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ABSTRACT: 

 

Indoor furniture is of great relevance to building occupants in everyday life. Furniture occupies space in the building, gives comfort, 

establishes order in rooms and locates services and activities. Furniture is not always static; the rooms can be reorganized according to 

the needs. Keeping the building models up to date with the current furniture is key to work with indoor environments. Laser scanning 

technology can acquire indoor environments in a fast and precise way, and recent artificial intelligence techniques can classify correctly 

the objects that contain. The objective of this work is to study how to minimize the use of point cloud samples in Neural Network 

training, tedious to label, and replace them with images obtained from online sources. For this, point clouds are converted to images 

by means of rotations and projections. The conversion of a 3D vector data to a 2D raster allows the use of Convolutional Neural 

Networks, the achievement of several images for each acquired point cloud object and the combination with images obtained from 

online sources, such as Google Images. The images have been distributed among the validation and testing training sets following 

different percentages. The results show that, although point cloud images cannot be completely dispensed within the training set, only 

10% of these achieve high accuracy in the classification. 

 

 

1. INTRODUCTION 

Furniture is a key element of indoor environments. These objects 

allow people and autonomous robots to interact with buildings, 

locate services and tools, and recognize spaces based on the type 

of objects they contain. Some models, such as the CityGML 

standard at its highest level of detail (Biljecki et al., 2016), 

integrate objects within buildings to know the space occupied and 

services available. Indoor environments are also changing, rooms 

are usually reorganized and adapted to current needs. Therefore, 

it is essential to provide methods to acquire and map these objects 

quickly and minimize manual intervention. 

 

Indoor laser scanning technology has evolved significantly in 

recent years. The platforms where the laser scanner is mounted 

have been diversified into trolleys (Chen et al., 2019), backpacks 

(Rönnholm et al., 2015), manual tools (Maboudi et al., 2017), 

mixed reality devices (Khoshelham et al., 2019), robots (Frías et 

al., 2019), etc. These ramifications allow indoor environments 

can be acquired more quickly than with conventional Terrestrial 

Laser Scanning, thus obtaining more data. However, this data is 

often not enough and must be labelled if Deep Learning (DL) 

technologies are implemented. Therefore, the task of acquiring 

and labeling samples is a time-consuming manual process.  

Although there are datasets with indoor labelled point clouds (Uy 

et al., 2019), this data does not always match the user's needs, or 

the number of samples is low to employ certain techniques. 

                                                                 
*  Corresponding author 

 

 

The objective of this work is to evaluate the use of images of 

indoor objects to minimize the number of point clouds needed in 

the training of Convolutional Neural Networks (CNN). Images 

are easier and faster to obtain and label compared to point clouds, 

and the objects maintain a clear relation in both images and 

clouds. Different training sessions are held where the percentage 

varies between images obtained from online sources and images 

obtained from point clouds. 

 

The rest of this paper is organized as follows. Section 2 collects 

related work about object classification with Machine Learning 

(ML) techniques. Section 3 presents an overview of the designed 

method. Section 4 is devoted to analyse the results. Finally, 

Section 5 concludes this work. 

 

 

2. RELATED WORK 

Object classification is a well-studied topic, both in point clouds 

and in images. Many of the object classification techniques can 

be applied indoors and outdoors indistinctly (Balado et al., 2020). 

Objects in point clouds can be classified with ML techniques by 

feature extraction, converting point clouds into 2D or 3D images 

or using point cloud-based neural networks. 
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ML techniques need a low number of samples for training, 

compared with DL techniques. ML techniques must be designed 

to extract the most relevant point cloud object features. The 

choice of features is a design decision, so depending on the 

design knowledge, relevant features can be lost and other features 

less relevant can be added. A tendency in the use of these 

techniques is to extract all available features and let the classifier 

detect those that are relevant. ML classifiers, such as SVM, 

Random Forest, Trees, etc., obtain good results in non-complex 

problems, with low computational cost and little time in dataset 

generation. Lai and Fox, (2010) extract features from Google’s 

3D Warehouse to obtain more data samples. Roynard et al., 

(2016) uses 991 features to train a Random Forest classifier. 

Oesau et al., (2016) transform point clouds objects to histograms 

via planar abstraction. 

 

Object classification in images with 2D-CNN is one of the most 

widespread research lines today. There is a wide variety of 

network architectures available, implementation is quick and 

does not require a deep understanding of the problem to be 

addressed. When generating 2D samples from 3D data, data 

augmentation with object rotations can be implemented, thus 

significantly minimizing the number of acquired objects required 

for training (Tchapmi et al., 2017). The main drawback is that the 

3D to 2D conversion loses one data dimension. To minimize this, 

some authors choose to use orthogonal sections of the object 

(Gomez-Donoso et al., 2017) and others transform the cloud into 

depth images (Pang and Neumann, 2016). 

