
3D CITY MODELS FOR URBAN MINING: POINT CLOUD BASED SEMANTIC
ENRICHMENT FOR SPECTRAL VARIATION IDENTIFICATION IN HYPERSPECTRAL

IMAGERY

P.A. Ruben 1∗, R. Sileryte2, G. Agugiaro3

1 Msc. Geomatics for the Built Environment, Delft University of Technology, The Netherlands - pablo.ruben.private@gmail.com
2 Department of Urbanism, Delft University of Technology, The Netherlands - r.sileryte@tudelft.nl

3 3D Geoinformation, Delft University of Technology, The Netherlands - g.agugiaro@tudelft.nl

Commission IV, WG 10

KEY WORDS: Semantic 3D city models, Enrichment, CityGML, Point cloud, Urban mining

ABSTRACT:

Urban mining aims at reusing building materials enclosed in our cities. Therefore, it requires accurate information on the availability
of these materials for each separate building. While recent publications have demonstrated that such information can be obtained
using machine learning and data fusion techniques applied to hyperspectral imagery, challenges still persist. One of these is the
so-called ’salt-and-pepper noise’, i.e. the oversensitivity to the presence of several materials within one pixel (e.g. chimneys,
roof windows). For the specific case of identifying roof materials, this research demonstrates the potential of 3D city models to
identify and filter out such unreliable pixels beforehand. As, from a geometrical point of view, most available 3D city models
are too generalized for this purpose (e.g. in CityGML Level of Detail 2), semantic enrichment using a point cloud is proposed to
compensate missing details. So-called deviations are mapped onto a 3D building model by comparing it with a point cloud. Seeded
region growing approach based on distance and orientation features is used for the comparison. Further, the results of a validation
carried out for parts of Rotterdam and resulting in KHAT values as high as 0.7 are discussed.

1. INTRODUCTION

Recent circular economy initiatives, such as urban mining (i.e.
the reuse of building materials) create a strong need for inform-
ation about the materials currently composing the built envir-
onment. In 2008 for instance, no less than 47% of the United
Kingdom’s CO2 emissions resulted from the building sector.
Among these, 83% are related to the usage and 15% to the con-
struction (BIS, 2010). Therefore, not only the construction of
new buildings but also the retrofitting of existing ones create
a need for more sustainable approaches. One of these is the
sourcing of materials already enclosed in the cities and thus re-
leased relatively close-by at the end of their life cycle (Baccini,
Brunner, 2012). A critical question is how to find information
on the presence and quantity of such materials. While new
buildings increasingly start using material passports or Build-
ing Information Models (BIM) to keep a record of such inform-
ation, huge stocks of materials are already available in older
constructions without being (digitally) documented.

One building element of special attention is the roof as it re-
quires regular maintenance and refurbishment, approximately
every 10-25 years. Developments in the field of material sci-
ence make reuse and recycling of used roof material possible
at a local scale. Bituminous roofs can, for example, be mixed
into new road pavements (Townsend et al., 2007). To allow ef-
ficient processes, thematic data at object (e.g. building) level is
however required for two reasons. On the one hand, sourcing
becomes much easier as a mere works notification is sufficient
to know when a material is removed, avoiding the effort of on-
site inspection. On the other hand, the (positive or negative)
impact of circular approaches often depends on the exact geo-
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graphic distribution (Patouillard et al., 2018). In fact, materials
still have to be moved and the exact impact assessment requires
a sufficient level of detail. Ideally, demolition and renovation
activities should be coordinated to intentionally limit such mov-
ings.

While statistical disaggregation methods exist, they are not ac-
curate enough at the object level. To accurately identify roof-
ing materials, this paper builds upon research done in the field
of (mainly hyperspectral) aerial imagery techniques. The avail-
able technology which allows for identification of materials at a
pixel level, however, suffers from ’salt-and-pepper’ noise (also
referred to as ’salt-and-pepper’ effect) caused by a mix of ma-
terials within a single pixel, e.g. caused by the presence of sky-
lights, solar batteries or chimneys (Zhong et al., 2014, Priem,
Canters, 2016). To overcome this effect, this paper proposes a
priori identification of such pixels using a 3D city model which
was previously enriched by means of a point cloud. This enrich-
ment is required because in currently available 3D city models
details such as chimneys are often left out.

