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ABSTRACT: 

 

Asset Tracking is an essential component of building management process. It involves creating and maintaining a database of detailed 

information of assets such as location, condition, brand, and type. This information can help building owners make informed decisions 

for cost-effective maintenance of building assets. Existing approaches to perform asset tracking require a manual process of measuring 

and recording the asset condition and location, which is labour-intensive and costly. The typical approach usually includes a human 

operator with pen and paper inspecting the site and manually recording the information about the asset. In this paper, we propose an 

augmented reality asset tracking system using HoloLens to reduce the manual labour involved in this process. The system can 

automatically detect the asset, record and update its related information by visual inspection. Assets are detected by feeding images 

captured by the HoloLens built-in camera to a pre-trained object detection network. Using a combination of various sensor readings 

from the HoloLens, the system can estimate the location of the asset using visual simultaneous localization and mapping (vSLAM). 

This information is then viewed and verified by the user using the augmented reality user interface. Upon the user confirmation, this 

information will be uploaded to a database. As a case study, we demonstrate a vending machine tracking system which is able to detect 

and localise the vending machines in an indoor environment and create a database of vending machine information. The system can 

detect vending machines with a mean average precision of 94.8% and a localization accuracy of 2.3 meters without pre-screening or 

user input. 

 

1. INTRODUCTION 

Asset management is essential for building owners and facility 

managers to perform efficient and cost-effective maintenance 

operations. Whenever an asset is installed, relocated, or removed, 

this information needs to be collected and stored to ensure the 

area continues to function within design parameters. The system 

used to accurately track these large sets of assets is called asset 

tracking system. The traditional approach to asset tracking 

involves a human operator with pen and paper manually 

localizing assets and recording its information on paper. This 

process is labour-intensive and error-prone due to its manual 

nature. Automated approaches using barcode and RFID (radio-

frequency identifier) tags are expensive and the total cost of 

setting up such systems limits their practical application (Angeles 

2005). In consideration of these disadvantages, we propose a 

more efficient and low-cost asset tracking system based on 

HoloLens.  

 

To overcome the limitations of the RFID based asset tracking 

systems, most research efforts focus on using smartphones to 

develop alternative low-cost asset tracking solutions (Chen et al., 

2010; Kostoeva et al., 2019). The successful use of deep learning 

method allows the asset tracking system to understand the scene 

and identify assets without pre-installed tags or barcode. This 

leads to a reduction in the hardware cost of these asset tracking 

systems. However, smartphone-based asset tracking systems face 

challenges in accurately localizing the asset. Due to the limitation 

of smartphone sensors, indoor localization methods used by the 

smartphone-based asset tracking systems require an additional 

manual process or a complete survey of the environment 

beforehand. For example, the WiFi-fingerprint based localization 

method used by Chen et al. (2010) can only provide room-level 

accuracy where the system is able to locate the room that object 

is located but cannot accurately locate the object in the room. 

 

In consideration of these disadvantages, we propose a more 

efficient and low-cost asset tracking system based on HoloLens. 

HoloLens is a wearable device that embeds electronic 

components such as a display screen, an integrated processor, and 

a suite of sensors. HoloLens allows visualization and interaction 

with an interface that is displayed through the lens. It provides 

the user with a simultaneous view of both physical and digital 

worlds (Belkacem et al, 2019), where information in the digital 

world is overlaid on the view of the physical world. The augment 

reality technology can improve the process for the user to interact 

with the asset tracking system. Compared to other devices which 

can provide AR experience such as smart phones, HoloLens is 

equipped with a powerful processor and the spatial mapping 

capability. This allows HoloLens to utilize imagery captured by 

both RGB camera and depth camera mounted on the device to 

build a spatial map of the nearby physical environment. This 

information can be used to calculate the location of each 

recognized asset. The user can see the result of the asset tracking 

overlaid on their view to have a clear understanding of the 

location of the detected asset. Despite the advantaged of 

HoloLens for asset tracking, there are still questions around the 

feasibility of this approach. For asset detection, we need to 

carefully consider an object detection method that can run on a 

resource limited device. For asset localization, since GNSS 

cannot be used in indoor environments an alternative method is 

needed to estimate the location of the asset. 

 

The proposed system takes advantage of the spatial mapping 

capability of HoloLens to accurately localize the assets in an 

unknown environment automatically. The system is designed 

based on HoloLens due to the fact that it is one of the most 

powerful smart glasses available in the market. To truly leverage 

the low-cost aspect of this asset tracking system design, other 

low-cost smart glasses with depth camera, RGB camera and 
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access to internet can be used to reduce the setup cost of asset 

tracking. 

