identification of deficiencies and reducing the number of 
inspections directly to the sites. Specifically, SAR-based 
systems enable detection of surface motions on and around 
infrastructures. Therefore, such systems can increase the 
effectiveness of the maintenance planning (Fagrhi and Ozden, 
2015). 
The scope of this research is to evaluate the possibility of 
using SAR-based systems for planning the strategy of 
infrastructure maintenance. In combination with SAR, we 
want to define a procedure that exploits the capability of 
advanced statistical modeling, such as Machine Learning 
(ML) techniques, that can associate conditioning factors with 
the target variable examined. In this research, the target 
variable is the surface motion detected by a SAR sensor, while 
factors are those related to exogenous events of the 
infrastructure. Exogenous events can cause modification in 
infrastructure conditions and are connected to major extreme 
natural events, such as earthquakes, landslides, subsidence, 
sinkholes, and floods.  

 
 
These events can be related to Topological, geomorphological, 
geomorphometric, hydrological, and social systems of the 
surrounding environment of the infrastructure. Being able to 
correlate factors and surface motion enhance the possibility of 
defining a maintenance strategy accurately, identifying the 
most appropriate interventions that infrastructure requires. 
Therefore, two main research questions arise: 
 

1. Can surface motions be predicted by knowing 
Topological, hydrological, geomorphological, 
geomorphometric, and social system information? 

2. What are the exogenous factors most affecting the 
instabilities of infrastructures? 

 
This paper attempts to answer to both research questions 
under the assumption that surface motion estimations are 
intended as a proxy of infrastructure instabilities. As regards 
the first research question, the Predictive Performance of the 
Regression Tree-based (RT) model demonstrates the 
correlation between surface motion and conditioning factors. 
For what concerns the second research question, the RT model 
also provides an estimation of the predictor importance, 
identifying the features that most influence infrastructure 
instabilities. Being able to answer both questions, we can 
validate the assumption on which this paper is based. 
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2. RELATED WORKS 

2.1 InSAR Techniques: D-InSAR and PS-InSAR 

Differential InSAR (D-InSAR) has been promoted to measure 
gradual surface motion between a couple of SAR image 
acquisitions. It has been used broadly for subsidence 
monitoring (Benattou et al., 2018; Del Soldato et al., 2018; 
Rosi et al., 2016; Solari et al., 2018), landslides (Bianchini et 
al., 2015; Wasowski and Bovenga, 2014), and sinkholes 
(Hoppe et al., 2016). D-InSAR allows monitoring large areas 
(Costantini et al., 2017), at relatively low cost with accuracy 
within centimeters to millimeters. Nevertheless, DInSAR is 
influenced by two primary sources of errors: temporal and 
geometric decorrelation and phase distortion due to 
atmospheric conditions, which might decrease the monitoring 
accuracy. 
In order to overcome the weaknesses of this technique, 
Persistent Scatterer InSAR (PS-InSAR) has been developed to 
map surface motion over time, exploiting a long stack of co-
registered SAR image acquisitions (Ferretti et al., 2001, 
2000). The PS-InSAR technique relies on the use of the so-
called Persistent (or Permanent) Scatterers (PS), that are on-
ground items for which spectral response does not change 
substantially during various SAR image acquisitions. Phase 
information backscattered from these coherent PS is used to 
determine the magnitude and the temporal evolution of the 
surface motion along the Line of Sight (LOS) of the SAR 
sensor. The displacement values for each PS are expressed as 
a velocity in millimeters for a year. However, the technique 
has some usage limitations; indeed, the primary weakness of 
this technique is the almost-absence of PS points in 
agricultural and forested areas, where variations in geometry 
between SAR acquisitions can cause phase decorrelation, and 
make the selection of PS difficult (Solari et al., 2016). 
Conversely, PS-InSAR shows its best performance in 
recognizing PS on urbanized areas and infrastructures (both 
roads and railways). 
 
