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ABSTRACT:

Point clouds serve as the raw material for various models, such as Building Information Models (BIM). In this work, we investigate
the reconstruction steps needed to create models that can be utilized directly for agent-based simulations. The input data for the
reconstruction is captured with an indoor mobile mapping system. To show the prominence of this idea, we run social distancing and
evacuation simulations on the reconstructed models. The simulations are run with multiple agents using a vision-based pedestrian
model and A*-based path finding algorithm. The limitations of this approach are discussed. The video of the simulation is shared with

the audience.
Link to the video: https://youtu.be/r2D31xXt7Ls

1. INTRODUCTION

Social distancing is now more important than ever. Often, the
question in exceptional conditions boils down to how can living
continue while the fear of illness is present. These questions may
be answered with realistic planning using measured data. Such
planning allows for optimizing between various factors, such as
space, time, and the number of people.

The mobile laser scanning techniques of today can be used to ac-
curately measure the physical indoor environments we live and
work in [Lehtola et al., 2017]. The outcome of the scanning is
a three-dimensional (3D) point cloud. A point cloud, when re-
constructed into a model, can be used as a platform in which to
run simulations that predict different situations. We refer to the
simulation environment here as a simulation ’sand-box’. These
sand-box simulations can be used to find answers to questions
related to social distancing and evacuation.

A sand-box model representing a building can be used to predict
the outcome of ordinary, extraordinary, or emergency scenarios.
In order to demonstrate the multi-functionality of the model we
reconstruct and run two different scenarios. First, crowd simu-
lation taking physical distanciné] into account can, among oth-
ers, give insights into the maximum capacity of infrastructure
for complying with physical distancing rules and test protocols
and plans for social distancing measures. The topic is timely, as
Covid-19 pandemic has brought a new normal to people’s life
regarding the distance they should keep to others. Second, we
perform a simulation of emergency evacuation, which is a com-
mon application of pedestrian simulation models. The interest
lies in identifying not only the total time necessary to evacuate a
building, but also the locations where bottlenecks can appear.

Results can be obtained quickly. By connecting the modern tech-
niques, the scanning of a building for a point cloud, reconstruct-

*Corresponding author.
IPhysical distancing is sometimes referred to as social distancing in
the health context.

ing a sandbox model, and running the agent-based simulation in
the sandbox is doable within the same day, see FigurdT]

To the best of our knowledge, this is the first work that inves-
tigates connecting scanned point clouds to agent-based simula-
tions. We build strongly on the previous work in 3D indoor re-
construction and show that with some additional steps, the au-
tomated creation of simulation-suitable models is possible. The
works closest to ours consist of (1) indoor reconstruction methods
that form a boundary representation or standardized BIM models
(e.g. IFC) [Nikoohemat et al., 2020a] and of (2) (commercial)
agent-based simulation methods that use the standardized BIM
models as simulation sandboxes, e.g. [Sun and Turkan, 2020].
The BIM standards are, however, not made for agent-based sim-
ulations but for other, e.g. construction, purposes. Therefore, our
contribution lies in investigating the shortcut between a 3D point
cloud and a functional agent-based simulation.

The paper is organized as follows. We begin with a review on
the related work. Then we elaborate the techniques used to re-
construct sand-box models. In the results section, we present a
sand-box model of a fire brigade building in Haaksbergen and
the outcome of social distancing and evacuation simulations.

2. RELATED WORK

In general, indoor 3D models can be used for multiple simulation
purposes. Different simulation engines have different require-
ments for the sand-boxes they can run simulations in. Compu-
tational fluid dynamics simulations use voxelized or finite ele-
ment models to model, for example, ventilation [Li and Nielsen,
2011]], humidity [Ciuman and Lipska, 2018], and thermal user
comfort [Buratti et al., 2017]]. Lighting simulations use different
spatial and temporal resolutions and can cover basically anything
between part of a room to a whole building [Baloch et al., 2018].
Acoustics simulations use detailed geometry but also surface ma-
terial properties of e.g. a concert hall [[Vorldnder, 2013].

Building information models (BIM) are a set of different type of
models used in architecture, engineering and construction (AEC).
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Figure 1: (a) Perspective view of the 3D point cloud of a building with two floors from which we compute (b) a reconstructed sandbox

model that we use in agent-based simulation.