 

In this paper, we describe the asset detection, localization, and 

verification methods, and perform experiments to evaluate the 

proposed asset tracking system. We provide evaluation results for 

a vending machine tracking system implemented based on the 

design in terms of detection accuracy, localization accuracy, 

power consumption, processing time and system usability. 

 

 

2. ASSET TRACKING SYSTEM DESIGN 

In our asset tracking system, the HoloLens runs a mixed reality 

application which can automatically detect and localize the assets 

and provide a graphical user interface for user to verify, modify, 

and confirm the result of the detection. The application can be 

divided into three different modules. After user starts the 

application, the HoloLens will start recording using the front 

camera. The asset tracking system will pull the latest frame from 

the video recording and sends it to the asset detection module. 

The result from the asset detection module will then feed into the 

asset localization module to calculate the coordinates of the asset 

within the spatial map of the environment. Finally, the user 

interaction module will let the user modify, accept, or decline the 

result before it can be sent to the database. A graphical 

representation of the design of the asset tracking system can be 

seen in Figure 1.  

  

2.1 Asset Detection 

The asset detection module is responsible for finding the asset in 

the image captured by the front camera of HoloLens which 

represents the user's current field of view. The asset related 

information that we are interested to extract from the RGB image 

includes the asset's type and its location in the image. The asset 

detection module will computer the bounding box and determine 

the type for each asset in the image using a pre-trained deep 

convolutional network. The asset detection module simulates a 

human inspector’s behaviour: when the inspector comes to the 

building, they will start looking for assets within their sight. After 

the processing, the asset detection module will feed the resulting 

assets' type and position in the image to the asset localization 

module. 

 

The task of finding assets’ type and position is called object 

detection. The current state of the art in object detection is the 

deep learning-based approach. The robust training algorithms 

allow deep convolutional networks to learn informative object 

representations without having to manually design features as 

compared to traditional approaches (Goodfellow et al., 2016). 

 

The major challenge in deploying deep learning based methods 

on HoloLens is that HoloLens has limited computational 

resources as compared to a desktop computer with dedicated 

graphic processing unit. Achieving good performance using deep 

learning requires a large amount of computational resources for 

larger and deeper networks (Huang et al., 2018). Thus, an 

important trade-off between the accuracy and the computational 

complexity of the deep network needs to be made. The detection 

network used in this research is a Yolo-v2 tiny (Redmon et al., 

2017) with some modification to the network structure. It is a 

reduced size version of Yolo-v2 which can run on mobile devices. 

The final version of the network is only 42 MB in size, making it 

suitable for running on HoloLens. The architecture of the 

detection network is shown in Figure 2. 

 

 
Figure 2. Architecture of the detection network 

 

Figure 1. Conceptual framework of the vending machine asset tracking system 
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To train the network, we used the few-shot learning technique. 

(Kostoeva R. et al., 2019). Due to the limitation of the number of 

vending machine samples available for training, we used multiple 

views of the same instance for training. Images taken from 

different angles and pixel size were used. We manually labeled 

the type and ground truth bounding box for each asset that 

appeared in each image. 

 

2.2 Asset Localization 

The asset localization module consists of two computation steps. 

First, it takes the bounding box coordinate as input from the asset 

detection module and computes the asset’s location in the 3D 

world relative to the camera. Then, it takes the coordinates from 

the previous step and transforms these to a universal coordinate 

system defined by the spatial map constructed by Hololens. An 

intuitive visualization of this transformation can be seen in Figure 

3. These two computation steps will be explained separately in 

the following sections. 

 

 

The first computation is a reverse of camera projection. It is done 

based on Equation 1 where image coordinates are used to 

calculate the object coordinates in the camera space:  

 

   𝑠 [
𝑢
𝑣
1

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [
𝑋
𝑌
𝑍

]，           （1） 

 

where u,v = image coordinates 

 X,Y,Z = object coordinates in camera space 

 fx, fy, cx, cy = camera intrinsic parameters 

 

