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ABSTRACT:

Data quality assessment of OpenStreetMap (OSM) data can be carried out by comparing them with a reference spatial data (e.g 
authoritative data). However, in case of a lack of reference data, the spatial accuracy is unknown. The aim of this work is therefore 
to propose a framework to infer relative spatial accuracy of OSM data by using machine learning methods. Our approach is based 
on the hypothesis that there is a relationship between extrinsic and intrinsic quality measures. Thus, starting from a multi-criteria 
data matching, the process seeks to establish a statistical relationship between measures of extrinsic quality of OSM (i.e. obtained 
by comparison with reference spatial data) and the measures of intrinsic quality of OSM (i.e. OSM features themselves) in order 
to estimate extrinsic quality on an unevaluated OSM dataset. The approach was applied on OSM buildings. On our dataset, 
the resulting regression model predicts the values on the extrinsic quality indicators with 30% less variance than an uninformed 
predictor.

1. INTRODUCTION

Spatial Data quality is necessary for researchers and practi-
tioner in Geographic Information Science (GIS) (Devillers et
al., 2007). The issues of quality impact all fields using geo-
graphic information such as safety operation, data integration.
Relying on poor quality can be misleading for decision making
process (e.g implantation of new commercial center or entail
positional error for building a dam). Thus, the assessment of
spatial accuracy becomes crucial and it is part of the quality
concept covering the entire process from acquisition to diffu-
sion of geographic information (Devillers et al., 2007).

Originally, the spatial quality was described as the conformity
of a product with some standards of spatial data quality using a
threshold acceptability. Thus, the accuracy of data refers to the
degree of closeness between the measurement of the quantity
and the accepted true value of that quantity. Spatial Data qual-
ity assessment is the process of comparing data to their accepted
true values, according to fixed specifications. International Or-
ganization for Standardization (ISO) metadata, defined the fol-
lowing quality measures: completeness, consistency, positional
accuracy, temporal accuracy, and thematic accuracy 1. When
information on the specifications is missing 2, a so called ref-
erence database is used to assess the quality of a dataset. In
all cases, spatial data quality is assessed by comparison and re-
quires both an external database and specifications. This type
of spatial quality evaluation is named extrinsic quality and uses
a methodology which involves all parameters mentioned by the
ISO as measures of extrinsic quality data.

∗Corresponding author
1http://www.isotc211.org/
2https://www.infostore.saiglobal.com/preview/is/en/

2013/i.s.eniso19157-2013.pdf?sku=1700851/

With the advent of crowdsourcing practice defined in Good-
child (2007), researchers have started to explore how these re-
sources from Volunteered Geographic Information (VGI) could
be enhanced to fit different scientific and societal needs. One
of the most successful VGI projects is OpenStreetMap (Neis
et al., 2013). A lot of research effort was put to evaluate the
quality of OSM data. For example, OSM data quality is evalu-
ated by comparing them to authoritative data (Girres and Touya,
2010), (Haklay, 2010). The work of Siebritz (2014) advised to
evaluate the conformity of the OSM data with the existing to-
pographic data of the Mapping National Agency (South Africa)
through a threshold of acceptability in order to retain only those
areas whose OSM data respect this threshold. These areas mark
new changes in the city and guide the planning of areas for the
collection of topographic data. There has been other essential
works on the evaluation of OSM data through the parameter
of positional accuracy, such as that of Goodchild and Hunter
(1997) and Girres and Touya (2010). For the evaluation of
the semantic accuracy, we note the work provided by Haklay
(2010), while among those who have studied the evaluation of
completeness, we refer to the work of several authors (Ather,
2009; Kounadi, 2009; Brando and Bucher, 2010; Fan et al.,
2014).

ISO standards mention some intrinsic indicators to express gen-
eral characteristics of the data such as purpose, usage, and lin-
eage. The purpose describes the intended usage of the dataset
while usage indicates in which application the dataset has been
utilized. The lineage describes the history of a dataset compil-
ation, acquisition and derivation to its form at the time of use
(Van Oort and Bregt, 2005). These intrinsic indicators are used
to assess the authoritative data.

However, the intrinsic indicators defined by the ISO cannot be
applied to OSM data because their mapping process is different
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from that of the authoritative data for these causes: lack of spe-
cifications, use of different tools for data capture and variety of
contributor’s profiles. Some intrinsic proxies, such as indicators
based on on contributor expertise and historic data, can help the
evaluation of data quality. In this case, there is a type of eval-
uation quality aiming to define what could be called intrinsic
quality (Antoniou and Skopeliti, 2015).

