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ABSTRACT:

Human mobility analysis on large-scale mobility data has contributed to multiple applications such as urban and transportation planning,
disaster preparation and response, tourism, and public health. However, when some unusual events happen, every individual behaves
differently depending on their personal routine and background information. To improve the accuracy of the crowd behavior prediction
model, understanding supplemental spatiotemporal topics, such as when, where and what people observe and are interested in, is
important. In this research, we develop a model integrating social network service (SNS) data into the human mobility prediction
model as background information of the mobility. We employ multi-modal deep learning models using Long short-term memory
(LSTM) architecture to incorporate SNS data to a human mobility prediction model based on Global Navigation Satellite System
(GNSS) data. We process anonymized interpolated GNSS trajectories from mobile phones into mobility sequence with discretized grid
IDs, and apply several topic modeling methods on geo-tagged data to extract spatiotemporal topic features in each spatiotemporal unit
similar to the mobility data. Thereafter, we integrate the two datasets in the multi-modal deep learning prediction models to predict
city-scale mobility. The experiment proves that the models with SNS topics performed better than baseline models.

1. INTRODUCTION

Today, more than 54 percent of the world’s population lives in
urban areas (66 percent by 2050)1. Cities are full of opportunities
and services that attract new people. However, cities are also the
places with the most serious urban issues such as problems relat-
ing to transportation, public safety, and public health. Emerging
cities are facing, and will face, unprecedented problems that need
to be solved with new ideas and technologies.

Urban dynamics and large-scale human mobility has been major
challenges in Urban computing (Zheng et al., 2014) and in recent
years, analyzing, mining and visualizing geospatial big data from
new sources for decision-support, is also considered to be some
of the most important challenges in this era of big data (Li et al.,
2016).

The high penetration rate of mobile phones, especially smart
phones, enables systematic data collection for longer periods;
moreover, users are more willing to connect to multiple services
and allow service providers to collect user data (Birenboim and
Shoval, 2016). These provide an inexpensive means of collecting
data on city-scale mobility.

Traditionally, survey-based human mobility data collect certain
background information on mobility. They often include individ-
uals’ mobility purpose, home location, household size, and job
classification, which complement mobility models and theories.

∗Corresponding author.
1http://www.un.org/en/development/desa/news/population/world-

urbanization-prospects-2014.html

However, even though digital traces such as GNSS and call detail
records (CDR) are accurate and precise, the data lack annotation
compared to survey-based data. To fully utilize the data in many
estimation, prediction, or classification models, supplemental in-
formation with high accuracy and precision are crucial (Gong et
al., 2015). One possible solution is to use location-based social
network (LBSN) services such as Twitter for the background in-
formation (Zhang et al., 2012). LBSN is one kind of SNS that uti-
lizes location information for the services. However, compared to
GNSS dataset, trajectory from LBSN is usually sparse and highly
biased. To model and understand the city-scale mobility pattern,
we need a to extract background information and combine it with
the large-scale human mobility dataset.

Our main idea is to develop a city-scale human mobility predic-
tion model by integrating GNSS trajectories and social network
service (SNS) data, in order for the human mobility prediction
model to achieve more accurate predictions and to have additional
application capabilities.

The key idea of this work is summarized in Figure1 and the work
offers the following key contributions, which highlight its unique-
ness compared to previous research.

Our key contributions of this paper are as follows:

• Integration of background information for human mobility:
the model incorporate spatiotemporal topics from Twitter
data as the background information of human mobility,

• Efficient multi-source data integration: multi-source data in-
tegration requires novel prediction model structure for effi-
cient learning of inter-source relationship. Mobile phone
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Figure 1: Can we use the cross-domain data for human mobility prediction? Our main contributions are represented in red. Credit:
”Konzatsu- Tokei(r)” (c)ZENRIN DataCom CO., LTD.

GNSS trajectory and geo-tagged SNS data are produced
differently. Therefore, the resulting difference in the spa-
tiotemporal distributions makes data integration challeng-
ing.

