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ABSTRACT: 

 

In this paper, we introduced a recently developed image-based model alignment technique for 3D reconstruction of large-scale 

indoor corridors. The proposed participatory model alignment technique enables crowd source single image-based modeling since it 

allows various participants to incorporate their images taken from different cameras for large-scale indoor mapping. This technique 

is robust against changes of camera orientation and prevents miss-association of a newly generated 3D model to the previously 

integrated models. To investigate the possibility of aligning two individual 3D models, their respective corridor topological graphs 

must match, and they need to geometrically transform into the same object space. Here 3D affine transformation is applied, and the 

transformation parameters are estimated through corresponding vertices of both 3D models. Having integrated two models in the 

same 3D space, they will be back projected into the image space for evaluation using Direct Linear Transformation. Note that the 

proposed method performs layout model matching in image space and considers information including layout topology and geometry 

as well as image information to address model alignment. The advantages of using layout information in the proposed alignment 

technique are twofold. First, a metric constraint is imposed to insure topological model consistency and balance 3D models scale 

issues. Second, it will reduce alignment ambiguity related to indoor corridor scenes, where the scene is enriched with multiple 

structural elements including various corridors junctions. To evaluate the performance of the proposed method, we have performed 

the experiments on a data set collected from Ross building corridors at York University. This dataset includes single images captured 

by a handheld wide-angle camera. The obtained results present the ability of the proposed method in alignment of single image-

based 3D models while producing limited geometric errors. 

 

 

1. INTRODUCTION 

The rise of world’s population and rapid changes in human’s 

lifestyle increased the rate of urbanization (Lutz et al., 2017). 

This imminent development drastically impacts both our lives 

and environment and necessitates more constructions to be 

accomplished. Thus, cities will grow and consequently the urge 

to plan, manage and monitor for analysing and updating urban 

infrastructure would be indisputable. For example, geometric 

representation of city entities even in primitive formats are 

foremost to the urban structure management. Thus, primitive 

based geometric representation of indoor models could escalate 

the level of understanding in drawing up building information. 

Consequently, 3D indoor space models’ reconstruction is 

indispensable for updating and analysing building information. 

Here, the main objective of this paper is to propose a method for 

alignment of single 3D indoor space models to achieve large 

scale indoor mapping. 

Sensors used to accomplish indoor mapping tasks are multiple. 

The most notable ones are: a) 2D/3D laser scanners; b) 

perspective cameras in form of monocular, stereo, 

omnidirectional vision; c) sonar and radio frequency beacons; 

and d) depth (RGBD) cameras (Baligh Jahromi et al., 2018). 

Laser scanners are providing accurate dense 3D point clouds 

and ameliorating the automation level in reconstruction of 

geometric models (Jung and Sohn, 2019). Yet, image data can 

provide valuable semantic information to indoor mapping task. 

For instance, layout boundaries of indoor spaces could precisely 

be identified in an image. Images have been utilized as an 

important data source for indoor modelling. Early efforts in this 

regard include manually digitizing images to detect indoor 

space layout. Thus, in this paper indoor mapping through 

monocular vision is presented. Monocular cameras can gather 

denser visual information from the environment compare to 

range sensors which are not usually cheap and light. 

Some researchers in photogrammetry and computer vision 

fields dedicated their efforts and time to come up with accurate 

representations of various building entities (Lee et al., 2010; 

Schwing and Urtasun, 2012). Yet, some studies have been 

presented on detection, recognition and reconstruction of 

building indoor models (Hedau and Hoiem, 2010; Schwing et 

al., 2013; Zhang et al., 2014; Liu et al., 2015; Tang at al., 2016; 

Zhu et al., 2016; Huang et al., 2017 and Wang et al., 2018). 

Recently, new approaches in computer vision established the 

base for automatically reconstruct indoor space models. 

