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ABSTRACT: 

 

The term "Crowdsourcing" goes back to Jeff Howe (Howe, 2006) and represents a neologism of the words "crowd" and 

"outsourcing". Unlike outsourcing, where companies outsource certain tasks to known third parties, crowdsourcing outsources tasks 

to unknown workers (crowdworkers) on the Internet. This allows companies to access large numbers of workers who would 

otherwise not be available. In this paper, we will discuss an approach for the crowd-based collection of trees by means of minimum 

bounding cylinders from 3D point clouds. We will demonstrate the used web-interface and compare the results with reference data. 

To improve the quality of the results, we collect the data not only once but multiple times. This enables us to implement a so-called 

“Wisdom of the Crowd” approach where we can identify automatically outliers and derive integrated cylinders. We will show in this 

paper that this approach increases significantly the quality of the results. 

 

 

1. INTRODUCTION 

Quality control and improvement is a major challenge of crowd-

based data collection (Liu et al. 2018, Leibovici et al., 2017) 

because data provided by crowdworkers can be erroneous 

(Vaughan, 2017). The crowd is composed of people with 

unknown and very diverse abilities, skills, interests, personal 

objectives, and technological resources (Daniel et al., 2018). 

Most crowdworkers are unfamiliar with the standards on spatial 

data collection and they may feel no need to follow such rules 

(Hashemi and Abbaspous, 2015).  

 

The more complex the crowdsourcing task, the more 

heterogeneous will be the results of different crowdworkers. 

Another problem can be dishonest workers who try to maximize 

their income by submitting as many tasks as possible, even they 

did not complete the tasks or did the tasks only sloppy (Hirth et 

al., 2013). Additionally, spam and adversarial workers may 

exist who could be very harmful to the quality of the collected 

data (Zhang et al., 2016). Therefore, one of the fundamental 

challenges in crowdsourcing is inferring the ground truth from 

noisy data collected by non-experts (Zhou et al., 2012). Quality 

control and quality improvement is a hot research topic in 

crowdsourcing (Zhang et al., 2016). 

 

We can distinguish two different approaches for the collection 

of geospatial data by the crowd: Collection by volunteers 

without payments (Volunteered Geographical Information – 

VGI [Goodchild, 2007]) and collection by paid crowdworkers. 

Crowdsourcing projects that are based on the work of unpaid 

volunteers need an active community who has an intrinsic 

motivation for collaboration. The main factors, that users collect 

voluntarily geospatial data, are that their contributions are made 

freely available and that other users benefit from providing 

digital maps (Budhathoki and Haythornthwaite, 2012). If this is 

not the case, other incentives must be provided such as 

monetary payments.  

 

The most important VGI project is OpenStreetMap (OSM). 

OSM quality has been a subject of a considerable amount of 

research [e.g. (Fonte et al., 2017) or (Degrossi et al., 2018)]. 

The basic quality control concept of OSM is that users verify 

the data of other users, which leads to an increasing quality over 

time (Barron et al., 2014). However, in particular areas it may 

also happen that the quality decreases (Fonte et al., 2017). OSM 

has no centralized quality control (Degrossi et al., 2018), 

whereas in paid crowdsourcing the quality control is under the 

responsibility of the employer. Fonte et al. (2017) proposed 

several quality indicators to handle the specific nature of VGI 

data, such as demographic and socio-economic indicators, 

which are important when users collect data in areas in which 

they live, which is mostly not the case in paid crowdsourcing. 

The data collection in OSM is an open-end process, whereas 

campaigns in paid crowdsourcing are usually limited in time. 

 

Generally, there are two different approaches to control and 

improve the quality of paid crowdsourced data (Zhang et al. 

2016): “Quality Control on Task Designing” and “Quality 

Improvement after Data Collection”. The first approach tries to 

guide the crowdworkers to provide high quality data. Many 

methods exist for this, such as qualification tests, reputation 

systems, task assignment, task and workflow optimization, 

training, real-time quality assurance, quality checkpoints or 

incentive payment mechanisms. A comprehensive overview of 

these techniques can be found in (Daniel et al., 2018).  

 

In the second approach, additional procedures are used to 

improve the quality after the data has been collected. A 

common idea is the repeated data collection by different 

crowdworkers. After data collection, mechanisms are used to 

filter out noisy data and to infer the truth.  

 

The process of estimating the truth from multiple collected data 

is called “ground truth inference”. A ground truth inference 
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algorithm uses multiple collected noisy data as input and 

generates as output the estimated truth. If for example labels are 

collected multiple by different crowdworkers, a straightforward 

approach is to use the most common label. The employer 

duplicates the task and n different workers complete the task. 

