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ABSTRACT: 

 

This paper attempts to quantify geometric considerations in observations and observe trends in solutions to free network solutions. 

The method of investigation will be utilizing 2D observations to determine how each measurement affects the overall solution and the 

location of the observations relative to the other nodes. A local reference system will be determined using the Gauss-Markov model 

with constraints by fixing the largest range observation to the y-axis to give a relative orientation. Further solutions will be calculated 

by fixing additional points to generate multiple least squares solutions relative to the local reference system. The resulting final points 

will be modeled using the Gauss-mixture model and compared to a simulated dataset generated by adding random error to the 

observations. Different weight matrices will be tested to demonstrate the effect on the overall solution. These methods were chosen 

because of prior experimentation by different research groups studying geometric considerations for UAS and ground surveying 

conditions. The major contribution will be the trends observed in the modeling and the correlation of the fixed local solutions to the 

geometry of the points. 

 

1. INTRODUCTION 

1.1 Background 

Current surveying techniques emphasize accuracy and cost as the 

driving concerns for project management. For example, a using 

photogrammetry UAS system costs more than a lidar scanning 

per square kilometer to create a DEM. Both systems are heavily 

studied, and the flight planning, including sensor selection, using 

ground control and processing methods dictate expected 

accuracy of the point cloud. However, the effect of the geometric 

aspects of the surveys in terms of ground and air control are not 

fully understood. Solutions often utilize excess ground control to 

avoid geometric considerations, which are vital for accurate 

detection of centimeter-scale landform change and to reduce the 

cost of operation (Harwin et al., 2015). Generating cost effective 

approximations for the error expected in free network solutions 

will potentially reduce the overall cost of the survey. 

Geospatial data solutions produced from UAS surveys involve 

multiple coordinate systems. Direct geo-referencing is used for 

initial sensor orientation in a global reference coordinate system. 

In GPS-denied environment, however, only an arbitrary local 

system can be used. In general, in situations where the 

infrastructure is inadequate, a local coordinate system must be 

used (Dewitt et al., 2000). Indirect geo-referenced systems use 

measurements of control points in some of the images and fix the 

local coordinate system to global/mapping system. The ground 

control used in the processing impacts the accuracy of the overall 

solution in the final coordinate system used. 

Previous studies indicate evenly distributed control points 

generate the highest accuracy in the final solution but there are 

many conditions to define ‘well-distributed’. The best control 

configurations utilize sufficient control at each end of the 

surveyed block and then evenly distributed points inside the area, 

all of them must be highly visible in as many images as possible, 

and, if possible, utilize variable elevations (Shahbazi et al., 

2015). It is common in these studies to have an excess of ground 

control and then test solutions with less ground control points. 

Many times, the points are split into two groups, one used in the 

computations and the other ones, called check points are used for 

quality checks. The results of this testing indicate that a large 

amount of ground control points can be removed without 

significant losses in accuracy (Mancini et al., 2013).  

 

 

2. MODEL CONDITIONS 

The purpose of this model is to generate a 2D solution that is the 

most accurate location of the points. The Gauss-Markov model 

with constraints is the ideal model to represent the nodes because 

the fixed constraints can be applied to the x and y locations for a 

specific node. These fixed nodes will be the control/anchor 

nodes. Remaining nodes will be free nodes and their location will 

vary based on a least squares estimation. The combination of 

these nodes produces a local solution. 

 

2.1 Gauss-Markov Model with Constraints 

The Gauss-Markov model is used as an observational model for 

adjustments. The original Gauss-Markov model uses an 

observational model represented by: 
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The left side of the equation � represents the observations. These 

are the distance measurements between nodes. The � matrix is a 

partitioned Jacobian matrix with derivatives with respect to m. 

This matrix is further divided into �� which represents the 

constrained node locations as known values. Since this is a 2D 

model, the derivatives will be with respect to the x and y location. 

� represents the unknown correction parameters and � represents 

the random error. The distribution of the errors is assumed to be 

Gaussian based on the weight matrix, � (Schaffrin and Snow, 

2017). Assuming the observations will always be larger than the 

rank of the Jacobian matrix means that there will be redundant 

observations. This means that there is a least squared solution. 

 

The data utilized in this study are observations of distances 

between points. The initial setup included ranges between each 

vertex and observations in both directions (i.e., 10 to 3 and 3 to 

10, see Section 2.2). These ranges define a free network without 

a defined global solution. So, computing a local solution is the 

best that can be done. The free network can be arbitrarily 

oriented, and the direction of the largest variation is oriented 

along the y coordinate axis. These geometric variances include 
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scale of observations from 700 to 30 meters, uneven point 

distributions relative to centroid of the network, and 5 of the 10 

points being collinear. The varying ranges will be tested in the 

weight matrix. Collinear points are used when comparing the 

RMSE.  