The key idea described in this paper is to map geometrical ‘de-
viations’ by comparing a 3D city model with a point cloud. By
identifying points, 2D geometries representing the ’deviations’
are obtained and fused with the hyperspectral raster image geo-
metry (see figure 1).

After introducing the method itself, the results of a case study
based on the 3D city model of Rotterdam (The Netherlands) are
presented. The city model was provided by the municipality
(Gemeente Rotterdam, 2016) and the point cloud used is the
third version of the Dutch national AHN point cloud dataset
(PDOK, 2016).
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Figure 1. Framework of the research method in this paper (‘clean’ pixels are pixels containing a single material)

1.1 Usage of hyperspectral imagery for surface material
identification

A methodology that has already proven effective to gather roof
cover material data (and, more generally, surface cover mater-
ials) is classification applied to hyperspectral imagery. Several
studies have demonstrated that reliable classification of differ-
ent surface cover materials is possible (Heiden et al., 2007, De-
marchi et al., 2014). While most studies were conducted at
pixel level, successful application of this classification at build-
ing (polygon) level was demonstrated as well. By applying sup-
port vector classification on APEX (airborne prism experiment)
imagery of Brussels, overall kappa values as high as 0.87 were
obtained for the identification of selected surface cover materi-
als (Priem, Canters, 2016).

As mentioned before, a challenge for the correct material classi-
fication are spectral deviations, also known as ‘salt-and-pepper
noise’: classifiers are oversensitive to spectral variations that
occur within a pixel, even when these are in the minority. Previ-
ous work at polygon level addresses this by applying a majority
filter (Priem, Canters, 2016). However, such a majority filter
can only be applied after the classification and requires pixels
with spectral variation (and thus not the material covering the
majority of the pixel) as classification result to be in a minority
- which is not always the case as seen in the figure 2).

1.2 3D city models as an alternative to majority filter cor-
rection

As the majority filter might fail when a majority of pixels con-
tain spectral variations (e.g. hangars with large roof windows
– see figure 2), a pre-classification filter to identify these might
be more suited. As this type of noise is not truly randomly dis-
tributed, 3D city models that are nowadays available for many
cities can be used as input for such a filter, provided that they
contain sufficient details. Within the CityGML standard, the re-
quired level of detail (LoD) is equivalent to LoD3. At the time
of writing, however, LoD2 is the most widespread as the pro-
duction of LoD3 city objects still involves a lot of manual (and
thus expensive) work.

Figure 2. While the majority filter might work for the building
on the top (among the pixels contained in the red polygon, only
two are containing spectral variations - in this case chimneys), it
is rather unlikely to work in situations with a high share of pixels

containing spectral variations such as on the bottom (green:
‘clean’ pixels containing a single material, light green: ‘clean’

pixels located in shadow and thus only usable separately). Pixel
size: 4*4 m; Background imagery: c©google earth/digitalglobe

2018

1.3 Related work

No previous work concerning the enrichment of 3D city models
using point clouds was identified when redacting this paper. For
inspiration, it was therefore decided to broaden the literature
review and include some related topics.

A related approach is the integration of a Multi-View Stereo
Mesh Model (MVSM) with an existing 3D city model which
has been developed to improve solar potential analysis (Willen-
borg et al., 2018). For each roof surface, using both Euclidean
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Figure 3. Overview of the method used for semantic enrichment of a 3D city model by using a point cloud

distance and angle orientation calculations, a set of candidate
mesh faces is established, segmented and expanded. This work
builds upon an earlier master thesis which investigated more
use cases (Tryfona, 2017). These include semantic segmenta-
tion, attributes transfer and mesh straightening/simplification.