In the case of VGI, quality indicators may concern OSM
contributors, such as trust, reputation, experience, credibility,
local knowledge and reliability (Flanagin and Metzger, 2008),
(Van Exel et al., 2010). For example, reputation is assessed
by the history of past interactions between contributors (Sen-
aratne et al., 2017; Barron et al., 2014). Furthermore, know-
ing that the VGI are captured through a participatory processes
(Goodchild, 2007), research works explore the history of edits
to provide some way to evaluate data quality based on the his-
tory of contribution (Barron et al., 2014). Based on OSM data
history, Truong et al. (2019) proposed to classify contributors as
pioneers, moderators and truthful contributors by analyzing the
interactions between them, over time. In the work of Hashemi
and Abbaspour (2015), the authors employed a concept of sim-
ilarity in misrepresentations to detect topological incoherence
based on contributions history. Others research tried to assess
data quality based only on geometrical content in order to meas-
ure intrinsic qualities like topological consistency by detecting
thematic incoherence (using spatial context) or by analysing
geometrical consistency regarding the resolution of data (Touya
and Brando-Escobar, 2013).

Despite the above research, there are still concerns about issues
raised by the OSM data quality assessment. Senaratne et al.
(2017) indicate that these contributor indicators are most often
subjective and difficult to formalize. Morever, we add that it is
not easy to access historical data, given the variability of data
from one database to another. Besides, work based solely on
geometrical content is not yet sufficient because it detects errors
locally and it is hardly possible to provide a continuous and
quantitative measure of positional or geometrical accuracy.

In a context of lack of the reference data, Our overall objective
is to infer the quality of OSM data from intrinsic indicators.

To do this, our contribution is based on two research axis: the
matching of OSM data and the establishment of a multiple re-
gression model. First, data matching is the cornerstone of this
work because our approach is intended to be precise and robust
in terms of matching. Our knowledge model is based on The
Belief Theory. As defined in Olteanu-Raimond et al. (2015),
this method allows to take into account cases where knowledge
could be missing, uncertain or imprecise. This means that the
possibility of abstaining from matching is admitted. The data
matching based on Belief Theory, allows to merge knowledge
from several matching criteria to decide to choose the best ho-
mologous feature supported by all the matching criteria or to go
for a solution of undecided.

In this paper, we extend the method proposed in Olteanu-
Raimond et al. (2015) by modeling and defining criteria able to
measure the similarities between polygons. For matching poly-
gons, we propose to use geometric and position criteria. For the
geometric criteria, we consider the angular distance and the ra-
dial distance, while for the position criteria, we have chosen the
surface distance and the Hausdorff distance. These distances
are computed between a feature from a reference database and a
group of candidate features from the OpenStreetMap database.

At this stage of data matching, the added value of this work
compared to previous work such as in Olteanu-Raimond et al.
(2015), appears in two levels. Firstly, matching based on belief
theory has been tested for the first time on surface shaped data in
this work. Secondly, the definition of matching criteria and their
thresholds for establishing belief functions is also a novelty in
the work on Belief Theory matching.

Second one can conceive a method providing a prediction for
the extrinsic quality of data using machine learning. One ap-
proach is based on in depth learning methods that use several
layers to select certain descriptors in order to progressively re-
construct the output of the starting layer as similar as possible.
For example, Xu et al. (2017) used an auto-encoder network to
reconstruct the best form of a variable through anomaly detec-
tion on that variable. This method uses on the one hand OSM
and reference data, and on the other hand an input image to
detect the footprint of buildings. However our work aims at
providing an intrinsic estimator for the extrinsic quality by us-
ing only the current version of OSM and reference data. The
approach consists in finding a regression linking extrinsic qual-
ity indicators with intrinsic indicators. Our research assumption
is that intrinsic indicators characterizing geometric features al-
low the estimation of extrinsic indicators.

Ultimately, in order to reach the objectives mentioned above,
three different aspects are studied:

• define the extrinsic indicators by matching VGI data with
authoritative data;

• identify and define appropriate intrinsic indicators;

• define a robust method to estimate extrinsic indicators
from intrinsic data quality indicators.

Two statistical methods are tested: multiple standard regression
and lasso regression. The paper is structured as follows: sec-
tion 2 describes the proposed methodology. Section 3 details
the results while providing an analysis of these results and sug-
gesting potential improvements.

2. METHODOLOGY

2.1 Approach

Our approach is composed by four steps (see figure 1). The first
step consists in finding out a set of indicators which describe
the geometrical and positional accuracy from the scientific lit-
erature. After that, we implement a computation process to
define four distances between two features through each meas-
ure. Theses distances are considered as extrinsic indicators.

In a second step, we define a multi-criteria matching algorithm
which is able to define homologous features between OSM and
reference data.

Once the homologous features are identified, the third step con-
sists in defining intrinsic indicators based on properties which
reflect the quality of an feature. These are the indicators that
are supposed to correlate with the extrinsic indicators (extrinsic
quality).