The rest of this paper is organized as follows. The related work
is discussed in Section 2. We introduce the data and preliminar-
ies for the model in Sections 3 and 4, respectively. Thereafter,
in Section 5, we define our prediction scope and experimentally
evaluate our methods using real data in Section 6; finally, Section
7 concludes the paper.

2. RELATED WORK

2.1 City scale human mobility analysis and modeling

There have been several studies with location logs and trajectories
starting from survey-based (Grinberger and Shoval, 2015, Spac-
capietra et al., 2008) to large-scale mobile phone data for city-
scale or nation-scale mobility (Calabrese et al., 2013, Kang et al.,
2012).

There have been several significant areas of analysis and data
mining using mobility data. One typical area is urban analy-
sis, where researchers discover features and evaluate problems
in cities. Studies on this topic have been usually motivated by the
urban planning perspective such as population estimation (Xu et
al., 2016), mobility pattern (Reades et al., 2009), and discovering
urban functional zones (Yuan et al., 2012).

2.2 Human mobility prediction

Specifically, mobility prediction focuses on providing informa-
tion for future decision making. Initially, having large scale hu-
man mobility data such as mobile phone GNSS trajectory, the
trajectory mining approach enables human mobility prediction
models. Song et al. (Song et al., 2010) developed a city-scale
human mobility prediction models and showed the high predic-
tion accuracy of human mobility in regular days. More specific
prediction scheme, such as disaster evacuation behavior with sup-
plemental disaster information (Song et al., 2014), and taxi travel
time estimation (Tang et al., 2016) are also gaining popularity.
These specific schemes usually limit the scopes but achieve bet-
ter accuracy for particular purposes.

2.3 Location based social network (LBSN)

Even though less than 1% of tweets in Twitter are geo-tagged
(Morstatter et al., 2013) the mobility data from LBSN shows sev-
eral biases such as location bias (sparsity), time bias (more data
in evening), and attribute bias (more young people and wealthy
region) (Mota et al., 2015), The Twitter data has been one of the
most widely used LBSN 2.

In addition to a typical application of using LBSN data as lo-
cation data (Sakaki et al., 2013), Another application is to use
LBSN data as a background information. LBSN data potentially
have rich information on people’s sentiments, observations, and
thoughts. Some notable examples are discovering traffic anoma-
lies (Pan et al., 2013), topic association among cities (Liu et al.,
2016), and population density estimation by combining GNSS
point density and topics from tweets (Miyazawa et al., 2019).

2.4 Deep Learning on Urban Computing

One of the most significant advancements in Machine Learning is
Deep Learning. Urban computing community has indeed adopted
the technology for many applications. For mobility prediction,
one of the most important concepts is recurrent neural network
and especially its extension long short-term memory network
(Hochreiter and Schmidhuber, 1997), which enable time series
input/output. Significant studies on this application includes traf-
fic flow prediction using taxi GNSS trajectory (Niu et al., 2015),
anomaly detection on pedestrian accidents (Zhou et al., 2018),
and Region of Interest (ROI)-based short-term human mobility
prediction (Jiang et al., 2018a). Another important characteristic
of Deep Learning is ”multimodality”, which enable a model to
combine different modal data structures by concatenating input
vectors or linking network units. Ngiam et al. introduced multi-
modal deep learning and demonstrated its superiority over uni-
modal structure in their experiments (Ngiam et al., 2011). Zheng
et al. introduced a multi-source model to detect urban anomalies
that are not found by only using one data source (Zheng et al.,
2015); they later elaborated the concept with a comprehensive
review (Zheng, 2015). There has been an increasing popular-
ity and interest in multimodal deep learning in urban computing
communities (Song et al., 2014).