Several authors established taxonomies for feature recognition
in point clouds (Nguyen, Le, 2013, Vosselman et al., 2004,
Wang, Shan, 2009). By providing a structured overview, these
publications allow the comparison of different approaches and
selection of the current one (attribute- and region-based). Edge-
based approach was considered too, but several limitations were
identified (see part 2.3). Moreover, discussions of challenges
such as the presence of crease, jump and smooth edges (Nurun-
nabi et al., 2012) also contributed to exploratory research.
Eventually, the study of the mentioned references led to the ap-
proach shown in figures 1 and 3.

2. SEMANTIC ENRICHMENT OF A 3D CITY MODEL
USING A POINT CLOUD

The deviation identification is based on a seeded region growing
(performed on the relevant portion of the point cloud represent-
ing the building footprint) and occurs in several steps (figures 1
and 3). First, a selection based on vertical distance between the
3D city model and the point is performed and an orientation-
based region growing is applied. As the latter calculation is
more computation-intensive than a simple distance calculation,
performing it for a limited set of points allows to considerably
reduce computation time. Then, identified ‘deviations’ are con-
verted into a 2D geometry and merged with the hyperspectral
imagery data. By doing so, pixels containing spectral variations
can be filtered out before classification.

2.1 Seed selection by vertical distance measuring

The first step consists in creating point cloud subsets. First, a
bounding box is created for each building and a subset is formed
with all points containing it (only the horizontal, not the ver-
tical dimension is considered). Second, a region of interest is
created for each roof surface (spanning from -1 to +20 m vertic-
ally from the roof surface, see figure 4). This one defines a sub-
subset which relates to the respective roof surfaces. For each
point within this sub-subset, the vertical distance to the roof is
calculated. In all cases whenever a user-predefined threshold
distance is exceeded, the points are labelled as distance devi-
ations.

Figure 4. Illustration of the region of interest for a given roof
surface

2.2 PCA-based region growing

Figure 5. Illustration of the seed selection and region growing
algorithm on a building with half-cylindrical roof windows that
were absent in the 3D model. Settings used: distance threshold

20 cm and angular threshold 5.73◦.

The identified seeds are then used as an input for the region
growing. For each k-nearest (first level) neighbour of the seeds,
the k-nearest (second level) neighbours are selected and an ori-
entation test is performed. This one consists in a principal com-
ponents analysis (PCA) to calculate the respective normal vec-
tor. Using the dot product, the deviation regarding the roof ori-
entation is calculated. If the deviation angle is bigger than a
user-predefined angular threshold, the point is added to the re-
gion, otherwise, the point is rejected. As illustrated in figure 5,
the growing operation stops once the region is surrounded by
rejected points and can thus not be expanded anymore.
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2.3 Point to plane transformation using Voronoi diagrams

In the previous step, deviation regions are defined as a group of
points, not as surfaces. To account for variations in point dens-
ity, a conversion to a 2D shape is required. After considering
concave hull, convex hull, boundary extraction (see below for
identified limitations) and Voronoi diagram approaches, the lat-
ter was selected for its ability to adapt to the local context. It
also offers the advantages to work without user settings and to
support regions of any size (starting from a single point), vari-
ations in point density and shapes containing holes. A drawback
is that the Voronoi diagram of all points (including ones not la-
belled as ‘deviations’) needs to be generated which, in terms
of computation, makes it heavier than other approaches. Addi-
tionally, the cases of cells being infinite or going outside of the
original roof geometry needs to be taken into account (see fig-
ure 6). In the end, the cells containing a deviation point are then
extracted and adjacent cells are merged into a single geometry
(per deviation region).

Figure 6. By building the Voronoi diagram, the translation of
points marked as ‘deviations’ (red) into a 2D shape becomes
possible. As some Voronoi cells might go beyond the roof
surface or even be infinite, cropping with the roof surface

geometry (in blue) is necessary

It should be noted that the identification of pixels containing
a mapped ‘deviation’ might also be done by directly checking
whether the pixel contains points labelled as deviations or not.
However, the approximation of the area occupied by deviations
would be rougher. Moreover, the usage of the Voronoi diagrams
allows points close to the border of a pixel to appear as devi-
ations in the neighbouring pixel(s), too.