The final step consists of applying statistical techniques to
identify statistical correlations between extrinsic indicators and
intrinsic indicators in order to predict a relative geometrical (e.g
shape) and positional accuracy for each feature.
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Figure 1: Steps of our proposed approach (left to right).

2.2 Choice of extrinsic indicators

With a view of selecting extrinsic indicators, it is specified that
our study focuses on buildings represented by surface features.
A surface feature is the flat surface formed by connecting the
points constituting the contour of a polygon.

According to Bel Hadj Ali (2001), quality control of a geo-
graphical feature should be based not only on the deviation of
its position from its counterpart in the ground truth or the ref-
erence dataset, but also on the deviation of its shape. Thus, in
order to be able to reflect the spatial quality of an OSM dataset
with respect to a reference database, we must establish meas-
urement indicators relating to the position and shape of a sur-
face feature. Therefore, we propose the surface distance and the
Hausdorff distance for measuring the deviation of position, and
the angular and the polygonal (or radial) distances for measur-
ing the shape deviations.

The surface distance is the ratio of the area of the symmetric
difference of the two features and the area of their union. If the
two features are completely disjointed, their surface distance is
thus 1. If there is a perfect equality between the two features, it
is equal to 0.

The Hausdorff distance is between the two full surfacic entities
and not only the polylines (Bel Hadj Ali, 2001).

In the work of Bel Hadj Ali (2001), the angular function
is defined on any vertex of the polygon, as being the angle
between the tangent on this vertex and the curvilinear abscissa
normalized by the perimeter of the polygon. The angular
function is expressed in radian on curvilinear abscissa values
between 0 and 1, which gives the appearance of a piecewise
continuous function on the edges. An angular function is in-
variant by translation, rotation and homothethy but depends on
the point of origin. An angular distance between two polygons
is the integral of the differences of their two angular functions.

The radial distance between two polygons is the integral of the
differences of their two polygonal functions or signatures. The
latter is defined as a function measuring for any vertex of the
polygon, the Euclidean distance from that vertex to the center of
mass of the polygon for a curvilinear abscissa value normalized
to the perimeter of the polygon. A radial function is invariant
by translation and rotation but depends on the point of origin
(Bel Hadj Ali, 2001).

To overcome the problem of the origin point (i.e. the phase
shift between two radial/angular functions for the same poly-
gon), the shift that minimizes angular (or radial) distance is
chosen. The resulting angular (respectively radial) distance is
invariant (geometrically) to a similarity (respectively to a rigid
transformation).

For the calculation of the radial signature, significant errors can
be made if the calculation is made only at the vertices of a
polygon, implying that it is necessary to over-sample in order
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Figure 2: Angular distance computation: input buildings (left),
raw signatures (center) and registered signatures (right). On this

example, the optimal rotation is ∆θ = 25◦ and da = 27◦.
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Figure 3: Radial distance computation: raw signatures (left) and
registered signatures (right). On this example, the optimal shift

is 15 % and dr = 0.78 m.

to obtain an accurate representation. Ali and Vauglin (2000)
proposes to sample at least twice the number of vertices of the
polygon. Thus, we have sampled all OSM and reference poly-
gons using 100 points to give the same resolution for all poly-
gons and a high fidelity of representation of signatures. The
examples below (see figures 2 and 3) illustrate the computation
distances (angular and radial) distances.

2.3 Multi-criteria data matching

For each feature from the reference dataset we are looking from
candidates into OSM dataset. Then, each couple (featureRef,
candidateOSM) is compared by using different criteria. The
multi-criteria data matching approach consists in defining dif-
ferent matching criteria. For each matching criterion, three
belief functions are defined for each of the three hypotheses,
namely the hypothesis candidate is the homologous feature
(appCi), the hypothesis candidate is not the homologous fea-
ture (−appCi) and the ignorance hypothesis I don’t know if the
candidate is the homologous feature (Θ). This expresses well
the belief that we grant a candidate through these hypotheses
and is materialized by what is called a mass of belief.

The definition of belief functions is used to configure the data
matching algorithm in such a way as to make it converge to-
wards the most plausible or credible decision by minimizing
the conflicts that occur when two criteria support two distinct
candidates in the same way. Thus, in order to define thresholds
for the establishment of belief function, we had to conduct an
empirical study by observing the distribution of values of the
matching criteria.

At first sight, we observe a great similarity of the values on
the geometric criteria of the candidate features. For example,
for small values on angular (respectively radial) distance, sev-
eral candidates can be supported by the hypothesis that each of
the candidates is the homologous feature. This would lead to
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the appearance of strong conflicts. To reduce the conflict, the
result of the geometric criteria must be corroborated with the
values taken from the position indicators. This leads us to as-
sign a rather strong mass of belief to the ignorance hypothesis
of doubt about these geometric criteria and to leave to the po-
sition criteria the choice of deciding among the candidates, the
one that seems the most probable.