Compared to the aforementioned related work, we intend to ap-
ply the methodologies of Feature Extraction and LBSN on the

2Twitter disables ”precise location” attached to tweets in
2019. This limits the applicability of this study to future data
(https://twitter.com/TwitterSupport/status/1141039841993355264).
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Deep Learning-based application to improve the accuracy while
adding analytical capabilities for the prediction results. Also, we
apply the model on a regular day to evaluate the general analytical
capability.

3. DATA

3.1 City-scale interpolated and anonymized mobile phone
GNSS trajectory

GNSS trajectories used in this study are from anonymized mo-
bile phone users throughout the Greater Tokyo Area from July 1,
2012 to July 31, 2012, which are processed by NTT DOCOMO,
INC. Now, NTT DOCOMO INC. collected an anonymous GNSS
log dataset, ”Konzatsu-Tokei (R)” Data in Japan over a three-year
period (Aug 1, 2010 to July 31, 2013). “Konzatsu-Tokei (R)”
Data refers to data on the flow of people collected by individual
location data sent from mobile phones with the users’ consent,
through Applications 3 provided by NTT DOCOMO, INC. These
data are processed collectively and statistically in order to con-
ceal the private information. Original location data are GNSS
data (latitude, longitude) sent in a minimum recurring period of
approximately five minutes; however, they do not include infor-
mation on individuals. One important drawback of the data is that
the number of points is biased toward daytime (people are awake
and moving) and down towns (greater population and activities
involving mobility).

Additionally, each trajectory is processed through map match-
ing on transportation network and spatiotemporarily interpolated
to have a minute interval, and each point is on a transportation
network link or node. It also has estimated transportation mode
labels (Table 1). This interpolation improved the human mobility
prediction result in the previous work (Song et al., 2016).

ID Description
1 Stay
2 Walk
3 Bicycle
4 Car
5 Train
6 Unknown

Table 1: Estimated mobility mode labels from a previous study
(Song et al., 2016).

3.2 Geo-tagged tweets

The geo-tagged tweets from July 1, 2012 to July 31, 2012 were
collected using Twitter API. To extract tweets concerning mobil-
ity and social activity, only tweets posted from check-in services
(e.g. Swarm: a LBSN service by Foursquare Labs Inc.) are used
in the following experiment.

3.3 Preprocessing text

The preprocessing is the essential in natural language processing
and we follow our previous work (Miyazawa et al., 2019). After
the text cleaning to remove noise and irrelevant text, we conduct
word segmentation and normalization for part-of-speech (POS)
tagging, then finally we remove ”stop words” such as Japanese
particles, auxiliary verbs, and pronouns. to optimize the learning
process.

3Some applications such as “docomo map navi” service(map navi lo-
cal guide).

4. PRELIMINARIES

4.1 Human mobility trajectory

In this study, similar to the human mobility data, GNSS trajecto-
ries from mobile phones are employed. The raw GNSS trajectory
is structured as a set of 4-tuple (1):

Xraw = {(user, timestamp, lat, lon)} (1)

where user, timestamp, lat, and lon are user ID, timestamp,
latitude, and longitude, respectively. Typically, GNSS modules
in mobile phones creates records in a certain time interval, which
varies depending on the scope of the application. For example,
navigation applications would measure and record the location in
every few seconds, as the applications require frequent location
measurement for accurate and precise navigation. In contrast,
personal logging applications would measure and record the lo-
cation in every few minutes, and sometimes it only records the
location if some movement is detected in order to save batter-
ies. Additionally, most applications can only record the locations
when GNSS or a cell signal is available. Therefore, the times-
tamp in raw GNSS trajectory usually has no stable interval. If
people are in an indoor environment or underground, there would
be missing trajectories in the individuals GNSS trajectory.