 

The first network to address the problem of classification directly 

in 3D was VoxNet (Maturana and Scherer, 2015). This network 

uses 32x32x32 voxels as input, so the point cloud must be 

structured into a 3D image. The main problem when adapting 

vector data to 32 levels in each dimension is the resolution loss 

and the empty voxel generation. In addition, some authors 

consider that 2D-CNN with multi-views obtain better results than 

these 3D-CNN (Griffiths and Boehm, 2019; Qi et al., 2016b). 

 

Recently, some authors have designed network architectures that 

use point clouds as input. These architectures are based on spatial 

relationships (Qi et al., 2017, 2016a) and graph theory (Feng et 

al., 2019; Wang et al., 2018). The strong point of these networks 

is no information is lost due to point cloud conversion to other 

formats. Their weak point is that they need a much higher 

computational cost than the alternatives. Garcia-Garcia et al., 

(2016) train PointNet with CAD models of objects to classify 

them. Wu et al., (2019) employ synthetic data from videogames 

to train SqueezeSegV2. 

 

 

ML 

e.g. 

SVM 

2D-CNN 

e.g. 

ResNet 

3D-CNN 

e.g. 

VoxNet 

Points 

e.g. 

PointNet 

Problem 

abstraction 
Low High High High 

Number of 

samples 
Low High High High 

Data 

augmentation* 
No Yes Yes No 

Computational 

cost 
Low Medium 

Medium-

High 
High 

Table 1. Comparison between different Artificial Intelligence 

object classification methods for point clouds (*Data 

augmentation refers to generating several samples per object by 

rotations, not by adding noise) 

 

 

With regard to the mentioned works, briefly compared in Table 

1, the method presented in this paper opts for the conversion of 

point clouds to images in order to use a 2D-CNN network. The 

decision is substantiated in the following reasons: (1) The shape 

of the object is preserved, one of the most relevant factors at 

classification. (2) It allows the use of data augmentation, 

generating multiple samples per object. (3) Computation time 

and cost are reduced compared to 3D techniques. (4) Existing 2D 

networks are better optimized than their 3D equivalents and 

manual feature extraction techniques. (5) Point cloud images can 

be combined with images obtained from online sources. 

 

 

3. METHOD 

The classification is based on images downloaded from online 

sources and images generated from point clouds (hereinafter 

called point cloud images). Depending on the number of samples 

per class, multi-view data augmentation is applied to obtain 

enough samples to evaluate training and assess the behavior of 

the algorithm. The samples are then distributed among the 

training, validation, and testing sets (Figure 1). In this section, the 

generation of images from point clouds, the CNN selection and 

the adaptation of the images are explained. 

 

 

Figure 1. Workflow 

 

3.1 Image generation from point clouds 

The input data are individualized point clouds of objects 𝑃 =
[𝑋 𝑌 𝑍 𝑅 𝐺 𝐵], where the first three columns are 3D coordinate 

and the last three are color information. The conversion from 

point clouds to images is done through an isometric projection. 

The point cloud is distributed in a plane, which can be visualized 

and saved as an image. In pixels where more than one point is 

projected, the color assigned is the average color of the 

corresponding points. White color is assigned to pixels without 

points. A point cloud rasterization (Balado et al., 2017) is not 

necessary since an aspect ratio is not maintained when adapting 

images to the CNN entrance. 

 

If it is necessary to rotate the point cloud P to generate multiple 

views of the same point cloud object (data augmentation), a 

rotation is executed with an angle resolution r on Z axis. Equation 

1 shows the rotation matrix on the Z axis according to a step i of 

angle r. The number of rotations coincides with the number of 

final images per object. In this way, multiple images can be 
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created per object, as long as the angle r ensures that images of 

the same object are sufficiently distinct. 

 

𝑃𝑅𝑖 = 𝑃𝑅𝑖 = [𝑋 𝑌 𝑍] [
cos (𝑖 ∗ 𝑟) −sin (𝑖 ∗ 𝑟) 0
sin (𝑖 ∗ 𝑟) cos (𝑖 ∗ 𝑟) 0

0 0 1

] (1) 

 

For the visualization of the object in isometric projection, and 

after rotating the object if multi-view generation is necessary, a 

rotation of 30 degrees is executed on the axis Y according to 

Equation 2. Then, point cloud is projected on the X plane a by 

removing the attribute X. 