2.2 PS-InSAR for Infrastructure Maintenance Planning 

The last decade has seen the increased use of InSAR 
techniques in the field of maintenance of infrastructures. 
Studies made use of InSAR techniques for identifying areas in 
which to build new infrastructures (planning) (Balz and 
Düring, 2017), while other studies use InSAR techniques to be 
able to prevent any critical infrastructural deficiency 
(prevention), identifying sections in which there are 
substantial movements (Bakon et al., 2014; Wasowski and 
Bovenga, 2014). Generally, studies are focused on application 
of InSAR techniques both for roads (D’Aranno et al., 2019; 
Murdzek et al., 2018; Wasowski et al., 2017; Xing et al., 
2019), railways (Peduto et al., 2017), and tunnels (Perissin et 
al., 2012). In (Xing et al., 2019), the authors used InSAR 
techniques for understanding the seasonal movements of a 
highway in China, providing different types of maintenance 
interventions based on the magnitude of the detected surface 
motion. Also, InSAR has been studied under the point of view 
of economic sustainability. Indeed, Ozden et al. (Ozden et al., 
2016) proposed a benefit/cost analysis of InSAR analyses for 
infrastructure, stating that SAR-based monitoring is useful as 
a complementary tool to improve the effectiveness of overall 
monitoring system and reduce the total cost. 
 
2.3 Environmental Modelling with ML 

ML algorithms have been widely used for modeling of 
environmental phenomena and attempting to understand the 
reason of why they happen. It is possible to find applications 

of ML for regression or classification tasks in an extensive set 
of topics. Classification tasks are those related to the 
prediction of discrete values, i.e., to assign a label (or class) to 
the response variable depending on a set of independent 
variables (also called features of factors). Conversely, 
regression tasks, are those related to the prediction of 
continuous values for the response variable. 
As regards the purpose of this paper, bibliographic research 
related to ML has been carried out on the fields of extreme 
natural events modeling. The purpose of this phase was to 
identify the potential set of features that can be related to 
surface motions, the ML models mainly used, the procedure 
for developing the models, and the performance metrics used 
for evaluating the Goodness-of-Fit and the Predictive 
Performance. 
So far, there are no studies that involve the prediction of PS-
InSAR measurement based on environmental features; then, 
bibliographic research has been focused on recent studies that 
account for surface motion modeling and occurring of natural 
phenomena. 
Several studies exploit ML techniques to model extreme 
natural events such as occurring of landslides (Al-Najjar et al., 
2019; Dou et al., 2019; Hong et al., 2017; Tien Bui et al., 
2016; Xie et al., 2017), gully erosion by stream power 
(Arabameri et al., 2019, 2018; Gayen et al., 2019), occurring 
of floods (Cian et al., 2019; Khosravi et al., 2019; Rahmati et 
al., 2019b), and land subsidence (Rahmati et al., 2019a). In all 
these studies, considering the geospatial nature of the 
information used to develop the models, the authors proposed 
susceptibility maps for providing the predictions. The task of 
each of the mentioned paper was to predict a class. For 
example, landslides modeling usually attempts to predict if 
each pixel of the susceptibility map has to be a “landslide-
pixel” or “non-landslide-pixel” (binary classification). 
Conversely, regression ML models have been used for the 
prediction of Safety Factor of slope stability (Bui et al., 2019; 
Samui, 2008). In such studies, authors attempted to predict a 
numeric value. Results are proposed as a Scatterplot, in which 
observation and prediction are compared onto a Cartesian 
Plane. Also, a set of performance parameters are generally 
used to assess the Goodness-of-Fit and Predictive Performance 
of the ML models, such as Correlation Coefficient (R2), Root 
Mean Square Error (RMSE), and Mean Absolute Error 
(MAE). 
For all the mentioned papers, authors made use of different 
types of ML algorithms. Mainly, they employed Logistic 
Regression (LR) (Al-Najjar et al., 2019; Bui et al., 2019; Tien 
Bui et al., 2016; Xie et al., 2017), Support Vector Machine 
(SVM) (Gayen et al., 2019; Hong et al., 2017; Tien Bui et al., 
2016; Xie et al., 2017), Tree-based model (Dou et al., 2019; 
Tien Bui et al., 2016), and Random Forest (RF) (Al-Najjar et 
al., 2019; Arabameri et al., 2019, 2018; Dou et al., 2019; 
Gayen et al., 2019). 
There is not a rule of thumb in determining the most 
appropriate model. Indeed, it depends on the framework of 
each different study. Accordingly, this paper proposes the 
calibration and application of a RT-based model. It was 
chosen considering its reasonable simplicity of 
implementation, its capacity of handling numerical and 
categorical input factors, its computational efficiency (time to 
train the model), and the possibility of quantifying the 
importance of the input factors that can potentially influence 
the surface motions. 
The outcomes have to be considered as a first result of the 
suggested procedure, that can be undoubtedly improved by 
developing and comparing more type of ML models. 
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3. STUDY AREA DESCRIPTION 