The asset detection module draws a bounding box around the 

detected asset. The coordinates of the bounding box will be fed 

into asset localization module as input. The module will project 

a ray from each corner of the bounding box through the 

perspective centre of the camera to compute the location of the 

bounding box in the camera’s coordinate system. To find the 

exact place of the asset in camera’s coordinate system, we need 

to estimate the scale factor s which depends on the distance 

between the asset and the camera. This distance is estimated by 

the width of the vending machine in the image. Due to the short 

range of the depth camera, the depth information is not used. As 

a workaround, we use the prior knowledge on the size of the 

vending machine and estimate the average width of a vending 

machine in the image as 940 pixels when it is 2 meters away from 

the camera. Using this information, we can calculate the position 

of the vending machine in camera’s coordinate system: 

 

𝑑𝑒𝑝𝑡ℎ =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑖𝑥𝑒𝑙𝐹𝑜𝑟𝑉𝑒𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝐴𝑡2𝑀

𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑥𝑊𝑖𝑑𝑡ℎ
× 2,   （2） 

 

The next step is to compute the asset’s location in a universal 

coordinate system. In this project the world coordinate system 

has its origin at the camera position when the user starts the 

application. The camera coordinate system for the first image 

taken by the front camera will be used as world coordinate system 

for the current asset tracking session. The spatial mapping 

algorithm in Hololens estimate the camera extrinsic parameters 

for all subsequent images and constructs a map of the 

environment. The detailed process of computing the extrinsic 

parameters which provides the transformation between the 

camera coordinate system and the world coordinate system is 

Microsoft’s proprietary software and its algorithms are 

unpublished (Khoshelham et al., 2019). But based on 

publications by Microsoft researcher (Nießner et al., 2013; 

Glocker et al., 2014), the spatial mapping technology is based on 

RGB-D SLAM algorithm, where RGB-D data captured by the 

depth sensor onboard Hololens are used to construct a map of the 

environment while simultaneously keeping track of the device’s 

location within it in real time (Mur-Artal et al., 2017).  

 

Based on above computations, the position of the asset is 

calculated which can be used to localize the asset. Recording the 

position and other relevant information about the asset is done 

through an interface which facilitates the storage of the recorded 

information in an asset database. 

 

2.3 User Interaction 

The main design idea behind the augmented reality interface for 

this asset tracking system is to make it easy to use and easy to 

understand. We expect that the design elements can explain 

themselves during the experience. When the user uses the asset 

tracking system, they will perform intuitive actions to get their 

desired outcome. We try to give minimum instruction to the user 

via a tutorial but using intuitive hints by colour and simple words. 

Figure 4 shows a view of the user interface for a detected vending 

machine. The information provided to the user can be seen in the 

bottom blue square, and include capture timestamp, object 

category, confidence level and object coordinate in meters. 

 

  

 

Figure 4. User interface of the asset tracking system 

Figure 3. Transformation between world and camera 

coordinate system (Tola 2005) 
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3. EVALUATION METHOD 

We designed an experiment where a user performed the complete 

asset tracking process for all vending machines in Baillieu 

Library at the University of Melbourne. The user was asked to 

complete the asset tracking process in a traditional approach 

using pen and paper. This enabled us to make a comparison 

between the two different approaches. The asset tracking system 

was also deployed, and the results were recorded for evaluation. 

Unfortunately, due to COVID-19 restrictions, access to the 

University campus was severely limited. Therefore, the 

evaluations were partly done at home without further access to 

the vending machines or the test environment. 

 

3.1 Power Consumption 

Energy consumption is one of the most constraining limitations 

of any wireless devices and their applications. Most modern 

devices are built with irreplaceable batteries which means if the 

device run out of the power, it must wait until it is charged again. 

Thus, power consumption directly associated with the amount of 

time that an application can be run for.  

 

To estimate the power consumption of the application, we 

measure the power consumed by the application for 5 minutes 

then use the following formula to calculate the estimated run time 

in minutes for the application. The experiment was repeated for 

multiple times and the average run time was obtained to avoid 

bias. 

 

 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒 =  
𝑡

𝑝
× 100，   （3） 

 

where t = time spent in minute 

 p = power consumed in percentage 

 

3.2 Asset Detection Accuracy 

This section will focus on the evaluation of the object detection 

network used in the asset tracking application. Due to the 

pandemic situation, the evaluation was based on previously 

captured data instead of vending machines in the test 

environment. Precision, recall, mean average precision and mean 

intersection over union were calculated using test data. 

 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
，  （4） 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
，    （5） 

 

The average precision score summarizes a precision recall curve 

as the weighted mean of precisions achieved at each threshold, 

with the increase in recall from the previous threshold used as the 

weight in Equation 6.  