Structure from Motion (SFM) and Simultaneous Localization 

and Mapping (SLAM) are well-known techniques for 

generation of large-scale indoor maps from a group of images 

(Baligh Jahromi et al., 2018). Note that 3D modeling of an 

indoor space is highly related to indoor mapping, navigation 

tasks and autonomous systems. In recent years, various 

applications for indoor mapping and navigation services have 

been introduced by companies including Microsoft, Google and 

Apple (Tóth et al., 2015). It should be noted that geometrically 

accurate 3D indoor space models are indispensable for various 

spatial information-based applications such as indoor 

positioning, navigation and security (Ochmann et al., 2016 and 

Lehtola et al., 2017). Moreover, novel technologies like Mobile 
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Augmented Reality (MAR) bestow upon a platform to utilize 

3D indoor space models while interacting with surroundings via 

a computer or mobile device. 

In the past few years, many indoor modelling and 3D 

reconstruction techniques have been introduced that vary in 

terms of data sources (single data source vs. multi-data source), 

adopted data processing strategies (parametric, generic or 

hybrid) and levels of automation (semi-automatic vs. full-

automatic). Note that coming about a novel technique to create 

geometrically accurate indoor maps in a fully automated manner 

is still a big challenge. Sohn and Dowman, (2007) mentioned 

some critical factors that must be appraised while developing a 

new modelling method. These factors could be a) scene 

complexity, b) sensor dependency and c) incomplete cues. 

Indoor mapping encounters with different information of non-

layout objects (e.g., tables, paintings, chairs and other clutters) 

in addition to layout sections (e.g., floor, walls and ceiling). 

Furthermore, indoor scenes have different structures and 

formats which should not be described by a single standard type. 

Thus, we deliberately simplify complex indoor scenes to obtain 

a suitable interpretation for indoor mapping (Yang et al., 2018). 

So far, various techniques have been introduced for 

reconstructing 3D indoor space maps using different data 

sources. However, the proposed techniques have limitations due 

to modelling accuracies, levels of automation, inherent sensor 

dependency and ability to solve missing data problems. A 

promising approach to degrade these issues would be taking 

advantage of both data-driven and model-driven strategies while 

using images as the main data source. This approach is applied 

in 3D modelling of indoor spaces in our previous work (Baligh 

Jahromi and Sohn, 2015). Thus, in this paper, we propose a new 

method for large-scale indoor mapping through alignment of 

reconstructed single image-based 3D models. We spatially 

generate indoor corridor topology graph to make models 

alignment robust against miss association of newly generated 

models to unrelated aligned models. This large-scale indoor 

corridor model alignment method allows using topological, 

geometric and radiometric information of both indoor layout 

and image to globally align single indoor corridor models. 

 

2. DATA SET AND CAMERA MODEL 

Preparing a new data set was an essential part in evaluation of 

the proposed image-based model alignment algorithm. 

Although various types of data sets were available to assess the 

quality of a reconstructed 3D model from a single image, these 

data sets were mostly covering single rooms and they were not 

suitable for evaluation of an image-based 3D corridor model 

alignment algorithm. Thus, to assess the quality of the proposed 

algorithm in this paper, a new data set is prepared. This dataset 

is specifically designed to serve our research purposes and 

satisfy the needs for necessary algorithm assessments. The 

pinhole camera model is the adopted model in this data set. This 

model is simply describing the imaging process. In this model 

the camera is recognized by a flat surface (image plane) and a 

light-barrier hole that represents the camera perspective centre. 

Each image point can be represented by a ray of light 

(reversible optical path). To reconstruct this ray, camera interior 

orientation parameters (IOPs) are needed. Also, image 

observations must be undistorted for lens distortions to satisfy 

the collinearity condition. Camera parameters, in the prepared 

data set, were calibrated by MATLAB calibration toolbox 

(Bouguet, 2004). Here, we concisely describe the prepared data 

sets. 

The first data set includes single images acquired by handheld 

cameras (GoPro Hero5 and Apple iPhone 4s) covering indoor 

corridor environments. Table 1 reveals the specifications of two 

cameras used for preparing this data set. Images have been 

taken while crawling through different indoor corridors at York 

University campus buildings in Toronto, Canada. Various 

places such as Petrie Science, Osgoode Hall, Behavioural 

Science, Chemistry and Ross buildings were included. 