The study area extends for 11 km x 12 km = 132 km2 (red 
rectangle in Fig. 1 – b). It is located in the Province of Pistoia 
(green areas of Figure 1), in the North of the Tuscany Region 
(Fig. 1 – a), central Italy. Other authors investigated the same 
area (Rosi et al., 2016) because of the strong subsidence 
effects that affect the city of Pistoia located at the center of 
the study area. The reason for such effects has been evaluated 
in (Del Soldato et al., 2018), showing that they are related to 
the overexploitation of groundwater by several greenhouses 
and nurseries opened from the beginning of the 21st century. 
The combination of the high request of water and soft layers 
compaction could have caused a decrease in the groundwater 
level, resulting in subsidence. Figure 1 also shows three 
regional two-lane rural roads that cross the study area. Two-
lane rural roads are identified as single carriageway roads with 
one lane for each direction of travel. In Italy, the width of the 
lanes should be 3.75 meters, the paved shoulder 1.50 meters, 
the radius of the circular curves at least 118 meters, and the 
maximum slope of 7%. 
 

 
(a) (b) 

Figure 1. Study Area, (a) the Tuscany Region, (b) the Province 
of Pistoia and regional two-lane rural roads 

 
4. METHODOLOGY 

4.1 RT-based ML Algorithms 

A RT-based ML algorithm is a hierarchical supervised 
learning model composed of decision rules that recursively 
split independent variables into homogeneous zones. The 
decision rules are learned by inferring directly from the 
available data. Once a Tree-based model is trained, the 
decision rules can be used to make predictions by using a new 
set of data. Tree-based algorithms are used both for 
classification and regression tasks, if the target outcomes are 
discrete or continuous, respectively. 
Historically, RT algorithms are introduced and defined in 
(Breiman et al., 1984) under the name of Classification and 
Regression Trees (CARTs). In this paper, the same modeling 
procedure is used. In (Torgo, 2017), advantages and limits in 
using RT have been described, and below they are briefly 
reported. 
Features of RT make it an exciting approach in modeling 
multiple regression problems, also finding an easy 
interpretable solution for the users. Indeed, RT provides 
automatic variable selection making them insensitive to 
irrelevant variables, computational efficiency even in large 
problems, handling of unknown variable values, handling of 
both numerical and categorical predictors, insensitivity to the 
scales of predictors, and interpretable models by using tree-
based graph visualization (Torgo, 2017). As regards for its 
limits, RT could have poor prediction accuracy considering 
the piecewise constant approximation. Also, RT could be 

unstable: small changes in the training data can lead to 
significantly different models. 
The RT used in this study is binary. Therefore, we refer to a 
Tree-based model in which the root node and each branch 
node is split into two different branches according to a 
specific decision rule. In order to define the decision rules, the 
Recursive Partitioning (RP) algorithm (Breiman et al., 1984; 
Loh and Shih, 1997) has been used. Starting from the root 
node, RP splits the node into two branches by evaluating all 
the possible cut point values for each predictor, identifying the 
split that minimizes the so-called splitting criterion. In this 
case, the splitting criterion is the Mean Square Error.  
Therefore, according to the MSE criterion, the error in a given 
node is given by: 
 

 
(1) 

 
Where: Dt = sample of cases in node t 
 nt = cardinality of this set 

y-bar = average target variable of the cases in 
Dt 
xi = sample of predictors in Dt 
yi = sample of target variables in Dt 

 
A logical test s split the cases in Dt into two partitions, DtL and 
DtR. The resulting error of such split s is given by: 

 

 
(2) 

 
Where: ntL/nt and ntR/nt = proportions of cases after the 

split s that move to the left and right child 
nodes of t, respectively 

 
Therefore, it is possible to assess the goodness of the split s by 
the relative error reduction: 

 
  (3) 

 
Finding the best split test s for a node involves evaluating all 
possible tests using Equation 3, that is to evaluate all possible 
cut point for each predictor and compute the relative error 
reduction. As said, for each new child node, the RP has been 
applied again. This procedure moves on until a termination 
criterion is satisfied. In this study, the termination criterion is 
a Mean Square Error threshold equal to 10-6. Once the 
termination criterion is satisfied, the node becomes a leaf 
node. The estimation of the target variable is the average 
value of all the yi included in the leaf node. 
 