The result, which has the majority, is assumed correct (Hirth et 

al., 2013).  

 

Salk et al. (2016) examined the use of majority classification for 

the identification of croplands in remote sensing images. They 

defined a binary crowdsourcing task, evaluated the accuracy of 

the results, and compared them with expert validations. Hecht et 

al. (2017) realized an intrinsic quality control of semantic data 

to evaluate the results of crowdsourced classifications of 

building footprint data. In order to reduce noise, they collected 

the data multiple and aggregated the results with majority 

voting. Zhou et al. (2015) proposed to use the information 

measure minimax conditional entropy. They assumed that labels 

are generated by a probability distribution. By maximizing the 

entropy of this distribution, they can estimate true labels from a 

set of noisy labels. 

 

Whereas majority classification can be easily realized for 

labelling tasks, it is difficult to use it for spatial data collection 

tasks. The reason is that labels can be classified into a finite 

number of classes whereas the geometry of a spatial object can 

have any shape. However, Walter and Sörgel (2018) found out 

that high quality spatial data can be achieved with paid 

crowdsourcing by collecting the data not only once but multiple 

times by many crowdworkers and then integrating the different 

representations into one common result. 

 

This follows the idea of the “Wisdom of the Crowd”. 

Surowiecki (2005) has shown in his book “Wisdom of the 

Crowd - why many are smarter than the few and how collective 

wisdom shapes business, economics, societies and nations” on 

many examples from very different fields that averages of 

multiple guesses are often better than the best individual guess. 

Large groups of people are smarter and can solve complicated 

problems even better than specialists can. For this, we need 

multiple representations as an input (which can be easily 

realized with paid crowdsourcing) and an averaging process that 

integrates the multiple results. 

 

In this paper, we want to demonstrate the “Wisdom of the 

Crowd” principle on the crowd-based collection of trees from 

3D point clouds. The interpretation of 3D point clouds is a non-

trivial task and can be challenging for non-experts. Most of the 

existing work in the field of crowd-based geospatial data 

collection is based on 2-dimensional image data. To the best of 

our knowledge, (Herfort et al., 2018) is the only work that uses 

3D point clouds in the context of crowdsourcing. We will 

demonstrate in this paper that groups of crowdworkers are 

smarter than individual crowdworkers are and that averaging 

multiple collected instances into one integrated representation 

leads to higher quality data. 

 

The rest of the paper is organized as follows. In section 2 we 

will show the datasets from which the crowdworkers had to 

collect the data. The web-based interface, which contains the 

tools for the data collection, is demonstrated in section 3. In 

section 4 we discuss the quality evaluation approach and in 

section 5 the integration process is presented. The results of the 

data collection and data integration are shown in section 6. A 

discussion of the results can be found in section 7. 

 

2. DATA 

For our tests we used two datasets: the ISPRS Vaihingen 3D 

Semantic Labelling dataset (Niemeyer et al., 2014) (V3D) and a 

dataset from the State Office for Spatial Information and Land 

Development, Baden-Württemberg (Landesamt für Geo-

information und Landentwicklung LGL, Baden-Württemberg) 

(M3D). Both datasets were collected by airborne laserscanning 

and coloured using rgb orthophotos. We selected five circular 

sections with a radius of 50 m from the V3D dataset and 

14 sections with the same extent from the M3D dataset. The 

crowdworker had to collect the trees only in an inner area of the 

circle with a radius of 30 m. We carefully collected the 

reference data for both datasets by ourselves. 

 

The V3D dataset has a point density of 4 to 7 points/m² and 

contains mainly detached houses with surrounding gardens with 

trees and bushes (see Figure 1). The M3D dataset has a point 

density of 4 to 32 points/m² and contains the surrounding of the 

Mercedes Benz Museum, Stuttgart with single-line and double-

line tree rows and groups of trees (see Figure 2). 

 

(a)

(b)

 
 

Figure 1. Overview (a) and example of one section (b) of the 

V3D-dataset 
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(b)

(a)

 

Figure 2. Overview (a) and example of one section (b) of the 

M3D-dataset 

 

3. CROWD-BASED DATA COLLECTION 

Figure 3 shows the web-based Graphical User Interface of the 

program for the crowd-based collection of trees. The interface 

was developed with JavaScript and HTML. The 3D 

visualisation is realized with the JavaScript 3D library Three.js 

(Cabello, 2019). The functionality on the server is implemented 

with PHP. The program consists of three parts: 

 

Visualisation of the point cloud: the users can rotate, move and 

zoom the point cloud with the mouse. It is possible to reset the 

view or to select between different standard views. 