BIM models that comply with industry foundation class (IFC)
standards are referred to as IFC models. Agent-based simulations
have human sized objects that are moved on floor surfaces. These
surfaces are 2D manifolds that have a topology that connects all
the different floors of a building into one model. Agent-based
simulations can be run on BIM-based sand-boxes for evacuation
planning [Marzouk and Al Daour, 2018/|Sun and Turkan, 2020,

u et al., 2020]] and epidemic risk assessment [Harweg et al.,
2020].

There are two ways to use BIM models for simulation purposes:
1. Using an existing BIM model which may not reflect all the re-
cent changes of the building and it is as-design. 2. Create a new
BIM model from new measurements which is referred to as scan-

to-bim and as-is in the most literature [Bassier and Vergauwen,
2019 Macher et al., 2017|[Nikoohemat et al., 2020b]. Scan-to-

bim models can be created manually by bim experts or (semi-)
automatically by computer algorithms. In the recent years, many
researchers proposed smart solutions such as cell-decomposition,
constructive solid geometry and shape grammar to create 3D mod-

els and BIM from point clouds [Mura et al., 2016, Ochmann et
al., 2019|[Nikoohemat et al., 2018|[Tran H. et al., 2019]. Some of

the approaches are limited to specific building structures such as
Manhattan World or 2.5D buildings [Ikehata et al., 2015||Turner
let al., 2015], others offer more flexibility in terms of adoption
of multi-story buildings and complex structures [Ochmann et al.,]
[2019|Bassier and Vergauwen, 2020 Tran and Khoshelham, 2020].
For our simulation purposes, we are focusing on reconstructing
the volumetric walls by exploiting the topology between the per-
manent structures similar to [Nikoohemat et al., 2020b}|Ochmann|
et al., 2016], detecting doors [Nikoohemat et al., 2018|[Flikweert

et al., 2019]] and modeling multi-story buildings [Macher et al.,
2017}|Ochmann et al., 2019].

Hence, for rapid planning purposes, it makes sense to study how
point clouds can be automatically converted into simulation sand-
boxes for agent-based simulations.

3. INDOOR 3D RECONSTRUCTION METHODOLOGY

The point clouds for our agent based simulation are collected by
indoor mobile laser scanners(IMLS). With mobile laser scanners,
we are capable of scanning large buildings in a short time and
then use the data firstly to create a 3D model and then import
the model into the simulation software. To use the model for the

simulation, we need to understand what objects from the indoor
environments are required. Permanent structures (walls, floor,
ceilings), doors and furniture are detected in the point clouds and
reconstructed in the final model. Note that in this work, the exact
semantic of each furniture is not necessary and the furniture plays
the role of obstacles in the simulation.

Figure 2: Surface growing planar segmentation. Each segment is
represented by a vertex in the graph. Colors are random

3.1 Reconstruction of Walls

The most important items in our agent based modeling approach
are the layout of the rooms and how they are connected. This
narrows down our reconstruction method to correctly modeling
walls, navigable space and doors. Walls provide the layout of the
space, furniture provide the non-navigable space and doorways
provide the information of room connections.

The input point cloud is noisy and there is clutter (furniture and
people) in it which makes the detection of walls cumbersome.
We use a piece-wise planar reconstruction to tackle this problem
but first the levels of the buildings should be separated from the
input point clouds. Each level is a horizontal space which encap-
sulates rooms and furniture in the same level. Since for this data
the trajectory from the MLS scanner is available, by using the
method described in [Nikoohemat et al., 2018]], the points asso-
ciated with the trajectory from the same level is collected which
results in level separation. Then each level is reconstructed sepa-
rately. A z-histogram can be used to separate the levels for build-
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ings scanned with a terrestrial laser scanner [[Oesau et al., 2014],
since a trajectory is not available.

3.1.1 Plane fitting and adjacency graph: Our approach ex-
ploits planar primitives since they are the dominant geometry in
man-made structures. A surface growing method [Vosselman
et al., 2004] is applied to detect the planar surfaces (see Fig-
ure?] Similar to [Nikoohemat et al., 2020b]l, an adjacency graph
Gaj = (V, E) is created from the planes where each vertex
v € V represents a plane and each edge e € FE encodes the
relation between two adjacent planes. This formulation allows
us to avoid Manhattan-World assumptions. Note, at the stage of
creating the graph there is no perception of semantics and hence
planes can belong to any object. Since, planes are infinite prim-
itives, we fit an enclosing minimum rectangle in the 3D space
to the supporting points of the plane (segment) and accordingly
some properties are calculated to encode the geometry of planar
segments in the graph. From now on each plane or segment or
minimum rectangle share the same properties. Therefore each
plane, i.e., vertex v € V in the graph inherits following proper-
ties which are calculated from the supporting points