Furthermore, when the values on the angular distance (respect-
ively radial distance) are high enough, we doubt that the can-
didate is the homologous feature. This still favors the ignorance
hypothesis and weakly the hypothesis of non-matching on the
geometrical criteria.

This phase of modeling the knowledge and defining the
thresholds is named the initialization of belief masses. For each
indicator, we define a matching criterion. Figure 4 illustrates
the belief functions for the matching criteria based on angular
(top) and Hausdorff (bottom) distances. Note that the matching
criterion based on the radial distance (respectively surface dis-
tance ) follows similar belief functions as angular distance (re-
spectively Hausdorff distance) except the thresholds which are
slightly different (see Table 1). The sum of the belief masses
bust be equal to 1. The following table summarizes the set of
thresholds involved in the equations of the belief functions.

Figure 4: Belief function: masses of belief for each hypothesis
(appCi, ¬appCi, and Θ), for angular distance da (top) and

Hausdorff distance dh (bottom) by their thresholds (T1 and T2)
and their parameter values (Ea, Ka,Sa for da, and Eh and

Kh,Sh,Rh for dh)

settings T1 T2 E K S

da 0.25 −− 0.01 0.1− T1 0.9
dr 0.7 −− 0.01 0.1− T1 0.9
dh 1.72 11.42 0.01 1− E − S 0.6
ds 0.5 0.6 0.01 1− E − S 0.6

Table 1: Settings of belief functions of angular distance(da),
radial distance (dr), haussdorf distance (dh) and surface

distance (ds) as the criteria of the data matching

2.4 Intrinsic indicators

Once the data matching has been carried out, we proceed to
define intrinsic indicators that could be correlated to geometric
and positional accuracy. The objective is to define intrinsic in-
dicators for polygons that can succeed in indicating the quality
of the capturing of geographical features. This requires ana-
lyzing the source of error in the data, then formalizing intrinsic

indicators as precursors of a possible geometric and positional
error.

Thus, Batton-Hubert et al. (2019) identified three most common
sources of imperfection in VGI: measuring instruments, a lack
of experience and knowledge of the data, or an act of vandalism.
These imperfections affect positional and geometric accuracy.
Without explicitly characterizing these imperfections, we take
them into account to define following intrinsic indicators:

• rectangular (rec): this indicator measures the proximity
of a polygon to its smallest surrounding rectangle (SSR),
and it is computed as the ratio of the area of the polygon to
the area of the SSR. The indicator takes the value 1 when
the area of the polygon is perfectly equal to that of the SSR
and tends towards 0 when it is too small to that of the SSR.
This tells us about a rectangular shape of a building.

• mean-lengths (lme): this indicator is defined as the aver-
age length of sides of building.

• max-lengths (lmx): this indicator measures how many
times the length of the longest segment of the polygon is
longer than the average length of the segments of the poly-
gon. It is calculated as the ratio of the length of the longest
segment of the polygon to the average length of the seg-
ments of the polygon. It takes values are greater than or
equal to 1. This may indicate a possible input error on a
given segment.

• min-lengths (lmn): this indicator measures how many
times the shortest segment of the polygon is shorter than
the average length of the segments of the polygon. It is
calculated as the ratio of the length of the shortest segment
of the polygon to the average length of the segments of the
polygon. It takes values less than or equal to 1.

• outlier (out): this indicator measures the degree of dis-
tance of a summit from the others to consider it as an ab-
errant point. For each vertex, an average distance is calcu-
lated which separates it from the other vertices. The vertex
with the greatest average distance is selected. This value
will be divided by the average length of the segments of
the polygon. The value is greater than 1, the more it is
suspected that the vertex in question is an outlier.

• compacity (cpc): this indicator measures the compactness
of the polygon according to the principle that the circle is
the figure whose area is maximal for a given perimeter. It
is the ratio between the area of the polygon under study
and the area of the circle having the same perimeter as the
polygon. The values range from 0 to 1, so that a value
close to 0 (low compactness) reflects an extended shape,
and a value close to 1 (high compactness) reflects a com-
pact or circular shape.

• convexity (cvx): this indicator measures the degree to
which the shape of the polygon resembles a cubic shape
rather than a hollow or bumpy shape. It is the quotient
of the surface area of the polygon by its convex envelope.
The values range from 0 (slightly convex) to 1 (perfectly
convex).

• elongation (elg): this indicator measures the degree to
which the shape of the polygon resembles a square. It
is the ratio of width to length of the smallest surrounding
rectangle (SSR). It tends towards 1 when the shape tends
to be square.
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• q-reconstruct (qrc): this indicator measures the quality of
the reconstruction of the polygon using some of the ver-
tices of the polygon. A reconstruction threshold of 80% of
the polygon shape is set and the proportion of the number
of vertices that reconstruct (for this threshold) to the total
number of vertices of the polygon is calculated. A pro-
portion close to 1 implies a large number of vertices and
reflects a redundant shape that may express a poor quality
of polygon capture.