Another approach that was explored is the boundary extraction
by the usage of a minimum spanning tree (Wang, Shan, 2009).
Using a convex-hull test on local neighbourhoods, border points
are first identified and then used to build a graph based on
k-nearest neighbourhood. Ultimately, the minimum spanning
tree of this graph is generated and used as a border representa-
tion. As can be seen in figure 7, this approach does, however,
have difficulties in identifying some critical border points. Fur-
thermore, it appears to be challenging to use this approach for
shapes with a width of a limited number of points only.

2.4 Identification of mixed pixels in aerial imagery

Once the ‘deviations’ are available as 2D geometries, the fu-
sion with the pixels of hyperspectral aerial imagery is finally
performed. To estimate the degree of deviations of the pixels
contained in a roof surface, several steps involving the orthorec-
tified pixel centre points must be followed. To avoid the appear-
ance of interpolation artefacts, geometry correction is preferred

1unless stated otherwise, all background imagery: c©PDOK
landsdekkende luchtfoto’s 2016-2018

Figure 7. The identified border points (in green on the top
image) of the deviation regions (in red) do not always include all

critical corner points. Also, shapes with a width of only a few
points (such as roof edges) result in border points positioned in a
way that leads to the minimum spanning tree confusing opposed
edges (bottom image). Please note: connecting the start and end

of the minimum spanning tree was not performed within the
feasibility study. 1

Figure 8. Using the orthorectified center points of a pixel and of
its neighbours, a hexagon is defined. The points defining this

one are subsequently orthocorrected

to raster resampling. In practice, this means that each pixel is
transformed into a hexagon, each vertex being defined with re-
gard to the centre points of the neighbouring pixels (see figure
8). The vertices of the hexagon are then orthocorrected and
the intersection with the 2D ‘deviation’ geometry is computed.
Using the total area of the hexagon, the area percentage of ‘de-
viations’ within a pixel is calculated. Based on this percentage
and depending on the sensitivity of the classification algorithm
subsequently used, the usability of a pixel to determine its sur-
face material can be determined.

3. CASE STUDY: 3D CITY MODEL OF ROTTERDAM

An area located in the south of Rotterdam was selected as a
case study due to its diversity in terms of built environments, i.e
in terms of neighbourhood functions, building shapes and roof
materials. Within this study area, 41 buildings with roofs con-
taining 831 pixels were selected as a representative set in terms
of surface, function, height and visible quantity of deviations.
While diversity strengthens the validity of results, a limitation
must also be noted: big buildings (from about 6000 m2 on) had
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to be excluded due to the high number of pixels contained in
the roof surfaces which would have represented more than 10%
of the total number of pixels. This was necessary to ensure reli-
ability as results might otherwise become too dependent on the
characteristics of a specific big building.

Figure 9. Illustration showing the buildings south of the Maas
river in Rotterdam selected for the validation set.

As input, the 3D city model produced by the municipality of
Rotterdam (Gemeente Rotterdam, 2016) was used together with
the AHN3, the third national Dutch point cloud dataset (PDOK,
2016), which are both produced based on aerial LiDAR acquis-
itions and available as open data. The AHN3 dataset is avail-
able as a set of tiles containing points already classified in five
classes. For this work, the point cloud used was limited to the
class ‘buildings’. It is worth mentioning that the point cloud
used for the production of the 3D city model was obtained
during a flight campaign separate from the AHN3, as a much
higher density was required, i.e. approximately 30 points/m2

vs. 8 points/m2 for the AHN3 in the study area.

Additionally, a hyperspectral imagery dataset was used for the
pixel geometries. It results from a flight carried out within the
APEX on 17 September 2014. The GSD (ground sampling dis-
tance) is 3.5-3.8 m and data were obtained already orthorecti-
fied. Orthocorrection as mentioned in part 2.4 was performed
using a trigonometric equation and potential errors were estim-
ated.

The ‘ground truth’ was obtained by visual evaluation of very-
high-resolution (≤ 25 cm) aerial images (see figure 10). The
yearly national acquisitions for the years 2016-2018 (PDOK,
2018) were used together with Google Earth imagery offering
higher contrast and acquired in 2015. Where possible, Google
Street View imagery from October 2016 was used, too.