 

 

Camera 

Image Format 
Field of 

View 

(degree) 

Focal 

Length 

(mm) Row 

(pixel) 

Col 

(pixel) 

Apple 

iPhone 4s 
2,448 3,264 56.423˚ 4.28 

GoPro 

Hero5 
3,000 4,000 149.20˚ 16.80 

Table 1. Digital cameras used for data set preparation. 

 

The main test site considered in this study encompasses 

connected corridors located at the first floor of Ross Building. 

This building was selected due to having Manhattan structure 

aligned indoor corridors and free accessibility over time. Figure 

1 shows some images taken at Ross building interiors. The 

actual camera positions can be inferred from this figure along 

with the type of images that were used in our experiments. For 

this test site, reference 3D indoor corridor models and their 

respective orientation maps (in image space) are prepared by 

manually identifying corridor layouts in image space (positional 

errors of structural corner points were less than 3 image pixels). 

It should be noted that indoor corridors of the selected test site 

have simple and rectangular outlines. Since identifying the 

indoor corridor layout in a single image is sometimes a very 

challenging task even for human eyes. The second data set 

includes reference laser point clouds acquired from the same 

test site. To prepare this laser benchmark data set, Trimble 

Indoor Mobile Mapping Solution (TIMMS) was used (Stott, 

2016). To geo-reference the incoming laser point clouds and 

improve TIMMS positional accuracy, several indoor survey 

control points (planar accuracies under 5mm) were delicately 

identified inside Ross building interiors by conducting precise 

indoor surveying. Note that TIMMS collected laser point clouds 

accuracies were close to 1cm relative to TIMMS positional 

accuracy. Finally, the incoming 3D laser point clouds were used 

to generate individual ground truth 3D models that further boost 

the evaluation of various aspects of the proposed technique. 

 

 

Figure 1. Sample images acquired at Ross building first floor. 
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3. SINGLE IMAGE-BASED INDOOR CORRIDOR 

MODELING OVERVIEW 

Previously, we presented a top-down approach for 

reconstruction of 3D indoor corridor models from single images 

(Baligh Jahromi and Sohn, 2015). The proposed method permits 

the reconstructed indoor corridor model to represent multiple 

indoor corridors. Since the proposed method is specifically 

designed to handle the presence of side corridors and 

occlusions, we used the modified version of this method (Baligh 

Jahromi et al., 2017) for estimation of single image-based 

indoor corridor layout in this paper. Here, the problem of 3D 

indoor corridor model reconstruction from a single image is 

tackled through middle-level perceptual organization (Baligh 

Jahromi and Sohn, 2016). The method searches for indoor 

corridor layouts that can be converted into a physically 

plausible 3D model. Based on the Manhattan Rule Assumption, 

the proposed method sequentially creates various physically 

valid layout hypotheses using image line segments. To find a 

generated hypothesis that best matches the scene, each 

hypothesis will be evaluated. Finally, the best fitting hypothesis 

will be translated into a 3D model using the estimated 

orthogonal vanishing points in the image space. Note that scene 

layout orthogonal directions will remain intact even if the 

camera orientation is changed while capturing photos by 

crawling through an indoor corridor. In a typical corridor scene 

with low textures, identified orthogonal directions can provide 

strong clues for aligning consecutive image-based 3D models. 

 

 

Figure 2. The proposed method extracts straight line segments 

and estimates orthogonal vanishing points. This method creates 

many layout hypotheses and uses a scoring function (parameters 

optimized by ANN) to evaluate them. Finally, the best fitting 

hypothesis will be converted into a 3D model. 

 

It must be noted that the presented technique is introducing an 

approach to generate indoor corridors layouts in a hybrid way 

using both virtually generated rays from vanishing points and 

detected line segments. This technique is beneficial for two 

main reasons. First, the hybrid way of creating a scene layout 

provides a realistic solution while encountering with occlusions 

or objects in the scene and it is well-suited to describe many 

corridor spaces. It should be noted that using virtual rays solely 

for indoor layout creation may cause structural displacements 

from the true layout boundaries in lengthy corridors due to 

common inaccuracy of the estimated vanishing points. 