• right-angle (ragl): this indicator measures the number of
approximately right angles and still tells us about the reg-
ular shape of a polygon.

• perimeter (per): it is defined as the sum of the lengths of
the sides of the polygon.

• area (are): it is defined as the area of the polygon

• orientation (ori): this indicator measures the overall ori-
entation of the SSR of the polygon.

• granularity (grn): this indicator measures the granularity
of a polygon. It is computed as the quotient of the number
of vertices on the perimeter.

Subsequently, these indicators are calculated for each building
from the OSM database and will be considered as explanatory
variables for the regression model to be proposed.

2.5 Regression method

Machine learning can provide some solutions when the accur-
acy of data is reduced by many measurement errors whose it is
difficult to identify the source and when intrinsic indicators can
not be exhaustive but sufficient to study a relation with extrinsic
indicators. We seek a generic method that could link intrinsic
indicators with extrinsic indicators. Our work chose to use a
multiple regression model which is the basic case of machine
learning. We use as explanatory variables of the model, the set
of intrinsic indicators defined above, while the extrinsic indic-
ators derived from the data matching are considered as model-
dependent variables. For each matched building, we want to
associate a list of values from the explanatory variables and a
value relative to each of the dependent variables such as radial
distance, angular distance, Hausdorff distance and surface dis-
tance.

To achieve a balance between adjustment and parsimony, two
methods to determine the optimal regression model for inform-
ation loss: AIC (Akakie Information Criterion) method and BIC
(Bayesian Information Criterion) method seems to be suited for
our needs. In the study done on Yang (2005), the comparison
made between AIC and BIC uses, suggests using AIC method.
When there is a need to predict, the AIC’s model should be used
but when the goal of learning is to explain, the best model is ob-
tained using a BIC model. AIC gives an effective model while
BIC model retrieves the true model among others.

Thus, in this work we used the model obtained by the AIC
method, since we believe that this model should form the basis
of the expected regression model and should be considered first.

To further penalize the model obtained by using AIC, in or-
der to retain only the most important variables, we apply the
LASSO method regression. Lasso regression is a type of linear
regression that uses shrinkage. Shrinkage is where data values

are shrunk towards a central point, like the mean. The LASSO
procedure encourages simple, sparse models (i.e. models with
fewer parameters). The goal of LASSO regression is to obtain
the subset of predictors that minimizes prediction error for a
dependent variable. The LASSO does this by imposing a con-
straint on the model parameters that causes regression coeffi-
cients for some variables to shrink toward zero. Variables with
a regression coefficient equal to zero after the shrinkage process
are excluded from the model. Variables with non-zero regres-
sion coefficients variables are most strongly associated with the
response variable. Therefore, when a regression model is car-
ried out it can be helpful to do a LASSO regression in order to
predict how many variables your model should contain. This
secures that your model is not overly complex and prevents the
model from over-fitting which can result in a biased and ineffi-
cient model. The result is a regression model containing a strict
set of explanatory variables with the advantage of being more
interpretable. The LASSO method has been used many times in
the field of geographic information. This is the case of the study
Inoue et al. (2018) on the geographical segmentation of the real
estate market. Using a LASSO method of generalized merging,
the author seeks to extract the most important variables among
the regional parameters of a price model.

In order to ensure the best quality of the regression model ob-
tained using the LASSO method, we adopted a cross-validation
approach that consists of training on the dependent variables
on one part of the sample and then estimating the performance
of the model with the other part of the sample. We used a 2-
fold cross-validation by repeating the operation 100 times in a
bootstrap function. This gives us 100 values of the explained
proportion of variance called the R-squared of the regression.
We analyze the distribution of the explained variance values to
characterize the proportion of the explained variance within a
confidence interval. This would correspond to the ability of the
regression model to estimate a numerical value of the extrinsic
quality on a given building. In other words, it refers to an es-
timate of the expected relative error on the shape or position of
a building within a confidence interval in which this predicted
variable is expected to fluctuate. The greater the rate of variance
explained, the more accurate the prediction and the narrower the
confidence interval should be.

3. APPLICATION

In this section, we present the results of the entire process de-
scribed in the previous section applied on two polygon datasets
(OSM data and authoritative data) representing buildings.

3.1 Presentation of data

In a OSM qualification process, the methodology is applied to
two sets of data representing the buildings: on one hand the ref-
erence data coming from the IGN’s BDTopo building theme
with less than 1 m of accuracy and representing more than
20m2 area buildings, on other hand the buildings data repres-
ented by ways in OSM.