 

𝑃𝑃𝑖 = 𝑃𝑅𝑖𝑅𝑃 = 𝑃𝑅𝑖 [

1 0 0
0 cos (30º) −sin (30º)
0 sin (30º) cos (30º)

] (2) 

 

3.2 Classification 

The InceptionV3 architecture (Szegedy et al., 2016) is used for 

the classification as it is one of the networks with the best 

accuracy in relation to the rate of operations required for their 

training (Canziani et al., 2016). This architecture has proven to 

work well in a multitude of object classification applications 

(Saini and Susan, 2019; Xia et al., 2017). The InceptionV3 

network has an input size of 299x299x3 pixels. Since the images 

obtained from online sources and the images obtained from point 

clouds are in RGB color format, there is no need to adjust color 

channels. Since all images have different sizes, the images are 

resized to fit the network input (Gao and Gruev, 2011). Color 

assignment is performed by bicubic interpolation; the output 

pixel value is a weighted average of pixels in the four vicinity. 

 

 

4. RESULTS AND DISCUSSION 

4.1 Data 

The point clouds used for training, validation, and testing of the 

neural network were obtained from areas 1 to 4 of the 2D-3D 

Stanford Dataset (Armeni et al., 2017). The dataset contains 

indoor point clouds colored in RGB. The classes of furniture and 

number of objects available in the dataset are 56 boards, 179 

bookshelves, 676 chairs, 21 sofas and 145 tables. Objects have 

an average density of 10 thousand points per square meter. The 

number of samples among classes is clearly unbalanced. For each 

class, 200 point cloud images were generated following the 

abovementioned method (projection and data augmentation). For 

each class, 550 images were downloaded from Google Images 

using the "Download All Images" extension. Figure 2 shows 

samples for each class. 

 

4.2 Training 

Once sufficient samples for each class were available, they were 

distributed and CNN was trained. For each class, 500 samples 

were used for training, 50 for validation and 100 for testing. The 

training set consists of 500 images, of which a small percentage 

(between 0 to 10%) corresponds to point cloud images, the 

complementary images are downloaded images (respectively 

100% to 90%). This variation was done in 2% increments (10 

samples per class). Given the limited and unbalanced number of 

point cloud objects, it was not possible to create a training set 

with only point cloud images. There were two different validation 

sets, one consists of 50 samples obtained from downloaded 

images and other consists of 50 samples from point cloud images. 

With the different combinations between training and validation 

sets, a total of 12 training sessions have been carried out, 6 with 

each validation set. The test dataset was 500 point cloud images 

(100 samples per class).  

 

The hyperparameters of the training were: optimization method 

sgdm, learning rate 0.0001, Momentum 0.9, L2 Regularization 

0.0001, Max Epochs 10 and Mini Batch Size 16. Each training 

session took approximately 55 minutes. The method was 

implemented in Matlab and processed on an Intel Core i7-

7700HQ CPU 2.80 GHz with 16 GB RAM.  

 

Figure 3 and Figure 4 show the evolution of the loss in the 

successive training sessions containing online images and point 

cloud images in the validation set respectively. All the networks 

have converged satisfactorily, however, those that use online 

images as validation set shows a faster convergence since they do 

not consider the same feature selection of point cloud images. 

 

4.3 Results and discussion 

Table 2 and Table 3 compile the results obtained from the 

different training sessions on the testing set. Figure 5 shows 

images of correctly classified objects. Without any point cloud 

Figure 2. Samples of the five classes: above, images obtained from online sources; below, images obtained from point clouds. 
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image in the training set (0% of point cloud samples), the neural 

network was unable to learn appropriate features to identify each 

object. Therefore, point cloud images colored in RGB were not 

similar enough to online images to obtain a satisfactory 

classification. Adding point cloud images in the training set 

improves the accuracy. The first ingestion of 10 samples per 

object (2% of point cloud samples) in the training set increased 

the accuracy by twofold to 0.67. As point cloud images continued 

to be introduced into the training set, accuracy increased steeply 

to 0.88 and 0.87, depending on the validation set. with 50 samples 

per object (10% of point cloud samples in the training set). This 

accuracy positions the proposed method with the minimization of 

point cloud objects very close to the state of the art in 2D-3D 

Stanford Dataset (Turkoglu et al., 2018), and even improving 

others (McCormac et al., 2017; Tchapmi et al., 2017; Turkoglu 

et al., 2018). However, these works present semantic 

segmentation methods of indoor environment point clouds, and 

not only object classification method as proposed here, that 

would require a previous phase of object segmentation from 

structural elements and their individualization. 