Moreover, solely applying physical line segments for layout 

creation would be inefficient due to their ineptitude to handle 

occlusions. Second, the created indoor corridor model can be 

represented as a set of integrated individual corridors. Note that 

each corridor consists of various numbers of faces (maximum 

five) representing facades of a Manhattan form corridor. Thus, a 

corridor topological graph for each model can be created. Figure 

2 shows the overall workflow of the introduced method. Not to 

repeat our previously published papers, details of the proposed 

method are not expressed in this paper, and readers are referred 

to our previous publication (Baligh Jahromi et al., 2017). 

 

4. IMAGE-BASED MODEL ALIGNMENT 

Participatory image-based model alignment is a new technique 

which aims to continuously update 3D models of indoor 

corridor environments abiding Manhattan World constraint. The 

proposed method considers principles of reconstructed 3D 

indoor corridor models from single images (Baligh Jahromi and 

Sohn, 2016) and performs layout model matching among the 

pool of generated 3D models. This method uses both 3D model 

information (topology and geometry) and image information 

(radiometric) to address model alignment. Thus, we made 

additional modifications to the initial indoor corridor modeling 

algorithm including the integration of vanishing point 

refinement technique and layout matching schemes to its 

structure. The following paragraphs summarize the overall 

procedure of the proposed model alignment technique in this 

paper. Figure 3 depicts the overall workflow of the proposed 

method. 

 

Figure 3. The workflow of the proposed image-based model 

alignment method. 
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Having various 3D indoor corridor models created from 

individual single images, the possibility of their alignments in 

both 3D and 2D spaces must be examined. Here, the procedure 

starts with considering a randomly chosen 3D model as the key 

model and the rest of the generated 3D models as test models. 

To identify the possible alignment between a test model and a 

key model, their respective corridor topological graphs must be 

compared. As mentioned, these corridor graphs are derived 

from previously generated individual models. 

First, the complete structure of a key model is considered and 

for each side corridor in that structure a new topological graph 

will be generated. Therefore, the number of topological graphs 

for each key 3D model would be the same as the number of 

individual corridors in that model. Note that in the generation of 

new topological graphs for side corridors, the camera is 

hypothesised to stand inside a side corridor while facing major 

corridor of the original generated 3D model. More details in this 

regard will be presented in the following sections and readers 

are referred to our previous publication on integration of side 

corridors to the generated main corridor of a single image 

(Baligh Jahromi et al., 2018). Second, the corridor graph of a 

test model will be compared to all generated corridor graphs 

(including main and side corridor graphs) of the key model. If 

faces of a corridor topological graph which belong to a test 

model exactly match all the ones for any of the key model 

graphs, then vertices of those faces are considered as 

corresponding vertices. 

Third, to test the possibility of having an alignment between a 

test model and the randomly selected key model, the test model 

must be geometrically transformed into the key model in 3D 

space. Thus, the corresponding vertices of both models are used 

to estimate the parameters of a 3D affine transformation using 

least square method. Forth, the newly transformed test model 

will be back projected into the original key model image (2D 

space) using Direct Linear Transformation (DLT). After back 

projection of the test model into the original key model image, a 

cost function is used to identify the optimal alignment. Here, the 

applied cost function consists of three terms considering both 

models topology, geometry, and radiometric similarities. The 

optimal alignment between a key model and a test model is 

determined by selecting a test model that minimizes the applied 

cost function. As mentioned previously, in this paper an image-

based model alignment technique is proposed, and more details 

of this technique are presented in the following sections.  

4.1 Corridor Topological Graph Generation 

The main reason to adopt our single image-based indoor 

corridor model reconstruction method is its ability to identify 

multiple corridor models in a single image. Thus, the generated 

indoor corridor model not only represents the main corridor, but 

also visualize side corridors. Side corridors directly intersect 

with the main corridor’s structure. Hence, their layout structure 

becomes part of the overall layout model. Normally, the 

presence of a side corridor in an image is identified by 

comparing the estimated main corridor layout geometric 

features to geometric features of an image. Conspicuous 

differences between these two geometric features would initiate 

the side corridor layout generation process (Baligh Jahromi et 

al., 2018). As mentioned, the presence of side corridors will 

increase the geometric complexity of the estimated indoor 

corridor layout structure. Thus, they can enrich the formation of 

the generated corridor’s topological graph. 