This work was conduced on a study area in ”Val-de-Marne de-
partment” (East of Paris, France, 94).The study area is a win-
dow of 29.77km2. In this area, we loaded 29171 buildings in
the reference dataset and 38582 buildings in the OSM dataset.
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3.2 Results of data matching

First, for each feature A, belonging to BDTopo, the data match-
ing algorithm looks for candidates in the OSM dataset before
choosing the best one according to the approach detailed in sec-
tion 2. The threshold to select the candidates is empirically
set 30 m. Then the distances (i.e. angular, radial surface, and
Hausdorff distances) between A and the selected OSM candid-
ates are computed in order to initialize the masses of belief for
each criterion. At the end of data matching, each feature from
BDTopo is classified into one of three categories: matched,
non-matched, and undecided. The results obtained on the test
area are depicted in Table 2.

type of matching Number

matched 22989
non-matched 1143
undecided 5020

Table 2: Results of matching of BDTopo dataset

Figure 5 illustrates the three categories of the data matching
results.
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Figure 5: Three cases of data matching: feature A in BDTopo
data (left), candidates OSM data (center), and the result of

matching (right), respectively for the cases of matched (top),
undecided (middle) and non-matched (right).

To validate the matched features, we would like to compute the
proportion (p) of correctly matched faeture. We know that the
true value of p̂ is in the interval p̂ ± ε(p, α,N) with the error
margin ε given by the following equation 1:

ε(p, α,N) = zα/2

√
p(1− p)
N

(1)

where N is the number of features and p is the estimated
value of the proportion based on these N data points, α is the
risk (complementary of the confidence level), zα/2 represents
the number of standard deviations from which we will deviate
around zero considering that the estimator follows a normal dis-
tribution.

On a first sample of size 100, we obtain a rough value of the
estimator equal to 0.9759 whose a priori margin error is less
than or equal to 10%. Subsequently, we try to calculate the ne-
cessary size of a representative sample which would reduce the

value of the margin of error with a confidence level at 95% (risk
α = 5%). Therefore solving equation (1), we obtain a value
N = 174 (with zα/2 = 1.96 and p = 0.9759-0.1=0.8759,
ε = 0.1). By adding 74 pairs of matched features to the
sample again, the final check returns an estimator’s value equal
to 0.9885. To provide a robust validation on the estimator, the
value of the margin of error is calculated using equation (1).
Thus, we obtain a more accurate estimate of the proportion of
correctly matched features equal to 0.9885 over a margin of er-
ror α = 1.5% with a 95% confidence level. The accuracy of the
matching results is now equal to 98.85 (+/− 1.5).

The verification and validation phases were carried out on a
plug-in developed in the GEoxygene platform that illustrates
the BDTopo feature with its candidates around it, mentioning
for each possible match the values of the criteria 3.

3.3 Results of regression

Knowing our aim to infer the dependent variables (extrinsic in-
dicators) from the explanatory variables (intrinsic indicators),
we are looking for a regression model that highlights the exist-
ence of a significant correlation between an extrinsic indicator
and a group of intrinsic indicators. The significance of the cor-
relation of an explanatory variable is reached when the p-value
is less than 0.05%.

First, a standard multiple regression is performed for each de-
pendent variable with the 14 explanatory variables defined in
section 2.4.

Secondly, by a descending process on the calculation of the AIC
value, we proceed to remove the non-significant explanatory
variables until we obtain a parsimonious model, relative to the
smallest AIC value.

For example, in the case of angular distance (dependent vari-
able), Table 3 shows that 12 variables are significant with a
p-value of about 10−16, which justifies the significance of a
correlation. With this standard linear regression model, we ob-
tained a share of 31.8% of explained variance relative to the
total variance of the dependent variable.

Coeffs. a â σa P[> |t|]
Intercept 9.57.10−2 1.72.10−2 2.98.10−8

arec −1.06.10−1 1.73.10−2 7.20.10−10

almx 5.89.10−3 1.70.10−3 5.36.10−4

alme −9.33.10−3 4.15.10−4 ∗ ∗ ∗
almn −3.53.10−2 4.06.10−3 ∗ ∗ ∗
aout 1.64.10−2 1.67.10−3 ∗ ∗ ∗
acpc −1.88.10−1 1.52.10−2 ∗ ∗ ∗
acvx 2.01.10−1 3.02.10−2 2.55.10−11

aelg 1.12.10−1 6.16.10−3 ∗ ∗ ∗
aori 4.20.10−3 8.67.10−4 1.27.10−6

agrn 2.46.10−1 3.05.10−2 8.04.10−16

aper 1.48.10−3 8.70.10−5 ∗ ∗ ∗
aare −5.40.10−5 9.31.10−6 6.69.10−9

Table 3: Estimated values of coefficients (a) with standard
deviations σa and p-value (P[> |t|]). The symbol ∗ ∗ ∗ means

that p-value is below 2.10−16.