 

2.2 Gaussian Mixture Model (GMM) 

Gauss-Markov solutions yield 10 individual points generated in 

a local coordinate system as seen in Fig. 1. The lines connecting 

each point demonstrate 2 unique observations: two independent 

range measurements from both points. The RMSE was 

minimized for the local reference solution by fixing the largest 

observed distance, which observation was between points 9 and 

2. Fig. 1 represents the reference local solution. A good geometry 

for control in this solution will utilize the furthest points that are 

not collinear with other points. This point combination would 

include a pairing of 2, 9, and 4 or something similar. This 

combination gives the largest area inside the figure. 

 
Figure 1: Network setup with connected observations (meters) 

 

Multiple localized reference solutions were calculated fixing 

different points. Each of these solutions fixed 3 of the 10 nodes 

from the solved 2-9 solution. These multiple local solutions are 

the 3-constraint solutions. Each of these 3-constraint solutions 

minimizes the RMSE when compared to the 2-9 solution. The 

solutions used the same observations and gave the location of 

each free node. An example of the distribution of the 3-constraint 

local solution can be seen in Fig. 2. These multiple solutions 

demonstrate the lowest RMSE local 3-constraint solutions 

around point 2. The black point represents the 2-9 solution while 

each blue cross represents a unique 3-constraint solution. 

 

 
Figure 2: Point 2 lowest RMSE local solutions 

 

Using the local 3-constraint solutions from each of the 120 

combinations, the GMM takes the resulting vertices from the 

multiple solutions and clusters the data around a central point. 

This is a method for determining the distribution of the resulting 

data. Each point is assumed to have a local reference system 

value that is unknown. The GMM algorithm determines the most 

likely location of that local reference system based on the 

distribution of the estimates from the multiple fixed points (He 

et al., 2011). However, this GMM needs defined properties for 

the weight matrix based on the distribution. 

 

Within the GMM, there is a single covariance matrix with 

different possible properties. The first is a diagonal covariance 

matrix that says the predicted values are uncorrelated. Obviously, 

this is not the case because certain mutual solutions have 

common control node. Ultimately this yields a circular or ovular 

shape symmetrical in the x and y axis. A full covariance matrix 

allows for each point to be related to each other and thus 

providing the best fit while not tying the values to symmetry from 

the x and y axis. This result, however, can lead to overfitting the 

dataset because the ellipse can vary to incorporate all points in a 

single circle with Gaussian distribution. 

 

Covariance matrices are either shared or unshared between 

solutions. A shared covariance matrix implies that all the 

covariance matrices are the same and the distribution of the 

ellipses is indicative of the same orientation. Unshared 

covariance matrices for each solution change the orientation of 

the Gaussian ellipse. This means the orientation of each ellipse 

is not perpendicular to the x and y axis (Section 3.2). 

 

The nature of the problem indicates that the free nodes will be 

correlated. This is because each solution uses 3 fixed points, and 

these points are shared between solutions. A full unshared 

covariance matrix is the best indication for the solution because 

the correlation between solutions will be related to the geometry 

of the system (He et al. 2011). The geometry of the system 

solutions will be independent of the assigned axis because the 

orientation of the points will dictate the variation in the solution. 
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3. SIMULATION RESULTS 

3.1 Cluster Modeling Results 

The next simulation was to test the overall location of the free 

nodes and determine the effect of the spatial distribution on the 

overall solution quality. The free nodes in the 3-constraint local 

solutions did not appear to maintain a uniform Gaussian 

distribution around the 2-9 constraint solution. The points were 

not in a circular cluster around the 2-9 constraint solution. Using 

the model defined, the residual matrix for each 3-constraint 

solution are solved when compared to the 2-9 solution. Standard 

practice is to assume the variation in the random error has a 

normal distribution and is centered at 0 (Schaffrin and Snow, 

2017). Multiple weight matrices are tested against the 

distribution. The original local reference system solution utilized 

a diagonal weight matrix giving equal weight to all observations. 

This is standard for most applications (Schaffrin and Snow, 

2017). A length-based diagonal weight matrix was used for the 

next round of simulations. A length-based matrix utilizes the 

range between nodes to account for geometric considerations and 

error increasing with distance. A larger distance in an 

observation normally indicates a larger error. Another weight 

matrix considered utilized the shared points. Solutions which 

share any amount of points have a sparse covariance matrix. If a 

single point was shared between the solutions, a fixed value of 

0.33 was allocated to the shared point. An example is the 3-

constraint solution using points 2-9 and 4 when compared with a 

3-constraint solution using 2-6 and 3 as fixed nodes was given a 

value of 0.33. If two points were shared, a fixed value of 0.67 

was allocated. The locations of the non-diagonal values in the 

matrix align with the shared fixed points between the solutions. 