 

 

 

 

 

 

Figure 4. Top: A single image with specified corridor layout; 

Middle: Reconstructed 3D model; Camera is hypothesized to 

stand at various positions (1, 2 and 3); Bottom: The generated 

corridor topological graphs. 
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In order to explain how the corridor topological graph is 

created, following specific definitive terms should be presented 

first. Here, a 3D reconstructed model of an indoor corridor 

environment M  can be denoted as a set of corridors M =
{Ci|i = 1, 2, … n}  which can contain n  number of corridors. 

Each corridor may consist of m  numbers of faces C =

{Fj|j = 1, 2, … m}  denoting front, bottom, top, left and right 

sides of a Manhattan form reconstructed 3D corridor. Note that 

always main corridors should be represented by five faces 

Cmain = {Ffront, Fleft, Fright, Ftop, Fbottom} while side corridors 

may be represented by three faces Csub
left = {Fleft, Ftop, Fbottom} 

or Csub
right

= {Fright, Ftop, Fbottom}. Here, left side and right side 

of a 3D model are determined based on the position and heading 

direction of the camera at the time of exposure. Hence, the 

attaching position of the side corridor structural vertices to the 

main corridor will be tagged respectively. Figure 4 depicts an 

image with its identified corridor layout in image space along 

with the respective 3D model, and the reconstructed corridor 

topological graphs for this 3D model. 

It should be noted that based on the camera position and 

heading, the generated corridor topological graph may vary for 

an individual model. Figure 4 shows the camera is placed at 

various positions (1, 2 and 3). Thus, the respective corridor 

topological graphs are formed as shown in this figure. Here, 

side corridor numbering starts with a corridor which has the 

furthest distance to the camera. Thus, the corresponding side 

corridors should have similar numbering in their respective 

graph structure. Note that to investigate the possibility of having 

an alignment between two different 3D models, the first step is 

to find whether their respective corridor topological graphs 

match or not.  

As mentioned previously, a 3D model will be randomly selected 

among the pool of reconstructed 3D models and considered as 

key model. For each corridor layout in the selected key model, a 

corridor topological graph must be generated. To do so, we 

assume the camera is standing at each corridor and facing an 

interior part of the reconstructed model. Figure 4 shows 

different positions for the camera and their respective corridor 

topological graphs. To have an alignment between a key model 

and other reconstructed models in the pool (test models), at least 

part of their respective corridor topological graphs must match. 

The matched faces in both models will have common layout 

vertices that can be used for estimating the appropriate 

transformation.  

4.2 Model Transformation 

To investigate the possibility of having an alignment between a 

test model and the selected key model which their respective 

corridor topological graphs match, we need to geometrically 

transform the test model into the key model space. To specify 

the corresponding vertices between a test model and the 

selected key model, their respective corridor topological graphs 

will be compared. If faces in a corridor topological graph match 

some faces of the other graph, the vertices belonging to those 

faces are declared as corresponding vertices. For instance, Csub1
left  

of a test model should corresponds to Csub1
left  of the selected key 

model and for sure not to Csub2,..,n
left . Thus, these corresponding 

vertices can be used to estimate the 3D transformation 

parameters. Generally, the transformation of an object in 3D 

space consists of three displacements, three scale differences, 

three axes rotations, and three shear parameters. This is the base 

for the so called 12-parameter affine transformation. Here, the 

12-parameter 3D affine transformation is applied as following: 

X = 𝑎0 +  𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧                                                   (1) 

Y = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3𝑧                                                    (2) 

Z = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑦 + 𝑐3𝑧                                                     (3) 

In the above equations, X, 𝑌  and 𝑍 represent the object space 

coordinates of the key model matched vertices while x, 𝑦 and 𝑧 

represent their corresponding layout vertices coordinates on the 

test model. Also, a0, a1, a2, a3, b0 , b1, b2, b3, c0, c1 , c2 and c3 

are the 3D affine transformation parameters. Note that these 

parameters are calculated using the least square method. Here 

we select the minimum number of corresponding vertices to 

perform this transformation and reserve the rest of points for 

alignment evaluation. The evaluation process is expressed in the 

next section. 