Finally, to refine the regression model from the AIC method, we
develop another form of regression using the LASSO method,

3https://github.com/mdvandamme/VisuValideMultiCriteriaMatching/
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which should provide a parsimonious model, but with far fewer
explanatory variables, with practically the same share of vari-
ance explained, thus reducing the regression function to only a
few explanatory variables.

With the LASSO regression, we have computed the distribu-
tion of values of the explained variance rate for 1000 bootstrap
versions using cross-validation with 70% of the data used for
training and 30% for validation, on a sample of 19519 matched
OSM features. For the case of the angular distance, the mean
value is 27.46% and the lower confidence interval (”L95”) value
is 25.43%. We can therefore affirm that the proportion of vari-
ance explained by the regression is greater than 25.43% with a
95% confidence interval. For the radial distance, the explained
variance rate is 21% (”L95”) while for the Hausdorff distance
it is 11% (”L95”). The lowest rate is recorded for the surface
distance, which has only 4% (”L95”) variance explained by the
regression.

In relation to the previous results obtained with the LASSO re-
gression method, we retain the 5 most important variables iden-
tified by the LASSO model. They are stated as follows for:

• angular distance:granularity, outlier, elongation, convex-
ity and min-lengths.

• radial distance:rectangular, outlier, compacity, perimeter
and mean-lengths.

• Hausdorff distance:granularity, elongation, size, shape
and max-lengths

• surfacic distance:granularity, compacity, right-angle, size
and shape.

Figure 6 illustrates the most important variables given by the
LASSO regression for the angular distance. Indeed, the smaller
the value of the norm L1, the greater the regularization (penal-
ization of the explanatory variables). As long as the value of
L1 norm is equal to ’0’, the model remains empty and as we
increase the value of L1 norm (by decreasing the regulariza-
tion), we witness the progressive appearance of the explanatory
variables in the model because their coefficients differ from the
value ’0’. These variables stand out from ’0’ in order of import-
ance. We can see on the graph the first 5 important variables
(grn,out,elg,cvx,lmn) that determine the LASSO regression
model for the case of angular distance.
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Figure 6: LASSO regression method for angular distance: the
first five important variable:grn(granularity), out (outlier),

elg(elongation), cvx (convexity), lmn (min-lenghts)

Then, the final regression model could be expressed through a
prediction function for extrinsic quality Y from intrinsic indic-
ators X = (xgrn, xout, xelg, xcvx, xlmn) ∈ R5 in the form of
the following equation (e.g. for the case of angular distance):

Ŷ (X) = 0.352 + 0.397× xgrn + 0.04× xout + 0.058× xelg

−0.281× xcvx − 0.062× xlmn

Thus, for a building with the following values respectively on
the 5 explanatory variables (e.g. for the case of angular dis-
tance): X = (xgrn = 5.3 ∗ 10−3, xout = 2.032, xelg =
0.665, xcvx = 0.8807, xlmn = 0.229), the model gives a pre-
dicted value equal to 0.2207 varying in this confidence interval:
[0.015; 0.44].

3.4 Analysis of results and discussion

In order to be able to conclude on the validity of our regression
model and its results, we test a number of assumptions known as
the multiple linear regression assumptions, namely the normal-
ity assumption, the homoscedasticity assumption and the non-
multicolinearity assumption.

To test the hypothesis of normality, which assumes that our de-
pendent variable is normally distributed, we draw up the normal
QQ diagram. The Normal QQ, or quantile-quantile diagram, is
a graphical tool that helps us assess whether a data set is likely
to come from a theoretical distribution such as a normal dis-
tribution. A Q-Q diagram is a scatterplot created by plotting
two sets of quantiles relative to each other, with the observed
quantiles on the y-axis and their theoretical Normal quantiles
on the x-axis. If the two sets of quantiles come from the same
distribution, we should see the points form a roughly straight
line.

Figure 7: Normal Q-Q

In Figure 7, we try to compare the standardized residuals ob-
served quantiles with their theoretical quantiles. We observe
that most of the clouds of the points fall on the line except at
the two ends, where they form light tails. Setting aside the light
tails at the ends, we assert that the regression model resembles
a Gaussian distribution. This confirms the assumption of nor-
mality.

Homoscedasticity is observed when the dispersion of the re-
siduals is homogeneous over the entire spectrum of values of
the explanatory variables. This is a desirable property since
if the residuals do correspond to measurement hazards, there
is no reason for the dispersion of the residuals to change with
the values of the predictor. To do this, the estimated residuals
êi = Yi − Ŷi (Residuals) are represented as a function of the
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fitted values, with Ŷi a fitted value and Yi observed value.The
estimation technique used assumes that the estimated residuals
have a constant variance (not dependent on i).