4.2 ML Modeling Procedure 

The ML approach involves three main modeling phases: 
training, validation, and testing phase. 
Therefore, the database has been randomly split into two 
parts: the training set (70%) and the test set (30%). In order to 
develop a model able of better generalizing and avoiding over-
fitting, a 10-Fold Cross-Validation was carried out; the 
training set is then divided into 10 folds. The model is trained 
(i.e., the set of hyperparameters is estimated) using 9 folds 
and is validated on the remaining one. The process is repeated 
10 times, allowing each observation in training set to be used 
for both training and validation. The set of hyperparameters 
that provide the least MSE in predicting the target variable 
constitutes the set of the best hyperparameters of the model. 
The following are the initial Hyperparameters, the modeling 
process setup, and its evaluation metrics. 
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Initial Hyperparameters: 
1. Maximum Number of Splits: (1200 x 1100) – 1 
2. Minimum of Leaf Size: 1 
3. Minimum of Parent Size: 10 
4. Merge Leaves: Yes 
5. Factors to Compute the Splits: All 

 
The maximum number of splits is the maximum number of 
decision splits (or branch nodes). The minimum of leaf size is 
the minimum number of leaf node observations. The 
minimum of parent size is the minimum number of branch 
node observations. Also, RT merges leaves that originate from 
the same parent node and yield a sum of risk values greater 
than or equal to the risk associated with the parent node. 
 
Modelling Process: 

1. Split percentage for Training Set: 70% 
2. Split percentage for Test Set: 30% 
3. Cross-Validation: Yes 
4. Number of Folds: 10 
5. Splitting Criterion: MSE 
6. Termination Criterion: MSE 
7. Termination Threshold: 10-6 

 
Modeling Evaluation: 
In order to evaluate the RT, comprehensively, both its 
Goodness-of-Fit and Predictive Performance have been 
evaluated using a set of three performance metrics: R2, RMSE, 
and MAE. The R2 gives the ratio of variance explained by the 
RT. The MAE gives the average magnitude of the predicted 
errors, while RMSE gives more weight to the largest errors. 
Equations 4-6 define the computation of such metrics: 
 

 
(4) 

 

 
(5) 

 

 
(6) 

 
Where: Yi,predicted = estimated values by RT 

[mm/year] 
Yi,observed = real values of surface motion 
(IDW-interplolated values) [mm/year] 

 N = number of instances 
 
The Goodness-of-Fit evaluation is necessary for assessing how 
well the model fits the training dataset. However, such 
performance cannot be used for evaluating the prediction and 
generalization abilities of the model. Therefore, the Predictive 
Performance of the model has been evaluated using R2, 
RMSE, MAE, using the testing set instead of the training one. 
 
4.3 RT input factors: Environmental Features 

A set of environmental features were collected and 
preprocessed in a GIS platform in order to obtain the RT input 
factors related to Topography, Geomorphology, 
Geomorphometry, and Hydrology. The Tuscany Region 
Administration provided them through its Geoscope 
(http://www502.regione.toscana.it/geoscopio/cartoteca.html). 
Below the factors are reported together with their 
nomenclature (in round brackets), their processing (Gathered, 
G, or Computed through GIS, C), type of input factor 
(Numerical, Num, Categorical, Cat, Ordinal, Ord, or Binary, 

Bin), unity of measure [in square brackets] and, if possible, a 
reference for their definition and use in ML modeling. It is 
worth mentioning that all the gathered data have been 
provided by map with a scale equal to 1:10.000. 
 