To be able to use the radiometric information of images in this 

evaluation process, we decided to back-project the integrated 

test model to the key model image space (figure 5). Thus, we 

can compare the corresponding faces radiometric information 

for model alignment evaluation. To perform this back-

projection we used Direct Linear Transformation (DLT) 

equations for a single image as following: 

x =
𝑎1𝑋 + 𝑎2𝑌 + 𝑎3𝑍 + 𝑎4 

𝑎9𝑋 + 𝑎10𝑌 + 𝑎11𝑍 + 1
                                                            (4) 

y =
𝑎5𝑋 + 𝑎6𝑌 + 𝑎7𝑍 + 𝑎8 

𝑎9𝑋 + 𝑎10𝑌 + 𝑎11𝑍 + 1
                                                            (5) 

In these equations, X , 𝑌  and 𝑍  represent the object space 

coordinates of the test model vertices while 𝑥 and 𝑦 represent 

the image coordinates of those vertices in the original key 

model’s image space. Here, a1 , a2 , a3 , a4 , a5  , a6 , a7 , a8 , a9 , 

a10 , and a11  are DLT parameters. Note that these parameters 

are estimated using the relation between the key model vertices 

in 3D space and their corresponding points in the original key 

model’s image. 

 

 

Figure 5. A schematic view of model transformation procedure. 
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4.3 Evaluation of Integrated Models 

As mentioned before, having back-projected the integrated 

models into the selected key model’s image space, this 

integration must be evaluated. Here, a cost function is used 

(Baligh Jahromi et al., 2018) to assess this integration and 

identify the optimal alignment. The proposed cost function 

includes three terms. These terms together assess the 

resemblance of test model’s integrated parts to the key model’s 

topological, geometric and radiometric information. Thus, the 

proposed cost function will consider both models topology, 

geometry, and radiometric similarities. The proposed cost 

function is as following:   

𝐶𝑜𝑠𝑡 = 1 − [(𝑤𝑅 × 𝐶𝑅) + (𝑤𝑇 × 𝐶𝑇) + (𝑤𝐺 × 𝐶𝐺)]           (6) 

Where CR , CT , and CG  represent radiometric, topological and 

geometric similarities between the integrated models, 

respectively. Here, weight parameters are wR, wT, and wG for 

CR , CT  and CG  respectively. In our experiments, all cost 

function’s weight parameters are considered as equal (𝑤𝑅 =

𝑤𝑇 = 𝑤𝐺 = 1
3⁄ ) . The radiometric similarity is defined by 

𝐶𝑅(𝑡, 𝑘)  which can be calculated by comparison of average 

image pixels values for corresponding layout faces 𝐹𝑡 ∩ 𝐹𝑘 . 

Here, subscripts 𝑡  and 𝑘  represent test model and key model 

respectively. For each layout face, the average pixels values in 

Red, Green and Blue bands are measured. These calculated 

values will be assigned to each layout face. For corresponding 

faces in both test model and key model (𝐹𝑡 and 𝐹𝑘), their colour 

differences sum in three (𝑅, 𝐺, 𝐵) bands 𝑟𝑡𝑘 is calculated. If the 

calculated value is less than a predefined threshold (𝑇1=30 in 

this paper), the indicator function 𝛿𝑅  would be 1 and 0 

otherwise as following:   

𝐶𝑅(𝑡, 𝑘) =
∑ 𝛿𝐹𝑡∩𝐹𝑘 𝑅

𝑁
          ,         𝛿𝑅 = {

1      𝑖𝑓      𝑟𝑡𝑘 ≤ 𝑇1

0      𝑖𝑓      𝑟𝑡𝑘 > 𝑇1
       (7) 

In the above equation, 𝑁  represents the total number of 

corresponding faces between two models. As mentioned before, 

the corridor topological graph is generated for each individual 

model. Considering the generated topological graphs of a test 

model and a key model, the comparison of the total number of 

faces (𝐹𝑡 ∪ 𝐹𝑘)  and the common faces (𝐹𝑡 ∩ 𝐹𝑘)between two 

models can define the topological similarity 𝐶𝑇(𝑡, 𝑘)  as 

following: 