In total, two performance indicators were selected for the val-
idation of the proposed method. First, the KHAT statistic (Con-
galton, 1991) was chosen as it allows to have a good idea of
the overall performance. Second, the commission error rate for
clean pixels (i.e. without spectral variations) was selected to
estimate the number of ‘failures’ which are likely to lead to
material identifications affected by the ‘salt and pepper effect’.

3.1 Variable selection

For both the distance threshold and angular threshold used in
the algorithm (see sections 2.1 and 2.2), settings were selec-
ted manually by visual analysis of results computed for a pilot

Figure 10. Example of a visualization obtained during the
validation. Mapped ‘deviations’ are shown in yellow and can be
overlaid with the (modified) pixels resulting from hyperspectral

imagery pixels and contained in the building roofprint (geometry
in blue). Settings used: distance threshold 20 cm and angular

threshold 2◦.

building. For each, a ‘strict’ and a ‘loose’ value were identified
(i.e. 20 cm and 40 cm for the distance threshold - see figure 11;
2◦and 5◦for the angular threshold - see figure 12). The idea
is to identify a representative performance spectrum despite the
limited time which allowed only a limited number of combin-
ations. The results presented in the next section are therefore
highly specific to the values chosen.

Figure 11. Regarding the distance threshold, at 20 cm, confusion
between ‘deviations’ and slightly sloped roofs that were

reconstructed as flat ones occurred (top, red spot on the left). On
the other hand, at 40 cm (bottom), such confusion did not appear

anymore but critical seeds of the most important ‘deviation’
objects were still identified (e.g. all missing windows have a

number of red points).

Other variables that had to be set manually are the k-nearest
neighbour settings used for the region growing and the plane
fitting. In both cases, a constant value of 10 was chosen. For
the region growing, this chosen parameter value is based on a
pilot test case shown in figure 5. It shows that the identified ‘de-
viation’ region is indeed surrounded by a layer with a thickness
of 3 or more rejected points. For the plane-fitting, the choice is
based on the pilot shown in figure 13.

3.2 Results

The sensibility analysis of the different setting combinations is
presented in table 1 and figure 14. In total, four setting com-
binations were used, resulting from the two pairs obtained in
the pilots of figure 11 (20 cm and 40 cm) and 12 (2◦and 5◦).
It was performed using nominal data (presence of spectral vari-
ations vs. identification of ‘deviations’) and a pixel as a unit
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Figure 12. Regarding the angular threshold, values of 1.13◦(top)
lead to a clear overestimation of ‘deviations’, while at 2.56
degrees (middle), the estimation seems to be rather correct.

Therefore, 2◦was selected as a ‘strict’ setting. At 5.73◦(bottom),
clear holes can be recognized inside geometries. Therefore,

5◦were selected as a ‘loose’ setting.

Figure 13. Results obtained using PCA on different k-nearest
neighbour settings. The points of which the normal vector

diverged more than 5◦from the roof are shown in red colour.
While between settings 5◦(left) and 10◦(middle) differences

exist (see zones inside black circles), they are minimal between
10◦(middle) and 15◦(right).

of measurement. Here the results for the KHAT statistic reach
from 0.57 (for the settings 20 cm & 5◦) to 0.70 (for 40 cm &
2◦). Overall, there is a difference of about 0.11 between the
KHAT statistics obtained for the 40 cm and the 20 cm settings.
Between 2◦and 5◦, this difference is only about 0.02. For the
commission error rate of the pixels without spectral variations,

Settings: distance = 20 cm; angle = 2◦

truth (spectral variations)

no yes
prediction no 186 23
(identified ’deviations’ ) yes 128 494

KHAT statistic 0.59
commission error rate ’no’ 0.11
Settings: distance = 20 cm; angle = 5◦

truth (spectral variations)

no yes
prediction no 212 63
(identified ’deviations’ ) yes 102 454

KHAT statistic 0.57
commission error rate ’no’ 0.23
Settings: distance = 40 cm; angle = 2◦

truth (spectral variations)

no yes
prediction no 247 48
(identified ’deviations’ ) yes 67 469

KHAT statistic 0.70
commission error rate ’no’ 0.16
Settings: distance = 40 cm; angle = 5◦