 

Functionality for the collection of the data: the users must 

click on New in order to add a new cylinder to the 3D scene. 

The position of the new cylinder can be changed by dragging 

the mouse. The radius and the height of the cylinder can be 

changed by clicking on the corresponding control buttons. The 

bottom of the cylinder is automatically adjusted to the terrain. 

 

Management of the cylinders: all collected cylinders are 

shown in a list. Wrongly collected cylinders can be deleted from 

the list. An already collected cylinder can be activated by 

clicking on the corresponding element in the list. There is 

always only one cylinder active. If a cylinder is active, the 

position, size, and radius of this cylinder can be changed. The 

crowdjob can be finished by clicking on the Submit button. The 

collected data will then be submitted to the server. 

 

 

 
Figure 3. Web-tool for the crowd-based collection of trees from 

3D point clouds 

 

 

All crowdjobs were published on the commercial platform 

microWorkers (www.microworkers.com) which takes over the 

recruitment and the payment. According to their website, the 

platform has access to more than 1,500,000 registered 

crowdworkers (January 2019). The payment is $0.10 for each 

job plus $0.01 per collected tree. 

 

4. QUALITY EVALUATION 

A common approach for quality evaluation is to subdivide all 

collected data instances into the categories: True Positive TP, 

False Negative FN, False Positive FP and True Negative TN 

(compare: Heipke et al. 1997). From that we can calculate 

Completeness = TP / (TP + FN), Correctness = TP / (TP + FP) 

and Quality = TP / (TP + FP + FN) where TP, FP and FN are 

the numbers of cylinders of each category. 

 

The problem is that not all crowd-based collected cylinders can 

be matched uniquely 1:1 to a reference cylinder. Figure 4 shows 

on three examples that also 1:n, n:1 and n:m relations are 

possible. Therefore, we evaluate the quality of the crowd-based 

collected data using an approach of Rottensteiner et al. (2005) 

which is based on the evaluation of mutual overlaps. In our 

application, we extend the approach to three dimensions.  

 

The set of crowd-based collected cylinders is Cn and the set of 

reference cylinders is Cr. For each cylinder cn ∈ Cn and cr ∈ Cr 

we calculate the ratios qnr and qrn with qnr = Vn∩r / Vn and qrn = 

Vn∩r / Vr where Vn∩r is the intersecting volume of the crowd-

based collected cylinder cn and a reference cylinder cr, Vn is the 

volume of cylinder cn, and Vr the volume of cylinder cr. 

 

For the classification of the overlap we define U(ci, cj) = strong 

if: qij > 80%, partial if: 50% < qij ≤ 80%, weak if: 10% < qij ≤ 

50%, none if: qij ≤ 10%. U(ci, cj) is not symmetrical because 

U(ci, cj) does not necessarily equal U(cj, ci). If both U(ci, cj) and 

U(cj, ci) are in the categories weak or none, we expect that no 

correspondence between ci, and cj exist. 

 

After the elimination of the cylinders without correspondences, 

for every crowd-based collected cylinder cn we have a subset 

Cnr of corresponding reference cylinders and for every reference 

cylinder cr a subset Crn of corresponding crowd-based cylinders. 
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Reference cylinder

Crowd-based collected cylinder

(a)

(b)

(c)

 
Figure 4. Examples of different relationships between reference 

data and crowd-based collected data: (a) n:1 relationship: three 

reference cylinders are collected with one cylinder by a 

crowdworker (b) 1:n relationship: one reference cylinder is 

collected with two cylinders by a crowdworker (c) n:m 

relationship: three reference cylinders are collected with two 

cylinders by a crowdworker 

 

 

For each cylinder cn ∈ Cn and cr ∈ Cr we calculate now the 

ratios of total overlap dn = VCnr∩n / Vn and dr = VCrn∩r / Vr with 

VCnr∩n is the intersecting volume of Cnr with cn and VCrn∩n is the 

intersecting volume of Crn with cr. Based on the ratios dn and dr, 

we subdivide all cylinders cn ∈ Cn and cr ∈ Cr into four 

categories according to table 1. 