Thus, in Figure 8, where we represent the estimated residuals as
a function of the fitted values, we can see that the residuals dis-
perse randomly independently of the fitted values. This shows
that the variance of the residuals is homogeneous and constant.
This shows the variance of the residuals to be homogeneous
and constant, and it is inferred that the homoscedasticity hypo-
thesis is verified. In addition, it is also visually observed that the
residuals do not show any particular organization. This could
confirm the linearity hypothesis.

Figure 8: Residuals vs Fitted values

To strengthen the homoscedasticity assumption, the Breusch-
Pagan test is used to determine the nature of the variance of the
error term (residuals): if the variance is constant, then we have
homoscedasticity. On the contrary, if the variance varies, then
we have heteroscedasticity. By taking homoscedasticity as the
null hypothesis H0, it is enough to check whether the p-value is
less than 5%.Thus, the application of the test gives as a result
a p-value lower than 10−16. This confirms the hypothesis of
homoscedasticity (Zaman, 2000).

On the other hand, we were interested to see if the residuals
were not self-correlated. The Durbin-Watson test is a statist-
ical test designed to test autocorrelation of residuals in a lin-
ear regression model. The estimation technique used assumes
that the residuals are uncorrelated so that the Durbin-Watson
(DW) statistic must be close to the value 2. At the end of the
Durbin-Watson test, the DW= 2.0135 is calculated. This con-
firms the uncorrelation of the residuals of our regression model
and therefore the hypothesis of independence of the residuals
(Draper and Smith, 1998).

At the end of the verification of the multiple linear regres-
sion hypothesis, we tried to verify the hypothesis of non-
multicolinearity. Strictly speaking, we speak of perfect mul-
ticollinearity when one of the explanatory variables in a model
is a linear combination of one or more other explanatory vari-
ables introduced into the same model. The absence of perfect
multicollinearity is one of the conditions required to be able to
estimate a linear model. In non-statistical terms, collinearity oc-
curs when two or more variables measure the ”same thing”. The
most traditional approach is to examine the Variance Inflation
Factor (VIF) (Stine, 1995). VIFs estimate how much the vari-
ance of a coefficient is ”increased” due to a linear relationship

with other predictors. For example, an VIF of 1.8 tells us that
the variance of this particular coefficient is 80% higher than the
variance that would be observed if this factor was completely
uncorrelated with other predictors.

However, there is no consensus on the VIF value beyond which
multicollinearity should be considered to exist. Some authors
suggest to look in more detail at variables with an VIF above
2.5. For our case, in the regression model studied (case of with
angular distance), the following VIF values were obtained for
the explanatory variables X = (xgrn, xout, xelg, xcvx, xlmn),
respectively the following VIF values:V IF = (vifgrn =
1.046491, vifout = 1.507921, vifelg = 1.387913, vifcvx =
1.566782, viflmn = 1.538345). This confirms the assumption
of non-multicollinearity.

4. CONCLUSION

The accuracy of spatial data is mostly assessed by comput-
ing extrinsic indicators which compare a spatial dataset (e.g.
OSM data) with a reference dataset (e.g. authoritative spatial
data). Nevertheless, there are cases where reference data is not
available (for example countries not having a National Mapping
Agency). In these cases, assessing the spatial data quality of a
VGI data such OSM become an issue. In this work, we propose
an approach that allows to derive extrinsic indicators from in-
trinsic indicators. By using a robust data matching results, the
model was able to establish a regression model estimated for
four extrinsic quality indicators by using a panel of 14 intrinsic
indicators. This provides an estimate of a possible relative geo-
metric and positional accuracy of a building. Although the res-
ults are considerable but modest, they have shown that there is
a signal to detect and predict extrinsic quality. More research is
needed to improve our results and future research directions for
improvement have to be investigated.

A first way to improve our work is to take into account the
spatial context based on a notion of neighbourhood for which
the values of an extrinsic indicator can be self-correlated. The
neighborhood can be generated based on urban considerations,
such as alignment with the road, regularity, similarity and prox-
imity of buildings. Then, for this spatial structure, buildings
inside it could be aggregated and the inference of the extrinsic
indicator from intrinsic indicators can be estimated at this new
scale rather that at individual scale.

Second based on the work of Xu et al. (2017), another way to
improve the proposed approach is to consider the implementa-
tion of a classification algorithm to classify buildings into two
classes : satisfactory quality, and unsatisfactory quality, which
would be characterized by thresholds in the shape and position
criteria. On the buildings deemed of satisfactory quality, a final
classification model will be studied which will decide whether
a building is good or poor quality on the basis of a classifier
constructed by the random forest.

In order to extend our work more widely, it would be appro-
priate to study how the regression formula built with examples
in one area performs on a different area (rural, coastal, mon-
tainous, or from another country), and also apply the proposed
framework on linear or punctual data.
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