 

𝐴𝑃 = ∑(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛，          （6） 

 

where AP = average precision 

 𝑅𝑛 = recall score at nth threshold 

 𝑃𝑛 = precision score at nth threshold 

 

Intersection over union describes the localization accuracy of the 

predicted bounding box compared to the ground truth bounding 

box. In the Figure 5, we can see a visualization of the ground truth 

bounding box and predicted bounding box overlaid on the 

original image. The ground truth bounding box is drawn in white 

and the predicted bounding box is drawn in red. The intersection 

over union is calculated using the following formula, based on 

the intersection and the union of the predicted bounding box and 

the ground truth. 

  

  𝐼𝑜𝑈 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛
，              （7） 

 

Equation 7 demonstrates how to calculate IOU in the simplest 

scenario. In some test images there might be multiple bounding 

boxes and multiple objects appearing in the image. The number 

of predicted bounding boxes may not necessary match the 

number of ground truth bounding boxes. Figure 6 shows an 

example on object detection result where multiple objects are 

present in an image. The predicted bounding box is drawn in red 

while the ground truth bounding box is drawn in white. The 

number of vending machines present in the image is 5 while the 

Figure 5. An example of vending machine detection in an 

image. The ground truth bounding box is drawn in white and the 

predicted bounding box is drawn in red.  

 

Figure 6. An example of detecting multiple vending machines 

in an image. The predicted bounding boxes are drawn in red 

while the ground truth bounding boxes are drawn in white. 
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detection network predicted 7 vending machines in the image. 

From a human’s perspective, we can see that the object detection 

network mistakenly identifies the wall and the content of vending 

machine as vending machines. Computing the intersection over 

union in this case is difficult since one ground truth bounding box 

may have multiple predicted bounding boxes intersecting with it. 

The solution we use for this problem is based on a greedy 

approach. For each ground truth bounding box, we compute the 

intersection over union for every predicted bounding box and 

take the maximum value as the intersection over union for that 

ground truth bounding box. The intersection over union is 

calculated on a separate test set. 

 

3.3 Asset Localization Accuracy 

To evaluate the asset localization accuracy, we ask a user wearing 

HoloLens to perform asset tracking in the environment. To 

measure the accuracy, we map the result of asset tracking system 

on to the floor map and calculate the difference in the coordinates 

from the ground truth. Unfortunately, due to the pandemic 

situation, access to the university campus was restricted and 

therefore we established ground truth by manually locating the 

camera and vending machines on the floor map.  

 

3.4 Processing Time per Frame  

To calculate the processing time for each frame, we measure the 

time taken to process one frame and then repeat the process for a 

large number of frames. We take the average as the processing 

time required per frame. The asset tracking system aims to 

perform in near real-time. If the processing time is too long the 

user will experience a lag in the detection results which can 

render the system unusable in practical application.  

 

3.5 System Usability Scale 

To evaluate the usability of the system we invited several 

volunteers to try on the asset tracking application and complete a 

survey. Again due to the pandemic restrictions, we had to do the 

survey online. Each volunteer was shown a demo video of the 

application of the system and the user interface and was asked to 

complete a survey based on the video. The questionnaire was 

designed based on an industry standard system usability scale 

(Brooke J. 1996). Since the volunteers did not have access to the 

system, we replaced the learning related questions with more 

specific system usability questions. The questionnaire designed 

to be focus on the user’s ability to easily understand the various 

functions and the information displayed for the user. The 

responses were collected and used to calculate a score to 

represent the usability of the asset tracking system. 

 

 

4. RESULTS 

We implemented the vending machine tracking system as a 

mixed reality app for HoloLens. The app was then used to detect, 

locate, and record vending machines in a virtual setup. Each time 

that user sees an asset in front of him, the asset tracking system 

will automatically recognize the type and location of the asset 

without user’s interaction. Then, the recognition result is 

displayed on the user’s view by HoloLens. Using augmented 

reality, the predicted location and size can be visualized in 3D 

world. With our augmented reality interface, the user can freely 

move the predicted bounding box to modify the location if the 

user thinks it is not accurate. The interface will allow the user to 

accept or decline the detection result. If the user accepts the 

detection result, the location information will be stored in the 

database. 

 

4.1 Power Consumption 

The maximum running time we measure of our asset tracking 

system is 142 min. The acceptable running time range for fully 

charged HoloLens on active use specified by Microsoft is 2-3 

hours (Mattzmsft 2019). We observe that our asset tracking 

system can run within this time range. It means that our asset 

tracking system only consumes a moderate amount of power 

while operating. Since we did not have access to the environment, 

the relationship between the maximum running time of the asset 

tracking system and the time required to perform asset tracking 

in one building remains unknown. Further investigation on this 

relationship is required. 