 

 

Criteria crowd cyl. Cn reference cyl. Cr 

d > 80% Fully correct Fully complete  

50% < d ≤ 80% Partially correct Partially complete 

10% < d ≤ 50% Hardly correct Hardly complete 

d ≤ 10% Not correct Not complete 

Table 1. Categories of cylinders based on an evaluation of the 

mutual overlap 

 

Based on these categories we can refine the definition of TP, 

FN and FP: 

 TPCompleteness: number of reference cylinders that are fully 

or partially collected by the crowdworkers 

 TPCorrectness: number of crowd-based collected cylinders 

that are fully or partially correct  

 FN: number of reference cylinders that are not fully or 

partially collected by the crowdworkers 

 FP: number of crowd-based collected cylinders that are 

collected only hardly correct or not correct  

 

Because of the new definition of TPCompleteness and TPCorrectness we 

must redefine the Quality (Rutzinger et al. 2009): 

 

 1

1
Completness Correctness

Quality
FN FP

TP TP



 

 (1.1) 

 

Instead of defining TP, FP and FN as total number of cylinders 

of each category, we use the total volumes of the corresponding 

cylinders to weight trees with large volumes higher than trees 

with small volumes. This affects also the Completeness and 

Correctness.  

 

 

5. INTEGRATION OF MULTIPLE COLLECTED 

CYLINDERS 

The multiple collected cylinders are integrated in two steps. 

First, we use a DBSCAN clustering algorithm to detect clusters 

and remove outliers by evaluating the x- and y-coordinates of 

the cylinders. In a second step, we integrate all cylinders of each 

cluster.   

 

5.1 Clustering with DBSCAN 

DBSCAN (Density-Based Spatial Clustering of Applications 

with Noise) is a density-based algorithm for the detection of 

clusters and outliers (Ester et al. 1996). The advantages of 

DBSCAN are that the number of clusters must not be specified 

in prior - like in K-means - and that it is robust to outliers. 

 

DBSCAN requires two parameters: (1) Epsilon defines the 

maximum distance between two points to be considered as 

neighbours and (2) MinPts defines the minimum number of 

points in a cluster. Based on empirical tests we use Epsilon = 

2.5 m and MinPts = 4 as parameter setting. 

 

5.2 Integration 

DBSCAN removes outliers by evaluating the positions of the 

cylinders. For the integration of the cylinders of each cluster, 

we use an iterative approach that removes additional outliers by 

evaluating also the radius and the heights of the cylinders. 

 

As start for the iteration, we calculate an integrated cylinder 

CIntegrate by averaging x, y, radius and height of the cylinders of 

each cluster. In the next step, we calculate the intersecting 

volumes VIntersect_k of the integrated cylinder CIntegrate with 

volume VIntegrate and all other cylinders Ck of the same cluster 

with volumes Vk.  

 

Then, we calculate the two ratios qIntegrate and qk, which describe 

the mutual overlap: qIntegrate = VIntersect_k/VIntegrate and qk = 

VIntersect_k/Vk. If qIntegrate or qk is smaller than 50 % the 

corresponding cylinder Ck is marked as outlier and removed 

from the cluster and a new iteration is started. Figure 5 shows 

examples of possible outliers in a bird view. 

 

 

6. RESULTS 

6.1 Results of the crowd-based data collection 

The crowdworkers executed 50 jobs on the V3D dataset and 

140 jobs on the M3D dataset. Table 2 shows the average 

working time per crowd job, the average number of collected 

trees per crowd job and the average number of trees in the 

corresponding reference. 
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CIntegrate

Ck

qIntegrate < 50%, qk > 50%

CIntegrate

Ck

qIntegrate < 50%, qk < 50%

CIntegrate

Ck

qIntegrate > 50%, qk < 50%

Integrated Cylinder Outlier
 

Figure 5. Detection of outlier based on an evaluation of the 

mutual overlap of the integrated cylinder with the other 

cylinders of each cluster (2D-view from above, green: 

integrated cylinder, orange: outlier) 

 

 

Dataset Average 

working time 

[s] 

Average 

number of 

collected 

cylinder 

Average 

number of 

trees in 

references 

V3D 407 7 9 

M3D 518 11 13 

Table 2. Average working time per crowd job, average number 

of collected cylinders per crowd job and average number of 

trees in the corresponding reference for the V3D and M3D 

datasets 

 

The working time needed to execute one crowd job is typically 

between 6 to 10 minutes. It can be seen that the average number 

of collected cylinders is smaller than the average number of 

trees in the reference that indicates that often not all trees were 

collected or that several closely neighbouring trees in the 

reference were collected with only one cylinder by the 

crowdworkers. 

 

Table 3 shows the quality measures of all crowd jobs for both 

datasets. While the average Correctness is clearly higher than 

90%, the Completeness is in both datasets lower. The reason is 

that falsely collected trees are more often in the class False 

Negative as in the class False Positive. This means that the trees 

that were collected by the crowdworkers are in most cases 

correct but the crowdworkers were unable to identify all trees in 

the point cloud.  