v = V(N points; MiNuectangle, 1, 0, centroid, label) €))

where the N oinis 1S the number of supporting points of the plane,
the Mminecangle 1S the enclosing rectangle of the segment in the 3D
space where the plane is fitted, the n is the normal vector of the
plane, the € is the angle between the normal vector and positive
direction of the Z — axis and the centroid is the centroid of the
supporting points. The label can be either of wall, floor, ceiling
or clutter which are decided later. Likewise, each ¢; € F is cre-
ated from a pair of (v;, vj). Similar to vertices, each edge also has
properties which encode the relation between two planes and their
supporting segments: e(dz’stad_i,angleadj,typeadj) where dist.g
is the distance between closest points of two segments, angleag;
is the angle between normal vectors of two planes, and type.q; is
the type of relation between two planes which we explain later.
An edge e € F is added to the graph G if dist.q is less than a
threshold (e.g., 0.1 meter). Otherwise, two planes are not con-
sidered adjacent. Similarly, if two planes are not intersecting,
meaning they are coplanar or parallel (= parallel normal vec-
tors) then an edge between them is not established. The typeag;
has an important role in defining the semantic of the segment
(e.g., wall or clutter). To define the type of an edge, previously
all planes(=v € G) are classified to almostHorizontal and
almostVertical given a threshold angle of 45°. An edge can
have three types:

foreache € E:
type eqj =="wall — ceiling” iff v; is almost Horizontal and
vj is almostVertical and centroid(z)v > centroid(z)y;

type eqj =="wall — floor” iff v; is almost Horizontal and
vj is almostVertical and centroid(z)v < centroid(z)y;

type eqj =="wall — wall” iff v; is almostVertical and
vj is almostV ertical

From the given formulation you can see the plane of a ceiling
candidate (Vaimost Horizontal) should be above the wall candi-
date and in reverse for a floor candidate. Furthermore, note a
”ceiling — ceiling” ora” floor — floor” relation does not exist
because if two ceilings (or two floors) are adjacent and coplanar,
their planes are merged in an early stage. If they are not coplanar,
like two sloped ceilings next to each other, then the edge type is
not necessary and is redundant information because the relation

to adjacent wall candidates defines whether the object is clutter or
the ceiling. Next step is to label each vertex based on the number
of edges and the type of edges.

Point Clouds

Walls and floor

Figure 3: Left: Point clouds of the first floor, Right: detected
walls and floor

3.1.2 Wall detection: Each vertex v € G is representing a
plane and its associated segment which obtains a label
label(wall, floor, ceilingclutter). The degree of each vertex is
the number of connected edges, deg(1, n—1) where n is the num-
ber of vertices in the graph. Given an adjacency graph, the degree
and the type of edges for each vertex are analyzed to label the ver-
tex. Segments (vertices) belonging to ceilings (or floors) are easy
to recognize as they are connected to several almostVertical
planes, for example a ceiling vertex (almost Horizontal) should
have two or more "wall — ceiling” edges and no " wall — wall”
edge. Therefore, objects like tables or planar objects near the
ceilings (e.g. beams) are classified as clutter since they have
“wall — wall” edge. Normally objects like cabinets and cup-
boards form a horizontal-vertical relation similar to the ceiling-
wall structure. To avoid including these segments as ceiling can-
didates, the almostHorizontal segment is labeled as a ceiling
candidate if it is not covered with another horizontal segment
above it.

A vertex obtains a wall label if it is almostV ertical and it has
at least one "wall — ceiling” edge. Note that a "wall — floor”
edge for a wall is not necessary because often walls are occluded
with furniture near the floor. Rest of the vertices obtain the clutter
label (furniture, people, noise). Figure3]shows the detected walls
and floor from the point clouds. In the figure you can see the
clutter near the ceiling and most of the furniture in the middle of
the rooms are removed automatically.

Note, because of the presence of clutter (furniture and people)
part of the walls are occluded, hence there is a gap in some part
of the data which causes some walls not to be connected to each
other or to the floor. Our method is able to tackle this problem,
otherwise the simulation can perform incorrectly where walls are
not connected. As long as there is a slight connection between
the wall and the ceiling, partially scanned walls are detected. In
the section[3.2] we explain how modeling connects the wall, floor
and ceiling to create a watertight model.