Input Factors: 

1. Elevation (Elev) – G, Num, [m], (Gayen et al., 
2019) 

2. Aspect (aspect) – C, Num, [rad], (Tien Bui et al., 
2016) 

3. Slope (slope) – C, Num, [rad], (Khosravi et al., 
2019) 

4. Curvature (curv) – C, Num, [rad], (Khosravi et al., 
2019) 

5. Convergence Index (conI) – C, Num, [-], 
(Arabameri et al., 2018) 

6. Slope-Lenght (SL) – C, Num, [m], (Gayen et al., 
2019) 

7. Topographic Position Index (TPI) – C, Num, [-], 
(Rahmati et al., 2019b) 

8. Vector Terrain Ruggedness (VTR) – C, Num, [rad], 
(Rahmati et al., 2019b) 

9. Terrain Ruggedness Index (TRI) – C, Num, [-], 
(Al-Najjar et al., 2019) 

10. Cumulative Average Yearly Rainfall (Rainfall) –  
C, Num, [mm/year], (Hong et al., 2017) 

11. Topographic Wetness Index (TWI) – C, Num, [-], 
(Gayen et al., 2019) 

12. Stream Power Index (SPI) – C, Num, [m2/m], 
(Hong et al., 2017) 

13. River Density (rivDens) – C, Num, [river-
pixels/m2], (Gayen et al., 2019) 

14. Distance from rivers (distRiver) – C, Num, [m], 
(Khosravi et al., 2019) 

15. Drainage Capacity of the soil (drain) – G, Ord 
16. Flood susceptibility (floodSusc) – G, Ord 
17. Erosion susceptibility (erosionSusc) – G, Ord 
18. Seismic susceptibility (earthquakes) – C, Num, 

[magnitude] 
19. Landslide susceptibility (lsSusc) – G, Ord 
20. Distance from landslides (distLand) – C, Num, [m] 
21. Diffusive and Direct yearly Solar Radiation (difIns, 

dirIns) – C, Num, [kWh/m2], (Böhner and Antonić, 
2009) 

22. Wind Exposition (WE) – C, Num, [rad], (Böhner 
and Antonić, 2009; Rahmati et al., 2019b) 

23. Land Use (LU) – G, Cat 
24. Urban Areas (UA) – G, Bin 
25. Content of Sand, Silt, Clay, and Organic substances 

in the subsoil (sand, silt, clay, and org) – G, Num, 
[%] 

 
In order to solve the different semantic relationships between 
the data, we made use of the cell-based structure of the Raster 
format, which allows homogenizing the various sources. 
Indeed, the collected features were both Shapefiles (Point, 
Polyline, and Polygon information) and Rasters. All the 
resulting input were sampled with the same resolution (10 
meters x 10 meters), thus being able to stack the input 
information and proceed with the definition of the database. 
The size of the Rasters is 1100 cells x 1200 cells. 
 
Point-based Shapefiles (Rain gauges and Earthquakes 
localization): they have been transformed into Raster through 
the use of geospatial tools: occurred earthquakes (their 
magnitude), and rainfall (cumulative yearly rainfall) caught by 
rain gauges have been interpolated by spherical ordinary 
kriging (Xie et al., 2017) to generate the Seismic susceptibility 
and Cumulative Average Yearly Rainfall maps, respectively. 
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Polyline-based Shapefiles (river graph): river graph has been 
transformed into a Raster by measuring the Euclidean distance 
from the rivers. It has also been computed the River Density, 
converting the river graph into pixels (obtaining river- and 
non-river-pixels), and then calculating the density of river-
pixels/km^2. 
 
Polygon-based Shapefiles (landslide localization, drain, 
floodSusc, erosionSusc, lsSusc, LU, UA, sand, silt, clay, org): 
landslide map has been transformed into a Raster by 
measuring the Euclidean distance from the landslides. Flood 
susceptibility, erosion susceptibility, drainage capacity of the 
soil, landslide susceptibility, and Land Use map were 
converted into Raster preserving their ordinal or categorical 
values. Urban areas map was converted into a binary Raster: 
each cell has to be 0 (absence of urban area) or 1 (presence of 
urban area). Shapefiles related to the composition of the 
subsoil were converted into Raster, preserving their numerical 
values. 
 