 

Between the use or not of point cloud images in the validation 

set, no great accuracy differences have been observed. Point 

cloud images can be eliminated from the validation set to reduce 

the number of point cloud samples. 

 

Table 4 and Table 5 show the confusion matrices for training 

sessions with 10% of point cloud images. The classes with the 

highest accuracy were board and chair. From the analysis of the 

images and errors, the causes of the most relevant confusions can 

be deduced. Bookshelves were confused with other objects 

because of their great variation in forms, textures, and contents. 

Sofas had a high confusion with chairs since in the set of chairs 

there are some easy chairs. Finally, tables include tables of 

different shapes as well as desks; in most cases, tables have 

objects on top of them that difficult visualization. It has also been 

observed that the objects in point cloud images contained some 

errors caused in the acquisition and subsequent representation 

that may influence training and classification. These point clouds 

often presented diffuse contours, differences in density between 

objects and between areas of the same object and strong 

occlusions (Figure 6). Noise can create shapes that confuse CNN. 

Occlusions can hide object shapes that the CNN needs for object 

identification. 

 
Figure 3. Loss evolution with different percentage of point 

cloud images in training set and online images in validation set. 

 

 
 

Figure 4. Loss evolution with different percentage of point 

cloud images in training set and point cloud images in 

validation set. 

 

 0% 2% 4% 6% 8% 10% 

board 0.53 0.88 0.92 0.89 0.98 0.96 

shelves 0.51 0.61 0.69 0.63 0.75 0.75 

chair  0.19 0.69 0.93 0.96 0.98 0.99 

sofa  0.26 0.71 0.59 0.83 0.76 0.88 

table 0.19 0.49 0.57 0.68 0.77 0.83 

TOTAL 0.34 0.68 0.74 0.80 0.85 0.88 

Table 2. Evaluation of accuracy by class according to the 

percentage of point cloud images in the training set with online 

images in the validation set. 

 

 

 

Figure 5. Samples correctly classified by the trained InceptionV3 with 10% of point cloud samples in 

training set and with online images in the validation set. 
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 0% 2% 4% 6% 8% 10% 

board 0.52 0.90 0.94 0.90 0.97 0.98 

shelves 0.55 0.73 0.74 0.70 0.68 0.73 

chair  0.15 0.67 0.72 0.93 0.96 0.99 

sofa  0.41 0.66 0.87 0.92 0.82 0.88 

table 0.20 0.40 0.62 0.71 0.73 0.77 

TOTAL 0.37 0.67 0.78 0.83 0.83 0.87 

Table 3. Evaluation of accuracy by class according to the 

percentage of point cloud images in the training set with point 

cloud images in the validation set. 

 

ref\pred board shelves chair sofa table 

board 96 1 0 0 3 

shelves 4 75 6 4 11 

chair  0 0 99 0 1 

sofa  0 1 10 88 1 

table 2 4 7 4 83 

Table 4. Confusion matrix of CNN trained with online images 

in the validation set. 

 

ref\pred board shelves chair sofa table 

board 98 0 0 0 2 

shelves 7 73 9 5 6 

chair  0 0 99 1 0 

sofa  0 4 7 88 1 

table 4 4 10 5 77 

Table 5. Confusion matrix of CNN trained with point cloud 

images in the validation set. 

 

 
Figure 6. Samples with strong changes in intensity, occlusions 

and shape variation: a) bookshelves, b) chairs and c) tables 

 

 

5. CONCLUSIONS 

In this work, the use of online images has been studied to 

minimize the number of point cloud samples needed to train a 

neural network to the classification of indoor objects. 

Classification with a CNN has been adopted, so point clouds have 

been converted into images. Several training sets have been 

designed where the percentage of samples obtained from point 

clouds and online images is varied. 

 

Colored point clouds provided by the 2D-3D Stanford Dataset 

and images from online sources were used to classify five classes 

of indoor objects. The results show that online images cannot be 

used exclusively to train a CNN whose objective is to classify 

point clouds (even if these have color). The accuracy of the 

classifier increases gradually as the number of images obtained 

from point clouds in the training set increases. With 10% of point 

cloud images in the training set, an accuracy of 0.88 was 

achieved. Although the proposed method minimizes the number 

of point cloud samples, the choice of how many samples to use 

in the training is at the disposal of the creator of the dataset, the 

number of available samples and the final accuracy desired. 

Future work will focus on studying how occlusions and other 

anomalies in point clouds of objects affect classification results. 
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