 

Dataset Average 

Completeness 

Average 

Correctness 

Average 

Quality 

V3D 85.19 92.64 79.37 

M3D 92.42 96.82 89.58 

Table 3. Average Completeness [%], Correctness [%] and 

Quality [%] of all crowd jobs of dataset V3D and M3D 

      

The quality parameters of the M3D dataset are significantly 

higher as the quality parameters of the V3D dataset. The reason 

is that the trees in the V3D dataset are often surrounded by 

other vegetation (bushes and undergrowth) whereas this is not 

the case in the M3D dataset. Another reason could be the 

different point densities of both datasets. The point density of 

the V3D dataset is between 4 and 7 points/m² whereas the point 

density of the M3D dataset is between 4 and 32 points/m². A 

higher point density can help with the visual interpretation of 

the point clouds. 

   

6.2 Results of the integration 

Each crowdjob was processed by ten crowdworkers. Altogether, 

346 cylinders were collected from the V3D dataset and 1537 

cylinders from the M3D dataset. Figure 6 shows the x- and y-

positions of all collected trees on an example of one of the 

sections of the V3D dataset. The outliers detected with DBSAN 

are marked with red colour. The remaining trees were 

subdivided into different cluster (Figure 7). The result of the 

outlier detection based on the evaluation of the heights and the 

radius is shown in Figure 8 and the final clusters in Figure 9. 

Table 4 summarizes the results of the clustering and outlier 

detection of all crowdjobs for both datasets. 

 

 

 
Figure 6. All collected cylinders (x- and y-position) of one 

section of the V3D dataset. Outlier detected with DBSCAN are 

marked with red colour 

 

 

Dataset Total number 

of cylinders 

Outlier Total number 

of clusters 

V3D 346 56 (16.18%) 36 

M3D 1537 185 (12.04%) 176 

Table 4. Results of the clustering and outlier detection 
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Table 5 shows the quality measures of the integrated cylinders. 

The Correctness is 100 % in both datasets, which means that all 

integrated cylinders have a 1:1 correspondence in the reference 

data set. Therefore FP = 0, which leads to identical numerical 

values of the Completeness and the Quality. The Quality of the 

M3D dataset is still slightly higher than the Quality of the V3D 

dataset. Both measures are near 100 %. 

 

 

Dataset Completeness Correctness Quality 

V3D 97.28 100.00 97.28 

M3D 99.68 100.00 99.68 

Table 5. Completeness [%], Correctness [%] and Quality [%] of 

all crowd jobs of the integrated cylinders of V3D and M3D 

 

 

 
Figure 7. Remaining cylinders (x- and y-position) are 

subdivided with DBSCAN into clusters which are marked with 

different colours 

 

 

 
Figure 8. Further outlier detection based on the evaluation of 

the heights and the radius of the cylinders (cylinders in bird 

view) 

 

 
Figure 9. Final result of outlier detection and integration 

 

 

Figure 10 shows visually the significant increase of the quality 

measures after the data integration for both datasets. Figure 11 

shows the input data, the reference data and the result of the 

integration on one example data section of the V3D dataset. 

 

 

 
 

Figure 10. Increase of the Completeness [%], Correctness [%] 

and Quality [%] after data integration 

 

 

7. DISCUSSION 

Paid crowdsourcing can be a powerful tool to collect spatial 

data. However, the main problem is that the quality of the data 

can be very heterogeneous. This is not only because the objects 

are collected by untrained individuals but also because of the 

subjective nature of data collection (Walter, Sörgel, 2018).  
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(b)

(a)

(c)

 
 

Figure 11. Input data (a) reference data (b) result of the 

integration (c) of one example data section of the V3D dataset 

 

One method to increase the quality of crowd-based data 

collection is to collect the data not only once but multiple and 

integrate the multiple instances into one representation. This is 

the idea of the “Wisdom of the Crowd” that says that groups are 

smarter than individuals are, even if the individuals are experts. 

 

We tested this idea on the crowd-based collection of trees from 

3D point clouds. For this, we implemented a method for the 

integration of multiple cylinders with a simultaneous outlier 

detection and removal. Each crowdjob was duplicated 10 times. 

We compared the quality of the individual collected cylinders 

with the quality of the integrated cylinders. The quality of the 

integrated cylinders is significant higher as the quality of the 

individual cylinders. We were able to achieve a Correctness of 

100 % and a Completeness and Quality of higher than 97 % for 

the V3D dataset and higher than 99 % for the M3D dataset. 

 

Methods based on ergonomics and psychology are not part of 

this research. However, they can be combined with the 

proposed methods for a further improvement of the quality. 
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