𝐶𝑇(𝑡, 𝑘) =  
𝑛𝑢𝑚(𝐹𝑡∩𝐹𝑘)

𝑛𝑢𝑚(𝐹𝑡∪𝐹𝑘)
                                                             (8) 

Finally, the geometric similarity 𝐶𝐺(𝑡, 𝑘)  of two models is 

measured by calculating distances 𝑑𝑡𝑘  between the 

corresponding faces vertices. If the calculated distance for a pair 

of corresponding vertices 𝑉𝑡 ∩ 𝑉𝑘  is less than a predefined 

threshold (𝑇2=50 pixel in this paper), then the indicator function 

𝛿𝐺  which measures geometric similarity is 1, and 0 otherwise:     

𝐶𝐺(𝑡, 𝑘) =
∑ 𝛿𝑉𝑡∩𝑉𝑘 𝐺

𝑁
           ,         𝛿𝐺 =  {

1     𝑖𝑓   𝑑𝑡𝑘 ≤ 𝑇2

0     𝑖𝑓   𝑑𝑡𝑘 > 𝑇2
      (9) 

In the above equation, 𝑁  represents the total number of 

corresponding vertices for models under question. Having 

calculated all the costs for integrated test models to the selected 

key model, the optimal model alignment is determined by 

selecting a test model that minimizes the cost function as 

following: 

𝑀∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
∀𝑀𝑡

𝐶𝑜𝑠𝑡(𝑀𝑡)                                                     (10) 

If the minimum cost is more than a user-defined threshold 

(𝑇3=0.15 in this paper), then the test model is considered not to 

be aligned with the chosen key model. It should be noted that 

control parameters, weight values and thresholds used in this 

paper are empirically adjusted. Thus, the proposed method’s 

performance in different conditions would be examined in 

future works. 

 

5. EXPERIMENTS 

To evaluate the performance of the proposed model alignment 

method, the new data set is used. As mentioned before, two 

different cameras are used for collecting images in this data set. 

Thus, the generated models from these two image categories 

would have different qualities which makes models alignment 

cumbersome. Since the geometric quality of the generated 

models in this paper is highly dependent on the accuracy of the 

estimated vanishing points in image space, we decided to 

improve model’s quality prior to their alignments. In this paper, 

LSD method is adopted to accurately detect straight line 

segments in an image and the proposed method by Lee et al., 

(2010) is used for vanishing point estimation. To improve the 

vanishing point estimation results, the number of participant 

line segments is reduced, and a line refinement technique is 

applied. A line support region is created by grouping 

fragmented local straight-line segments which share the same 

level-line angle up to a specific threshold (𝑇3=3° in this paper). 

Thus, a rectangle can be associated with these local group of 

line segments which covers the whole line support region. This 

rectangle could represent those line segments if its angle 

corresponds to the level-line angle of the inside fragmented 

straight-line segments. This rectangle’s angle is introduced as 

the angle of a line that represents these local straight-line 

segments in vanishing point estimation process. This refinement 

technique is tested on York Urban dataset images, where the 

average of 537-line segments per image were detected. Table 2 

reveals the vanishing point estimation results before and after 

applying this line refinement technique while using the lengthier 

line segments. 

 

York 

Urban 

dataset 

images 

# of line 

segments 

(LSD) 

Vanishing point estimation errors 

(average) 

Frame Vertical Horizontal 

No 

Refinement 

100 
1.6861° 2.3643° 1.1346° 

Refinement 

applied 

100 
1.3969° 2.0011° 1.0093° 

Table 2. Vanishing point estimation on York Urban dataset. 

 

Having improved the accuracy of the estimated vanishing points 

and consequently the geometric quality of the reconstructed 3D 

models, the model alignment experiments are performed. As 
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mentioned, the main contribution of this paper is the 

introduction of a new method for image-based model alignment. 

Here, the prepared data set is used which contains images from 

7 integrated corridors at Ross building. Collectively 27 images 

were selected which covered a closed corridors loop at Ross 

building first floor. Consequently, 27 image-based 3D models 

were reconstructed. The proposed model alignment technique 

was applied on the generated models. 