Additionally, the interpolated GNSS trajectory (Song et al., 2016)
we mainly use in this study is structured as a 5-tuple set (2):

Xinterpolated = {(user, timestamp, lat, lon,mode)} (2)

where user, timestamp, lat, lon, andmode are user ID, times-
tamp, latitude, longitude, and travel mode label (Table 1). The
location (latitude, longitude) is then encoded as a spatial index,
in accordance with the third level Japan Industrial Standards (JIS)
X0410 grid square code denoted as l. The third level JIS X0410
code is encoded in 10 numeric digits and each grid spans 30 arc-
seconds in latitude and 45 arc-seconds in longitude, which ap-
proximately match 1 km of the study area.

4.2 Modeling human mobility sequence

Let U = {u1, u2, ...} be a set of users and T = {t1, t2, ...} be
a set of temporal indexes with a constant time interval ∆t. To
model human mobility data for prediction model, we process the
dataset to produce human mobility sequence for each user, i.e.,

HMS = {hmsu1 , hmsu2 , ...} (3)

In the human mobility sequence of each user hmsu =
rt1 , rt2 , ..., r is a set of location denotation and supplemental
labels for the each temporal index. It is structured as a set of ei-
ther 3-, 4-, or 5-tuples (4, 5, 6) depending on the input for the
prediction model.

rraw = {(l)} (4)

rmode = {(l,mode)} (5)
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rmode,topic = {(l,mode, topic)} (6)

where 4 is for the model with only the location code l, 5 is for the
model with the location code l and the transportation mode code
mode, and 6 is for the model with the location code l, transporta-
tion mode code mode, and the topic feature topic respectively.

4.3 Modeling topic from SNS data

We use Twitter data and discovered topics from the data and in-
tegrate it to the model as the background information of the mo-
bility. The tweet dataset is also structured as a table containing
the user id, latitude, longitude, timestamp, and raw tweet. Sup-
plemental components of original tweets such as URLs, hashtags,
usernames, and location names in “check-in” tweets are removed.
For further processing, we use the following equations to define
tweets:

tw = {(user, timestamp, lat, lon,w)} ∈ TW (7)

and the text in tweets:

w = {(w1, w1, · · · )} ∈ V (8)

A tweet tw is a 5-tuple where user, timestamp, lat, and lon
correspond to user ID, timestamp, latitude, and longitude, re-
spectively, of a user with corresponding timestamps, and w is
a bag-of-words containing Ni words. Let the vocabulary V =
{1, 2, · · · } be a set of word IDs so that each word appears in the
collection of words V at least once.

4.4 Topic Modeling from Twitter data

Several topic modeling modeles originally developed in
(Miyazawa et al., 2019) are applied on the geo-tagged tweets.

The first model is the latent semantic analysis (LSA) based on
an ”online incremental streamed distributed training algorithm”
(Řehůřek, 2011). LSA takes the frequency-inverse term fre-
quency matrix as the input and computes a low-rank approxima-
tion of the input matrix using singular value decomposition:

Xnumterm×numdoc = Unumterm×kΣk×kV
T
numdoc×k (9)

where X is the term-document frequency matrix, U and V are
orthogonal matrices and Σ is a diagonal matrix; numterm is
the number of terms, numdoc is the number of documents, and
k is the dimension size (the number of topics). The ith column
in X represents a vector corresponding to the ith document in
relation to each term, while the ith column in V(di) becomes the
vector corresponding to the ith document in the low directional
space, where the number of topics = k; finally, the Σkdi for each
document will be saved and used with the regression models.

Secondly, Latent Dirichlet Allocation (LDA) is performed. LDA
is a probabilistic extension of LSA (Blei et al., 2003). LDA as-
sumes that a set of documents are derived from k topics through
a generative process where each topic has a multinomial distribu-
tion βk ∼ Dirichlet(η) over the vocabulary. For each document
d, the distribution over topics θd ∼ Dirichlet(α) is drawn fol-
lowed by topic index zdi ∈ {1, 2, · · · ,K} and topic weights

zdi ∼ θd; finally word wdi is drawn from the selected topic
wdi ∼ βzdi .In this study, a variation with faster online imple-
mentation (Hoffman et al., 2010) is used. Each probability corre-
sponding to the topics for each document will be saved and used
with the regression models.