Raster-based files (Elev, aspect, slope, curv, conI, SL, TPI, 
VTR, TRI, TWI, SPI, difIns, dirIns, WE): Elevation has been 
collected as a Raster with a resolution of 10m x 10m. The 
other input factors that derive directly from the Elevation are 
all Rasters with the same cell resolution. 
 
4.4 RT output: Average Velocity Estimation 

As regards the interferometric process, we used an outcome 
provided by TRE Altamira (https://site.tre-altamira.com) and 
available for free on https://geoportale.lamma.rete.toscana.it. 
They used a stack of co-registered Sentinel-1 ascending orbit 
acquisitions that cover a period from 12/12/2014 to 
24/08/2019. The stack is composed of 210 images. An amount 
of 52257 PS (about 400 PS/km2) with a coherence greater than 
0.9 were selected for developing the model. 
In order to develop the mode, an interpolated surface of PS 
average velocity is required since PS-InSAR provides a 
discrete point-sampling outcome, and PS are not distributed 
onto all cells of the input factors. Therefore, an Inverse 
Distance Weighting (IDW) procedure has been applied 
(Bianchini et al., 2015; Peduto et al., 2015) for computing this 
interpolated map. The IDW technique is based on the principle 
that neighboring elements have a more significant correlation 
than distant ones. Consequently, IDW predicts a measurement 
for each cell in which there are no PS by exploiting those 
present, assuming that each measured point has a radial 
influence that decreases with distance. 
 

5. RESULTS AND DISCUSSION 

5.1 Regression Tree Hyperparameters 

Once the RT has been trained, the final Hyperparameters can 
be reported. They are described below: 
 
Final Hyperparameters: 

1. Maximum number of Splits: 384283 
2. Minimum of Leaf Size: 6 
3. Minimum of Parent Size: 12 

 
The number of nodes of the RT is 12865, and the hierarchical 
levels are 5675. The computational time required for training 
the model has been 5760 seconds. 
 
5.2 Surface Motion Prediction 

In order to realize the predicted map of the surface motion, we 
applied the trained RT onto the whole study area. Figure 2 

shows both the map of the observed surface motions and the 
predicted one, which is the outcome of the RT. It is worth to 
remind that the observed map has been obtained after an IDW 
procedure. 
 

    

 
(a) 

    

 
(b) 

Figure 2. Surface Motion, (a) Observation, (b) Prediction 
  
Qualitatively speaking, the two maps seem to be very similar 
in the whole study area, both in the shapes and in the 
magnitude of subsidence effects. 
 
5.3 Goodness-of-Fit and Predictive Performances 

Table 1 shows RT performance metrics both for the training 
and testing phase. 
 

Parameter Training phase Testing phase 
R2 0.9972 0.9958 

RMSE 0.1336 0.1632 
MAE 0.0841 0.0926 

Table 1. Evaluation metrics for training and testing phases 
 
The training and testing metrics show similar performance in 
both phases. This fact should ensure that the modeling has 
been carried out correctly. Indeed, a strong decrease in 
performance from the training phase to the testing one could 
have revealed a potential overfitting issue. 
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5.4 Residual Map 

By taking advantage of the spatial nature of the input and 
output factors, it is possible to analyze the residual errors from 
a spatial point of view. The residual error is defined as the 
difference between the prediction of the model (Fig. 2 - b) and 
the observation (Fig 2 - a). The residual spatial distribution 
(Figure 3) can be useful to observe if, where, and how much 
the model overestimates or underestimates an observation. 
 

   

 
Figure 3. Residual map [mm/year] 

 
Qualitatively, observing Figure 3, most of the area is affected 
by residues whose value is around zero. The error peaks are 
due to the more urbanized areas, where there are a 
considerable number of PS. In these areas, the model is unable 
to predict the slightest difference between PS measurements. 
Moreover, from a quantitative point of view, the residual 
frequency distributions have been computed, both for the 
training and testing phase. The resulting distributions were 
Gaussian, with a mean equal to 2.3108e-5 (Training) and 
2.4410e-4 (Testing), respectively. The standard deviations are 
equal to the RMSE parameters showed before. 
 