In this paper a new method for aligning a key model to a 

collection of test models in 3D space is introduced. The 

proposed model alignment method was applied by transforming 

and back projecting a test model into the selected key model’s 

image space and calculating alignment cost. The alignment cost 

is calculated by an established cost function presented in 

previous section. Figure 6 depicts two back projected sample 

test layout models (blue lines) into two other key layout models 

in image space (red lines). 

 

 

Figure 6. Test layout models (blue lines) and key layout models 

(red lines) are back projected into the key model’s images. 

 

Table 3 shows the calculated costs for aligning a random key 

model (#07) to the collection of test models. In this table only 

the lowest costs are presented. As shown in this table, key 

model #07 is well aligned with the test model #19 showing 0.14 

matching cost. The threshold 𝑇3 (𝐶𝑜𝑠𝑡 ≤  𝑇3 = 0.15) is applied 

for accepting an alignment between two models. The cost 

function considers radiometric, topological and geometric 

similarities between two models in question. 

Key Model #07 𝐶𝑅 𝐶𝑇 𝐶𝐺 𝐶𝑜𝑠𝑡 

 

 

Test 

Model 

#19 1.000  1.000 0.580 0.140 

#20 1.000  0.700 0.510 0.263 

#21 0.500 0.500 0.280 0.573 

#14 0.250 1.000 0.430 0.440 

#15 0.250 0.800 0.240 0.570 

Table 3. Quantitative assessment of aligning a key model (#07) 

to the selected test models. 

 

Since the reconstructed models are directly derived from single 

images, they may not integrate with each other perfectly in the 

object space. Thus, minor adjustments must be implemented to 

preserve the orthogonality and consistency of the generated 

indoor map. Here, always the key model is considered as true 

and the necessary changes were applied to the corresponding 

test models for alignment in object space. Figure 7 shows the 

incoming photo-textured indoor map generated by aligning 27 

image-based 3D models of Ross building data set. 

 

 

Figure 7. The generated photo-textured indoor map by aligning 

individual reconstructed image-based 3D models. 

 

As stated previously, geometrically accurate reference 3D 

layout models (about 2cm accuracy) were associated with the 

prepared dataset. Accordingly, geometric comparison of the 

generated indoor map and the laser-based ground truth data 

(point cloud data) is performed. Note that accurate 3D indoor 

maps were manually extracted from TIMMS point cloud. For 

instance, the corridor section shown at the bottom-left of figure 

7, has 2.92m width, 2.63m height and 24.14m length. The 

comparison showed that average ratio differences in widths, 

heights and lengths of individual corridors in the generated 

indoor map (approximately 112m path) were 2.3%, 1.9% and 

7.62% respectively. Due to the high possibility of geometric 

errors accumulation during models’ alignment, these 

comparisons were obtained after loop closing technique is 

applied on the aligned 3D models. For more information on the 

adopted loop closing technique readers are referred to (Baligh 

Jahromi et al., 2018).  
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6. CONCLUSIONS 

In this paper, we presented a new participatory image-based 

models’ alignment to reconstruct a large-scale indoor mapping. 

The focus of the proposed method is to take advantage of both 

2D and 3D information of the reconstructed models. Therefore, 

different transformations including 3D affine transformation 

and Direct Linear Transformation are used to appropriately 

incorporate models’ information. Geometrically accurate 

models’ integration and image data association are playing a 

great role in the proposed model alignment technique. Here, 

radiometric, topological and geometric information of 

reconstructed image-based corridor models are considered for 

accurate data association. The new approach of corridor model 

topological graph reconstruction distinct the newly proposed 

technique from previous works. The proposed technique is 

examined on a specific data set prepared at York University. 

The generated results depict the ability of the proposed method 

to successfully identify models’ alignment instances. Results 

comparison to the ground truth data showed average ratio 

differences in widths, heights and lengths of individual 

corridors of generated indoor map were 2.3%, 1.9% and 7.62% 

respectively. Thus, the proposed models’ alignment technique 

enables individually reconstructed image-based 3D models to 

align with each other while producing limited mapping errors. 
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