Finally, the topic tensor T = {zk,l,t} is defined using the result
of the topic models. It contains topic weights z of topic k on a
collection of tweets falling under the spatial index l and the tem-
poral index t. We experimentally set the latitude and longitude
indices equal to each other as we processed the human mobility
trajectory data, and the temporal index for every hour, and the
number of topics k as 10.

5. PREDICTION MODEL

Our prediction model Pθ( ˆhmsu,t+1|hmsu,t) is that given a sub-
set of human mobility sequence hmsu,t = rt1, rt2, . . . , rt, it
predicts a human mobility sequence of next time step t + 1

ˆhmsu,t+1 = rt+1. θ is a set of model parameters that is ob-
tained by minimizing the model loss L( ˆhmsu,t+1, hmsu,t+1) as
follows:

θ = argmin
θ

L( ˆhmsu,t+1, hmsu,t+1) (10)

By applying the prediction model autoregressively, it predicts the
human mobility sequence for several steps. As the location is en-
coded as the spatial index, each spatial index label is converted to
a one-hot vector. Thereafter, the model tries to minimize the cat-
egorical cross entropy between the predicted distribution ŷl and
the true distribution yl. Therefore, 10 can be further expanded as:

θ = argmin
θ

(−
∑
l

ŷl log yl) (11)

5.1 Model architecture

The model architecture is described in Fig. 2. It consists of em-
bedding layers, multiple long-short term memory unit layers and
one activation layer. For the output activation, we used Softmax
in this study.

5.2 Trajectory embedding

The original location denotation in the sequence is the region ID.
As the IDs are arbitrarily assigned to each grid cell, the spatial
distribution of the grid cells should be learned from trajectory
embedding; this idea is similar to Word2Vec in word embedding
(Mikolov et al., 2013). This also contributes to reducing the di-
mension of the input vector, thereby reducing the memory and
computational cost.

5.3 Multi-source data integration

Each mobility input, topic input, and travel mode input has an
individual embedding layer. The output of the embedding layers
are concatenated to one shared hidden layer. This would enable
multi-modal network structure to learn multi-source data concur-
rently.
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Figure 2: Prediction model architecture

5.4 LSTM network

The shared layer uses the long-short term memory (LSTM) unit
(Hochreiter and Schmidhuber, 1997). LSTM network is an ex-
tension of recurrent neural network (RNN). It takes a sequence
X = x1, x2, . . . , xT as the input and another sequence H =
h1, h2, . . . , hT as the output to compute a mapping of each net-
work unit using the following equations:

it = σ(Wixt + Uiht−1 + bi) (12)

C̃t = tanh(Wcxt + Ucht−1 + bc) (13)

ft = σ(Wfxt + Ufht−1 + bf ) (14)

Ct = it ∗ C̃t + ft ∗ Ct−1 (15)

ot = σ(Woxt + Uoht−1 + bo) (16)

ht = ot ∗ tanh(Ct) (17)

yt = φ(Wyht + by) (18)

where it, ft, and ot are input gate function, forget gate function,
and output gate function at time t, respectively. C̃t is the candi-
date values and Ct is the new value for the states of the memory
cells at time t. xt is the input memory cell layer and ht is the rep-
resentation layer at time t. Wi, Wc, Wf , Wo, Wb, Ui, Uc, Uf ,
and Uo are weight matrices. bi, bc, bf , bo, and by are bias vectors.
φ is the network activation function and Sotfmax was used in this
study. Including the forget gate function is an attempt to mitigate
the vanishing gradient problem.

5.5 Prediction evaluation scheme

The prediction model is trained to minimize the model loss (cat-
egorical cross entropy) defined in (11). The model with different
parameter settings and the baselime models are then evaluated
based on categorical accuracy. Among the input data, 80% of the
data is used for training and remaining 20% is for evaluation.