3.2 Modeling Walls

Modeling contains a piece-wise planar detection and creation of
enclosing oriented rectangle of permanent structures (walls, floor
and ceilings) from point clouds and connect them to reconstruct
a 3D model. From the previous step, segments belonging to per-
manent structures are selected for modeling. An operator quickly
checks the automated labeled structures to make sure there is not
a mislabeled object. If piece of a clutter is mislabeled as a wall
the label is changed. This is a sanity check and should not take
more than several minutes.
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For simulation purposes, walls are the most important structures
and they should be connected to create a topologically correct
model. Since walls are occluded with furniture, some of the walls
are not connected to each other or to slabs (floors and ceilings).
Not connected walls can be fixed by intersecting planes of a pair
of segments and obtaining the intersection line. Then the enclos-
ing rectangle of each segment is extended to the intersection line
given a dexeension threshold. The threshold guarantees that (almost-
) perpendicular walls on both sides of a narrow hallway are not
extended to each other. As a result of this operation, the mini-
mum rectangle and the centroid of the segments are updated but
the normal vectors remain the same.

Surfaces of interior walls are normally scanned from both sides.
Therefore, there are two sides of a wall which form a wall struc-
ture. First, we should identify which faces belong to the same
wall and merge them as one wall object (one segment). Each
wall is a parametric object with properties inherited form the seg-
ment and its associated plane. For each pair of wall segments,
if two adjacent segments are almost coplanar or parallel meaning
the angle between their normal vectors is less than 8(< 5°) then
they form a volumetric wall and merge into one wall object. The
thickness of the created volumetric wall is inherited from the dis-
tance of two planes. Accordingly, the parameters of the enclosing
cuboid and the plane are updated. Note that instead of the enclos-
ing rectangle an enclosing oriented cuboid is created. The normal
vector of each face of the b-rep is oriented inside the room. For
walls which are scanned from one side such as facade walls a
fixed thickness is introduced and the wall is offset in the opposite
direction of the normal vector. The curved walls are modeled as
small planar walls (see Figurefd] the second floor).

3.3 Door and Furniture Detection

Doors are necessary for our simulation application. Since we
use a mobile laser scanner for scanning, a trajectory of the scan-
ning route is created alongside the main point clouds. A trajec-
tory simply is a collection of discrete points representing the mo-
bile laser scanner positions. Any door that the scanner opera-
tor went through it during the scanning can be detected. Sim-
ilar to [Nikoohemat et al., 2020bj], we use the intersection be-
tween the scanner trajectory and the wall to identify the position
of doors. Then a door template with fixed height and width is
fitted to the intersection location. The normal vector of the door
plane and the thickness of the door are inherited from the wall.
The door lower edge is intersecting the floor plane to make sure
the door is connected to the ground. This approach detects at
least one door per scanned room, for example if the operator en-
ters from one door and exits the other door both doors can be
detected. Furthermore, if the door is closed after the operator
goes through it which appears as a closed door in the data, still
it can be identified because it is intersected by the trajectory. If a
door is closed or the room is not accessible during the scanning,
then that space can not be accessible for simulation as well.

In the labeling step, furniture is labeled as clutter including noise
and people. For simulation purposes, the navigable space is re-
quired and furniture is added to the model as obstacles (non-
navigable). From the segments which are labeled as clutter, large
adjacent segments which have overlap with the floor are selected.
Since our agents for simulation are people and they move on the
floor, hence objects like lamps or clutter near the ceiling or on
the walls are not included in the model. This way, we keep the
model uncluttered for agents. Finally, an oriented bounding box
(cuboid) is created from each cluster of furniture and is added to
the model.

First Floor

Second Floor

Figure 4: 3D model with doors (blue) and furniture as obstacles
(red boxes)

Element type | Format | Details

Walls OBJ B-Rep, one file for each floor
Doors OBJ B-Rep (cuboid), one file per floor
Obstacles OBJ B-Rep (cuboid), one file per floor
Staircases OBJ manually added, future work

Table 1: The format used to represent the reconstruction result as
a sandbox. B-rep means boundary representation (see text), floor
is referring to building levels.