5.5 Two-lane Rural Road Application 

A stretch of a regional two-lane rural road that crosses the 
study area was chosen as a test site for the application of the 
model. Once the predicted map has been defined (Figure 2 – 
b), and under the assumption that road damages are related to 
surface motion estimations, road instabilities can be detected 
overlaying the predicted map and the road graph. Figure 4 
shows the road condition, where “condition” has to be 
intended as road average yearly displacement. 
 

 
Figure 4. Road average yearly displacement 

It can be noticed that most predicted road displacements are 
occurring at a roundabout intersection (red circle), at the end 
of the analyzed road segment. Trough Google Street View 
(https://www.google.com/maps), we observed the past (2012) 
and present (2019) condition of the pavement surface of the 
roundabout (Figure 5). 
 

 
(a) 

 
(b) 

Figure 5. Roundabout condition, (a) in 2012, (b) in 2019 
 
Figure 5 demonstrates that subsidence effects influenced 
roundabout conditions during this period. The pavement was 
in excellent condition in 2012, while a significant failure of 
the edge of the roundabout is currently underway.  
 
5.6 Predictor Importance 

As said, RT allows evaluating the importance of the predictors 
used in the modeling process. The importance related to a split 
of each node due to a specific factor is computed as the 
difference between MSE for the parent node and the total 
MSE for the two child nodes. Therefore, Predictor Importance 
(PI) is evaluated by computing all the increases in MSE due to 
splits for each predictor and dividing the sum by the number 
of branch nodes. The higher is the increase in MSE, and the 
higher is the importance of the factor considered. Figure 6 
shows the standardized PI of the RT. 
 

 
Figure 6. Predictor Importance 

 
Figure 6 demonstrates how much subsidence is related to the 
various input factors. Nonetheless, it should be noted that the 
term “Importance” is related to the splitting process of the RT. 
If a factor is used early to split a node compared to another 
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one, it gains more importance, even if it is not strongly related 
to the dependent variable. Therefore, Figure 6 has to be 
analyzed carefully and qualitatively. However, it seems that 
subsidence is more affected by hydrological factors than the 
other ones, considering that Cumulative Average Yearly 
Rainfall, distance from rivers, river density, and land use (that 
is associated with the overexploitation of water by nurseries) 
fall in the top zone of the ranking. The most important factor 
is the distance from landslides. Also, elevation and wind 
effects have significant importance. Concerning the 
composition of the subsoil, it seems that the percentage of 
organic substances occupies the dominant position. 
 
5.7 Use of the Procedure by Road Authorities 

Once the model has been tested and the reliability of the 
output is verified, it can be employed by Road Authorities on 
new data in different ways. Principally, it is possible to predict 
the subsidence rate in areas where there is not enough PS data. 
Being able to produce a comprehensive mapping of the 
subsidence rate is essential for drawing up a list of on-site 
inspections and planning priority road maintenance 
interventions. Furthermore, once the factors affecting the 
subsidence phenomenon have been determined, it is possible 
to design road maintenance interventions aimed at solving 
specific issues related to those conditioning factors. 
 

6. CONCLUSION 

Through the combination of SAR-based monitoring devices 
and ML techniques, we suggested a procedure for providing a 
road maintenance strategy that accounting for exogenous 
events of the infrastructure, such as subsidence effects. 
Qualitatively and quantitatively speaking, the research has 
shown that Regression Tree-based models can be considered a 
satisfactory tool for the prediction of PS-InSAR-based surface 
motion estimations. The outcomes of the model enable 
practitioners to assess infrastructural deficiencies by knowing 
the hydrological, geomorphometric, geomorphological, and 
social characteristics of the surrounding environment. 
Moreover, Tree-based models provide an estimation of the 
importance of predictor input factors. In the framework of this 
paper, the hydrological factors seem to be the most significant 
ones connected with subsidence effects.  
Further studies could be proposed for developing other types 
of Machine Learning models, making a comparison between 
them, and determining the most suitable one for this purpose. 
Also, the field of feature engineering and feature selection 
could be investigated to define a set of input factors in which 
the features are not correlated between each other or 
redundant. We can wrap up this study by asserting that the use 
of advanced network-scale monitoring devices in combination 
with a Machine Learning approach seems to be a promising 
work methodology for the improvement of processes on 
planning road maintenance by National Road Authorities. 
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