6. EXPERIMENTS

6.1 Result of Topic modeling

To train the topic models, we selected the area of interest as the
Greater Tokyo Area (138.72 to 140.87 in longitude, 34.9 to 36.28
in latitude) and the time period was from July 25, 2013 to July 31,
2013. The model was then applied to the tweets from different

time spans to produce the topic tensor; this is discussed in the
following section. We experimentally used the topic tensor from
LDA in the prediction model.

Table 2 shows some of the topics that are interpretable as distinct
topics. Some topics can be considered strongly related to mo-
bility and transportation infrastructure (topic 2), while some are
related to news reporting (topic 7) or seasonal events (topic 10).

Topics Words

2. Commute/Transportation 到 着(arrive) 乗 り 換
え(transfer) 最 初(first) 案
内(guide)行か(go)

5. Daily life 仕 事(work) 昨 日(yesterday)
疲 れ(tired) 行 っ(go) 大 丈
夫(good) 帰り(going home)　
夜(night)来る(come)

9. Commute/event 暑い(hot) 開催(event;held) 出
勤(commute) 始め(start) オー
プン(open) がんばっ(work
hard)早(early)

7. News reporting km 地 震(earthquake) 速
報(breaking news) 震
源(seismic center) 車
線(train/car track) 震
度(seismic intensity) 気 圧
(air pressure)今月(this month)

10. Event/seasonal 花火(fireworks) オリンピッ
ク(Olympic) 休 み(holiday)
サッカー(soccer/football) 負
け(lose)酒(alcohol)

Table 2: Selected topics and words with high association (LDA).
The words with high association to each topic are listed with
translation. The authors interpreted and labeled the topic based
on the words.

6.2 Prediction scenario and parameter settings

To evaluate the models’ performance, we set a prediction scenario
and parameter settings (Table 3). The time period from 8 AM
to 9 AM on July 26 (Thursday), 2012 was chosen as the target
prediction span. Set within a morning commute, we expected
the majority of the mobility to be the routine commutes, which
have been a challenge for mobility prediction models in previous
studies (Jiang et al., 2018b).
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Setting Value

Time span of observa-
tion

2012-07-25 08:00:00˜07:59:59

Time span of prediction 2012-07-26 08:00:00˜08:59:59
Prediction output
length

next 1 hour (autoregressive)

∆t 10 minutes
k 10
Prediction LSTM lay-
ers

2, 4, 6

Embedding size 1000
LSTM network activa-
tion function

tanh, softsign, adam

Table 3: Model architecture and parameter settings

6.3 Baseline models

In addition to Deep Learning models, we added two baseline
models: the N-Gram-Like and simple recurrent neural network
(RNN) models. The N-Gram-Like model, which is typically
used for natural language processing is trained using N and N-
1 consecutive sequences of grid IDs; for each N-1 consecutive
sequence, it computes the probability distributions for the next
step. Here, we adopt Four-gram based model (Jiang et al., 2018b)
which uses three steps to predict the next time step. The sim-
ple RNN model is comprised of traditional fully-connected RNN
structure.

6.4 Performance evaluation

6.4.1 Choosing input data and network structure Table 4
compares the accuracy depending on the deep Learning model
and parameter selection. The model based on 2 layers of LSTM
and the embedding layer combining grid (location), transporta-
tion mode, and topic feature achieved the best accuracy among
the other structures. The main model is LSTM with tanh as
the output activation layer with dropout function. Other vari-
ations (LSTM-without-dropout, LSTM-softsign, LSTM-adam)
performed worse than the main model. While adding only the
mode feature improved the accuracy, adding only the topic fea-
ture did not improve the accuracy. However the combination of
the three features improved the accuracy the most.