3.4 Reconstructed sandbox model

The reconstructed sandbox model consists of four types of OBJ-
format files, as detailed in Table[] The format uses boundary rep-
resentation (B-rep) for the object modeling (e.g. a wall instance),
which is commonly used in CAD (computer aided design) and
solid modeling. Walls span the size of the sandbox, but also limit
the movement within it. After the placement of walls, door ob-
jects are used to create openings on these walls, as they would
otherwise create isolated rooms. Finally, obstacles are placed to
further limit the walkable space and staircases are placed to con-
nect multi-floor environments. In this work, the staircase between
the two floors is placed manually.

The simulation (e.g. evacuation) relies on these layers that we
created from point clouds. A more robust 3D model reconstruc-
tion method results in less work in the simulation step and a cor-
rect simulation results. Four mentioned layers from the 3D model
of point clouds are used for the simulation and ceilings are not re-
quired.

4. SIMULATION METHODOLOGY AND SETUP

For the agent-based simulations, a commercial softwareﬂis used.
It is designed for pedestrian simulations in complex multi-layered

2INCONTROL  simulation
http://incontrolsim.com

software  Pedestrian  Dynamics,
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infrastructures [Van Toll et al., 2011]], and can be used to evalu-
ate, for example, the comfort and safety of up to 100000 agents
under various environmental conditions. The functional princi-
ple of the simulation is briefly explained next, with more detail
in [Bijsterbosch et al., 2012].

The simulation starts with multiple agents placed in different lo-
cations. During the simulation, the agents find a path from their
current position to another a-priori given position in the environ-
ment. The model uses the Explicit Corridor Map (ECM)
as a navigation mesh, which is a subdivision of the
entire walkable space into connected polygonal areas, see Fig Sb.
It is essentially a graph consisting of vertices and edges. The
edges of the ECM form the medial axis: a set of curves describ-
ing the middle of the walkable space, see Fig.[3]

When planning a path to a goal location, an agent tries to find
a route along the network’s edges, using a modified A* algo-
rithm. Because each network node is associated to the closest
points on obstacles, the resulting route is actually a corridor: a
set of polygons and circle segments (drawn around the closest
points), describing the free space that the agent can use around
the route. The algorithm called Indicative Route Method (IRM)
[Karamouzas et al., 2009] smoothly steers an agent through a cor-
ridor while following an indicated path. To avoid agents running
into one another, the method uses a vision-based collision avoid-
ance algorithm based on simple behavioral heuristics
etal., 2011].

Figure 5: (a) The simulation sandbox. (b) A close-up that shows
the medial axes (lines in blue) and the explicit corridor mesh that
utilizes the equidistant lines to obstacles (in yellow).

4.1 Physical distancing scenario
This scenario is simulated with 30 agents, which move between

the different rooms trying not to trespass each other’s private
space. The implemented rules for physical distancing in this work

follow the regulation of The Netherlands, meaning that a mini-
mum distance of 1.5 m is kept between agents at all times. In
the 2D representation, the agents are characterized by their body
radius (small disk) and their private radius (large disk), where the
body radius provides the strict interaction with walls and other
agents, and the private radius defines the physical distancing that
should be avoided by others. By simulating physical distancing,
one can, for example, identify the bottleneck areas where phys-
ical distancing rules are most likely to be violated, as well as
the duration in time how long these violations last, see Figure [f]
(right).

4.2 Evacuation scenario

The scenario is built with 300 agents distributed over the rooms
proportionally to the surface area of each room. All agents si-
multaneously start to evacuate the building, for instance due to a
fire or a natural disaster. The time taken by agents to evacuate the
building is assessed and the different rooms of the building can
be compared to identify where the highest delays and densities
occur during evacuation conditions. Such information can assist
decision making of where to add emergency doors or determin-
ing the maximum number of people allowed, not in the whole
facility, but in each room of the facility (see Figurd6}left).

Evacuation scenario

Social distancing scenario

Figure 6: 3D view of evacuation simulation and social distancing.
The evacuation figure shows the bottleneck in the first floor for
the evacuation is the door in the big hall where a lot of agents
are gathered and consequently the evacuation time increases. In
the right image, the red circles show where the 1.5 distancing are
violated.

5. RESULTS AND EVALUATION
5.1 Data

Our 3D model reconstruction method is tested on the point cloud
of a two-storey building with 27 rooms. The point cloud prop-
erties present different challenges to our method such as a non-
Manhattan World structure, heavy clutter, curved walls, differ-
ent room sizes with arbitrary orientations, and curtain walls with
glass surfaces. The point cloud is collected with a pushing-cart
mobile laser scanner and the point noise is between 3-5 cm. A
trajectory is also provided with the point cloud and it is used for
the door detection.