 

4.2 Asset Detection Accuracy 

The evaluation results of our asset detection module are shown 

in Table 1. The results show that our object detection network is 

able to provide a reliable result to be recorded in database. The 

mean intersection over union shows that the predicted bounding 

box from our asset detection module has an average 85.77% 

overlap with the ground truth bounding box. It indicates that the 

bounding box result can be used to make depth estimation in asset 

localization module since the bounding box represents the width 

of the vending machine. Misclassification occurs when the object 

detection module confuses other similar objects, such as a cabinet, 

with vending machines. In Figure 7, we show an example of 

misclassification result from our object detection network. The 

predicted result with a confidence level of 0.5166 is drawn in red 

in the figure. As we can see the cabinet in the figure has a similar 

appearance with vending machine. This similar appearance 

confuses the object detection network to consider the cabinet as 

a vending machine. This problem can be resolved by introducing 

more diverse examples from different sources to the training 

process. 

 

 

4.3 Asset Localization Accuracy 

The average localization accuracy after removing outliers 

(distances larger than 5 meters) was found to be 2.311 meters. In 

Figure 8, we can see the distribution of localization errors with 

respect to the ground truth vending machine locations. The 

Precision 88.9% 

Recall 82.1% 

mAP 94.8% 

mIOU 85.77% 

Figure 7. A cabinet misclassified as vending machine 

Table 1. Asset detection accuracy evaluation results 
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majority of the predicted locations are shifted in the west 

direction. One of the reasons for having this result is that we have 

manual error in establishing the ground truth locations. The 

ground truth location is estimated manually based on captured 

photos of vending machines. In the manual process, errors in 

determining the camera location and orientation on the floor map 

are unavoidable. 

 

4.4 Processing Time by Frame 

The processing time we measured as average over 100 frames is 

1611 ms per frame. It is around 0.62 frame per second. In a 

practical application, the user will experience a small lag during 

the asset detection, however this does not seriously affect the 

operation of the asset tracking system. 

 

4.5 System Usability Scale 

For the augmented reality user interface evaluation, 10 volunteers 

were asked to complete the questionnaire. The results showed 

that most of the participants were able to read and understand the 

information we presented in the user interface. The participants 

believed that the information was well organized. Most of the 

participants found the system easy to use and not too complex. 

One issue that was identified from the responses was that the 

system has some inconsistency and education is needed before 

one can start using the asset tracking system. The system 

usability scale score that our asset tracking system obtained was 

75.6/100. This score is above the average system usability scale 

score of 68. It demonstrates that the augmented reality user 

interface of our asset tracking system can help the user 

understand the information easily and interact with the system 

naturally. It also shows that there is still room for improvement 

to provide a better user experience. To reduce the knowledge 

needed for operating the system, a step-by-step tutorial can be 

added when the user starts the application for the first time. More 

informative visualisations can also be introduced, e.g. a map of 

the current environment to help the user understand the current 

position of the system. 

 

 

5. CONCLUSION 

We have proposed a new design of asset tracking system based 

on HoloLens which uses machine learning to detect assets in 

near-real time. We demonstrated a vending machine tracking 

application using HoloLens and perform an evaluation on the 

application's capability. The result has shown high accuracy in 

asset detection and acceptable accuracy in asset localization. The 

system achieves 94.8% mean average precision in asset detection 

and 2.311 meters in asset localization accuracy. The system is 

demonstrated to be easy to use.  

 

The major limitation of this research is the lack of the evaluation 

in a real environment. Due to the pandemic situation, access to 

the University campus was restricted. Therefore, all evaluations 

were done in a minimum setup. Another limitation of this 

research is that the computer vision-based asset tracking system 

cannot uniquely identify an asset. Therefore, the location 

information is only reliable if the assets are not likely to move. 

For moving assets, additional approaches such as barcode or 

serial number recognition needs to be used to uniquely identify 

an asset. In that case, we can use the location of the asset as the 

unique identifier. The proprietary SLAM software of HoloLens 

is another limitation. This restricts our ability to modify or 

improve the performance of the SLAM algorithm. 

 

Overall, the result of evaluation shows the capability of the asset 

tracking system in increasing the efficiency of asset tracking and 

reducing the manual process required in asset tracking. Further 

research can be focused on evaluation in real environments, 

reducing the detection lag and improving the localization 

accuracy.  
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