6.4.2 Computational cost, training data size and learning ef-
ficiency To conduct the experiment quickly, we only selected
the experimental setting that required less than 24 hours for the
training phases. Our primary computation machine consisted of
eight CPU cores and one NVIDIA TITAN X GPU and make sure
the model is not overfitting to the training data (Figure 3). As
Table 5 shows increasing the number of samples indeed improve
the prediction accuracy up to 78.5% (Table 5).

Figure 3: Model loss and model accuracy learning curve

6.5 Spatial evaluation of prediction result

Figure 4 shows the prediction result. Basically, the distribution
of points are quite similar between predicted (blue) and ground

(a) 07:00

(b) 07:50

Figure 4: Predicted (blue) and ground truth (red) trajectory at
07:00 (a) and 07:50 (b). Credit: ”Konzatsu-Tokei(r)” (c)ZENRIN
DataCom CO., LTD.

truth (red). Whereas the individual prediction accuracy repre-
sents the accuracy for each individual user, this figure represents
the macro scale accuracy to be evaluated if the aggregated results
of the model reflects the real-world human mobility. Overall, the
predicted result reflects the spatial distribution of human mobil-
ity; however, the spatial discrepancy is most significant in rural
areas most likely because of the lack of training data.

Figure 5 shows the absolute percentage error of number of users
(predicted and ground truth) to evaluate quantitative error in each
cell. The spatial distribution of the error is fairly consistant that
the cells with significant error (¿ 150%) are located not at the
center of Tokyo but along transportation infrastructures.

6.6 Prediction result and share of each topic

Figure 6 shows the prediction result of a sample trajectory. While
the model inaccurately predicts a middle vertex, it predicts the
destination accurately. By extracting the spatiotemporal topic
feature, each trajectory can be individually analyzed based on
which topics are significant at the moment of prediction.

7. CONCLUSION

In this study, we developed a multi-modal human mobility pre-
diction model using LSTM combining GNSS trajectory and SNS
data. The experiment demonstrated that the model successfully
combined the mobility and topic features for the prediction sce-
nario and performed better than typical baseline models. While
the access to the input data limits the applicability of the study,
the model structure can be introduced to other related applica-
tions.
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Model Input features Layers Loss Accuracy

Baseline Ngram Grid 0.5425
Baseline RNN Grid 2 8.4946 0.2910

LSTM Grid 2 5.4619 0.61270
LSTM-without-dropout Grid 2 5.9633 0.5430

LSTM-softsign Grid 2 5.5412 0.5932
LSTM-adam Grid 2 6.7648 0.3581

LSTM-bidirectional Grid 2 8.0963 0.3289
LSTM-Embedding encoder Grid, topic 2 5.5070 0.6055
LSTM-Embedding encoder Grid, mode 2 5.3604 0.6127
LSTM-Embedding encoder Grid, mode, topic 2 5.3829 0.6153
LSTM-Embedding encoder Grid, mode, topic 4 7.1844 0.3991
LSTM-Embedding encoder Grid, mode, topic 6 8.7217 0.1214

Table 4: Network structure and embedding methods. Credit: ”Konzatsu- Tokei(r)” (c)ZENRIN DataCom CO., LTD.

Sample size Loss Accuracy

10000 5.3829 0.6153
50000 3.0759 0.7614

100000 2.9287 0.7812
150000 2.8517 0.7822
200000 2.8516 0.7850

Table 5: Effect of number of samples on prediction accuracy
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75	-	100
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125	-	150
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(a) 07:00
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(b) 07:50

Figure 5: Absolute percentage error of number of users (predicted
and ground truth) in 1km grid at 07:00 (a) and 07:50 (b). Credit:
”Konzatsu-Tokei(r)” (c)ZENRIN DataCom CO., LTD.
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Figure 6: Visualization of individual prediction result. The model
produces a small error during the autoregressive process, but pre-
dicts correct destination for one hour later. The stacked chart
shows the share of each topic with respect to the temporal index
(in every 10 minutes). Topic 9 (commute/event) is gaining share
in the prediction time span while topic 5 (daily life) is significant
throughout the whole time span.
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