5.2 Parameter selection and model accuracy

The point cloud is sub-sampled to less than 10 million points to
accelerate the surface growing process which results in a point
spacing of 2cm and nearly 1000 segments for both floors. The
parameters are selected according to [Nikoohemat et al., 2020b].
For the surface growing, a minimum distance to surface of 8 cm
is used which for 5 million points per floor takes less than 2
minutes on an Intel Core i7 (2.2 GHz) with 16 GB RAM. The
adjacency graph is created using a 10 cm proximity distance be-
tween segments and small segments with less than 500 supporting
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points are not included. After automatic labeling of permanent
structures, the operator corrects the label of some of the misla-
beled walls and slabs which was equal to 6percent of the total
number of planar segments in the graph. Most of the corrections
occurred near the ceiling because of the clutter which covered the
ceiling. Since our application is for evacuation purposes the en-
closure of spaces are important. So the operator checks that the
walls belonging to the facade of the building are correctly present
in the data. Interior walls could be wrong and we do not check
every individual room as this is in the contrary to our purpose
of automatic modeling and simulation. We do not spend more
than 10 minutes for the manual inspection and correction. Ex-
perimentally, if the data is noisy, the planar segmentation can be
erroneous and consequently the time of correction of labels in-
creases. If some of the interior walls are missing it results in big-
ger rooms (two smaller rooms will be connected). Although such
cases result in a less correct model, for creating the simulation
is not a problem. To make sure the spaces are enclosed by walls
and slabs in section[3:2]an automatic extension operation was per-
formed. A threshold of 1.0 meter is applied for dexiension- Finally,
we check the accuracy of the permanent structure detection using
a point-wise comparison with the manually labeled points. The
precision, recall, and F1-score for wall labeling are 0.90, 0.96,
and 0.93, respectively. In total, a correct model is achieved for
27 out of 30 doors and 24 out of 27 rooms. The missing doors are
added by the operator just in case a room does not have a door.
Otherwise, a door per room is enough to run the simulation.

5.3 Sandbox model requirements and reconstruction

The agent-based simulation sets some requirements to the model
that we obtain from the reconstruction. These are our observa-
tions from trying to run simulations on the reconstructed sandbox
model.

e Doors need to be detected correctly. If a room does not have
any doors, this means the agents cannot leave the room, and
this is detected and flagged as an error in the simulation pro-
cess and in the next iteration the door is added.

e The walls need to be watertight at the cross-sections of wall
elements. Otherwise, artificial holes emerge and the agents
will use these to find new routes.

e Only those obstacles that block movement must be taken
into account. For this method there is no limitation of ver-
tical walls and horizontal floor and ceiling. Any arbitrary
orientation is supported. Curved walls are represented with
many small planar surfaces, see the second floor in FigureF_fI

e Stair cases must be correctly placed to connect multi-floor
environments. As with doors, missing stair cases are de-
tected during the start of the simulation if some floors are
disconnected from the exits. Also, the correct slope for the
stair case is important as it is used to slow down the moving
agents.

The obstacles were well placed automatically. However, as men-
tioned, we encountered problems with door detection. Therefore,
three missing doors were inserted manually in a 3D modeling
software.

We had to add the stair case manually to the model using a 3D
modeling software, as adding the stairs automatically is part of
the future work.

Density (#/m2
1

Physical Distancing
not respected

0.325 |

Physical
Distancing
respected
all time

> 5min
1min—5min

15s-1min

55-15s
0s-5s

Figure 7: (a) The map of Respected Social Distancing., (b) Social
Distancing Timing.

5.4 Simulation Scenarios

For the physical distancing scenario, the interest lies in identi-
fying the areas where the minimum distancing is most likely to
be violated. Therefore, we investigate the density of people per
square meter, using two threshold values. Given the physical dis-
tance of 1.5 m and an agent radius of 0.239 m, the threshold for
the density level is first set to 0.3254 persons/m?. In Figure El
we see an abundance of violations of the physical distance in the
multiple narrow corridors formed by the obstacles and the tight
hallways, but also that the duration of most of these violations is
very short (from 5 to 15 seconds). The bottlenecks can be pin-
pointed by the door between Rooms 7 and 8, as well as the door
of Room 5.