truth (spectral variations)

no yes
prediction no 282 100
(identified ’deviations’ ) yes 32 417

KHAT statistic 0.68
commission error rate ’no’ 0.26

Table 1. Error matrices (for the four setting combinations)
showing the results of the sensibility analysis using nominal data

and the cell as a unit of measurement

Figure 14. Comparison of selected performance indicators for
the four setting combinations

the opposite situation can be observed: the difference between
the 40 cm and 20 cm setting is only 0.03-0.05 while the one
between the 2◦and 5◦settings reaches 0.10-0.12. Results for
this performance indicator vary between 0.26 (for 40 cm & 2◦)
and 0.11 in the best case (for 20 cm & 2◦).
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4. FINDINGS & LIMITATIONS

Overall, the results suggest two optimisation approaches. In
fact, the results show that, depending on the final goal, the pri-
ority might either be given to the KHAT statistic or the com-
mission error rate of the pixels without spectral variations. The
lowest possible KHAT values are achieved by the looser set-
tings with 40 cm. This suggests that for accurate quantifica-
tion of materials rather loose thresholds should be used. On the
other hand, if the aim is merely to find the presence of materials,
false positives should be avoided. Here, the lowest commission
error rate of the pixels without spectral variations is achieved
by stricter settings of 20 cm & 2◦.

Another finding of this case study is that the GSD of the hy-
perspectral imagery used in the case study (3.5-3.8 m) can be
deemed acceptable for the purpose of urban mining. Very few
situations in which all pixels contained spectral variations oc-
curred.

Figure 15. Example of a building that was wrongly
reconstructed with a flat roof (top left), leading to the

identification of ‘deviations’ (middle and bottom). Settings used:
distance threshold 20 cm and angular threshold 5◦. Top right:
point cloud - blue: seed points selected based on distance and

red: points added during PCA-based region growing.

For the 3D city model, quality requirements are rather high as
wrongly reconstructed roofs lead to ‘deviations’ being detec-
ted where modelling quality is poor. While the vast majority of
buildings fulfilled this requirement, slightly sloped roofs recon-
structed as flat ones were encountered a few times in the case
study (see figure 15).

This work aimed to prove the validity of the approach in a diver-
sified built environment. If applying the method to a different
context, it is thus recommended to treat the results with care as
differences might exist. Furthermore, the results are specific to
the settings chosen for the tolerances. As this was done with
the aim of identifying a performance spectrum, more careful
optimization might eventually increase performance.

Additional limitations due to geometric reasons exist. First,
some chimneys and other small deviations might be missed due
to their size in relation to the point cloud density. In the case of
Rotterdam, assuming a point cloud of circa 8 evenly distributed
points/m2, and according to the well-known Nyquist-Shannon
theorem, this corresponds to a GSD of circa 35 cm. In other
words, the smallest detectable object has a planar length of ap-
proximately 70 cm (equivalent to an area of circa 0.5 m2). Fur-
ther limitations arise in case of objects which were occluded

during LiDAR acquisition. In addition, spectral variations of
which all points have a vertical distance below the threshold
cannot be identified. This can be the case for elements such as
flat-roof windows, solar panels or gutters.

5. DISCUSSIONS

An important factor of influence is the GSD of the hyperspec-
tral aerial imagery. As it increases, so does the number of (un-
usable) pixels containing spectral variations and the accuracy
of material quantification thus decreases. On the other hand,
detection of material presence only requires a limited number
of pixels without deviations – given that they can be reliably
identified. With the approach developed in this thesis, the ac-
ceptable GSD for material presence detection might thus in-
crease, lowering the number of acquisition flights and the data
processing required for a given area. When doubling the flight
altitude and keeping the same speed (but doubling the sensor’s
sampling time), the GSD and the mapped area (per unit of flight
time) are doubled, while the number of the pixels (for a given
area) is divided by four.