In the simulation of the evacuation scenario, the highest densi-
ties (agents/m?) and delays (s) are experienced when the agents
evacuate from Room 8, see Figure [8| and Figure The num-
ber of agents placed inside the building is purposefully very large
to highlight the properties of the sand box model, for example,
we can see that the flow of agents from Room 8 saturates into
a steady state so that a maximum flow velocity for this bottle-
neck can be determined. The maximum delay experienced exit-
ing from this room is 3 minutes, which is 4.5 times higher than
the maximum delay observed in Room 2, see Figure[§] (right).

Furthermore, by looking at the time series of the density at the
exit door of Room 8 in Figure (left), we observe that the con-
gested state endures for a prolonged time. This indicates un-
safe conditions by that door, since people pushing against each
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other in a dense crowd may cause panic and lead to unstable
flow regimes, which can ultimately result in injuries and medi-
cal emergencies due to crushing or trampling.

6. DISCUSSION AND FUTURE WORK

The 3D modeling method from point clouds shows the steps of
how to reconstruct required layers for agent-based simulation tasks.
For our simulation scenarios, wall layout and doors are impor-
tant layers during the modeling process. Our method success-
fully creates a 3D model with 90 percent overall accuracy for
the simulation task. The reconstruction algorithm fails to model
the curved wall in the second floor properly and some ill-posed
segments are created. Although, this does not jeopardize the sim-
ulation process as long as there is no gap (hole) between walls.
The challenge in modeling from point clouds lies in detecting and
reconstruction of the permanent structures (walls, floors, doors).
While the floor is easy, walls and doors can pose a problem in
some cases, for example, walls which are partially scanned and
heavily cluttered. The pair-wall intersection and extension han-
dle the missing data perfectly and make sure the walls are not
disjoint. However, some of the walls are mislabeled ( 6 percent
of the total segments) which can be relabeled with visual inspec-
tion. We also noticed the thickness of the cuboid of some of
the doors need to be increased to ensure that an opening is con-
necting two rooms so the navigation graph is not interrupted in
doorways. Another interesting outcome of our experiment is that
rooms without an opening or the missing doors can be flagged
during the evacuation scenario and the model can be returned to
the reconstruction step for further corrections. This is similar to
solution suggested by [Nikoohemat et al., 2020a] for consistency

check of 3D models from point clouds. However, this can not be
checked for missing walls or mislabeled walls.

Some of the created cuboids of furniture are intersecting walls.
This unintended collision is because we generalize the shape of
the furniture (chairs and table) to a 3D bounding box which near
the walls causes an undesired intersection. However, this issue
does not hurt the simulation results.

The path finding has multiple a-priori assumptions, which are jus-
tifiable but should be used consciously in the future work to avoid
artefacts. For instance, in our work, the agents do know how to
get to their destination. In other words, the agents do not get lost.
This may be because they have had evacuation training or because
the environment has enough directional signs to guide the agents.
However, it is easy to think of cases where people do temporar-
ily get lost, for example in airports. The motion speed of agents
also builds on prioris. In principle, A* would allow for defin-
ing distinct areas where moving is slower or more complicated
or more favorable, see e.g. [Lehtola et al., 2019]. Here, how-
ever we have treated all navigable space as similarly walkable (or
runnable) and, except for the stairs that we added manually, there
are no areas where moving is slower or more complicated, such
as crawling spaces, or more favorable such as individually pre-
ferred routes. These could be automatically created from fusing
point clouds to other data.

7. CONCLUSION

The scanning, reconstruction, and simulating can each be done
quickly with the techniques we used. It is already possible to ob-
tain results during the same day, which may spark societal and
commercial interest. We present physical distancing and evacua-
tion scenarios as examples of the multi-functionality of the used
techniques for different simulation purposes. Simulation results
can be used for enlightened decision making. The limitations
of the presented technique are directly connected to scanning.
Should the scan be complete (incomplete), the reconstruction will
also be so, and the simulation will run on a sandbox that does
(does not) accurately represent the reality. If the scan from a
building can be trusted to be complete, there is no need to require
standardized BIM models for simulation purposes, as scanned
point clouds suffice. Finally, we note that should there be defi-
ciencies in the point clouds, these can oftentimes be overcome by
the information obtained from the scanning trajectory, especially
if the trajectory goes through the doorways.
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