The geometric limitation to objects with a planar length of more
than 70 cm highlights the need for higher point cloud densities.
However, modern LiDAR sensors can already provide much
denser points clouds than the 8 points/m2 used here. This is also
the case with equivalent products from dense stereo matching.
A factor limiting the usability of the latter is the vertical accur-
acy which is generally lower than for LiDAR. In practice, this
would mean a higher vertical distance threshold, reducing the
deviations that can be reliably identified.

The final observation relates to the CityGML standard as it
does not currently support the storage of ‘deviations’. Work-
arounds were identified (e.g. using BuildingInstallation or Gen-
eric CityObject objects) but this is a rather “unorthodox” ap-
proach. A need for clearer guidelines concerning semantic en-
richment could be considered in the future versions of the stand-
ard. From a broader perspective, a similar observation can be
made for the storage of building materials which is not suppor-
ted either. While some initial work has been done, as within the
Energy Application Domain Extension (Agugiaro et al., 2018)
which covers material aspects, it is not fully suited for applica-
tions dealing with circular material use.

6. CONCLUSIONS AND FUTURE RESEARCH

This research has demonstrated the potential of a semantic-
ally enriched 3D city model to replace majority filters in situ-
ations with limited pixels containing a single material. The case
study and subsequent validation have shown the potential of
semantically enriching LoD2 city models using a point cloud
(method shown in figure 3). For the variable settings selected
for the validation, KHAT values as high as 0.70 were obtained
for distance-based seed selection followed by orientation-based
region growing. Results indicate that, depending on the final
goal, different settings should be used. For accurate quantific-
ation of materials, the lowest possible KHAT values - and thus
rather loose thresholds - should be used. If, however, the aim
is just to find the presence of materials, rather strict thresholds
should be used to avoid false positives as much as possible.

Future research should focus on the third dimension of ’devi-
ations’ (e.g. median vertical distance). This is required for dis-
crimination between shadowed and sunlit pixels, a step applied
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before hyperspectral imagery classification (Priem, Canters,
2016) and mentioned in figure 2. Moreover, means to identify
’deviations’ which are not geometric should also be researched.
An option would be to use the intensity of return - a parameter
typically included during LiDAR acquisitions.

Finally, beyond urban mining, other use cases exist for the en-
richment of 3D city models with roof “deviations”. The first
example is automated quality checks, to identify parts of the 3D
model that require improvements. As shown in 15, the quality
of 3D modelling is not always satisfying and the method might
be used to identify these cases. The second example is the im-
provement of solar potential calculation, similarly to related re-
search that was introduced earlier (Willenborg et al., 2018). By
adding missing elements such as chimneys or roof windows,
shapes and areas of usable surfaces can be determined more
precisely. As shadows are critical here too, additional motiva-
tion exists to include the third dimension of ‘deviations’.
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Willenborg, B., Pültz, M., Kolbe, T. H., 2018. Integration of
semantic 3D city models and 3D mesh modesl for accuracy im-
provements of solar potential analyses. International Archives
of the Photogrammetry, Remote Sensing & Spatial Information
Sciences.

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P.,
Donaubauer, A., Adolphi, T., Kolbe, T. H., 2018. 3DCityDB-
a 3D geodatabase solution for the management, analysis, and
visualization of semantic 3D city models based on CityGML.
Open Geospatial Data, Software and Standards, 3(1), 1–26.

Zhong, Z., Fan, B., Duan, J., Wang, L., Ding, K., Xiang,
S., Pan, C., 2014. Discriminant tensor spectral–spatial fea-
ture extraction for hyperspectral image classification. IEEE
Geoscience and Remote Sensing Letters, 12(5), 1028–1032.

APPENDIX

The work presented in this paper mainly results from a
Master thesis defended in July 2019. The detailed re-
port can be found at http://resolver.tudelft.nl/uuid:
0fd2ffec-f25a-4391-be68-e816cc2611dd. The imple-
mentation was performed in a python environment using sev-
eral libraries (scipy, numpy, shapely, laspy, psycopg2). For
the storage and querying of the city model itself, the 3D
City Database (Yao et al., 2018) for PostgreSQL/PostGIS
was used. Moreover, a repository with the implementa-
tion code is available at https://github.com/Flyalbatros/
3D-Models-in-Urban-Mining.
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