The purpose of this modeling is to generate an accurate weight 

matrix to represent the data distribution. 

 

3.2 Gaussian Mixture Modeling Results 

The Figs. 3 and 4 below represent the different covariance 

matrices tested on point 2. The top two graphs represent the 

results using a diagonal covariance matrix to fit the dataset. 

These matrices assume there is a uniform Gaussian distribution 

with a centroid at the original 2-9 constraint solution. Fig. 3 

demonstrates Gaussian circles centered on the local reference 

system that have a diagonal covariance matrix do not accurately 

support the data distribution. The bottom two images 

demonstrate a sparse covariance matrix is more representative of 

the distribution of solutions. Since a full sigma matrix more 

accurately represents the dataset, the covariance matrix shows 

the points are geometrically related. The next experiment 

involves clustering the data using supervised and unsupervised 

fitting. 

The top two graphs utilized individual fitting and the algorithm 

determined two circles best fit the dataset. This data fitting for 87 

observations fit a normal distribution with 16 solutions outside 

the dataset. The bottom graph represents the optimal data fitting 

using a full and shared covariance matrix. Here the Gaussian 

circles were fitted in a similar manner to the shared covariance 

matrix but were unsupervised, so the number of groupings was 

undefined. The unsupervised orientation utilized two groups for 

the dataset which indicates the solutions can be partitioned into 

multiple groups to optimally represent the spread of the dataset. 

This means the data cannot fit a single Gaussian distribution and 

since the data originates from a single dataset, the geometry of 

the solutions affects the Gaussian distribution. 

 

Testing indicated that the geometric location of the 3 constrained 

nodes affected the quality of the solutions. These solutions were 

modeled in the Gaussian mixture model using a diagonal and 

sparse covariance matrix. The diagonal covariance matrix with a 

circular Gaussian distribution did not properly model the data. A 

sparse covariance matrix utilizing the similar points between 

solutions fit the data. The unsupervised classification of the 

Gaussian mixture model indicated the local solutions did not fit 

a single Gaussian distribution. This further indicated a geometric 

relationship is present in the 3-constraint local solutions. The 

next set of testing is to compare the original 3-constraint local 

solutions with a noisy dataset and resulting 3-constraint 

solutions. A dataset with added noise that has similar trends in 

the solutions will demonstrate the properties of optimal 

geometric local solutions and remove the bias of a single dataset. 
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Figure 3: Sigma distribution with diagonal and full covariance matrices 

 

 

 

 
Figure 4: Gaussian mixture model with unsupervised sorting
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4. NOISY DATASET AND RMSE RESULTS 

4.1 Simulation Dataset Results 

If a new dataset is generated that exhibits the same trends as the 

original dataset, then it can be assumed the observations and 

geometric considerations can be applied to other networks. Each 

range observation was given a variance of 5 meters to generate a 

new dataset to compare against the 2-9 constraint solution. This 

data was processed as the noisy dataset. The RMSE data from 

the original 3-point local solutions and the new noisy dataset can 

be seen below. The fixed points are organized from least to 

greatest then plotted on the graph with the x axis ranging from 1 

to 8, y axis from 2 to 9, and the z axis from 3 to 10. This 

represents all the unique combinations of the 3 control points 

from a subspace of 10 points. Any line parallel with an axis 

represents a solution that has 2 points in common. An example is 

the bubbles on the right side of each graph all share the points 1 

and 2 with a varying third point. This applies to columns as well 

with the farthest left column representing solutions with 9 and 10 

as shared points. The larger bubbles represent a higher RMSE 

value. Values in the title of the graph represent the multiplication 

of the RMSE for all values to generate the bubble graph. 

 

The data demonstrates correlations between any two points. The 

original dataset and the noisy data have nearly identical RMSE 

when properly scaled. This proves that the RMSE correlation is 

invariant of the noise in the dataset. This leaves only the 

geometric considerations to compare. The highest values from 

the graph are from the solution fixing points 7, 8 and 9. The other 

peak values come from solutions involving any combinations of 

4 through 9. The points 7, 8, and 9 are close to collinear. This 

local solution, when connected, also creates a figure that does not 

encompass any of the other points. This would be defined as a 

poor geometry. The lowest value for RMSE was the solution 

with 2, 3 and 9. Selecting these three points provides the furthest 

two points and a third point that is not collinear with the non-

selected points while also being closest to most of the points. 

This is the expected outcome and would indicate a traditional 

good geometry for the figure including points being spread and 

not collinear. 

 

 
Figure 5: RMS value of variance dataset (50x) 

 

 
Figure 6: RMS value of base dataset (100x) 

 

 

5. CONCLUSION 

The purpose of this experimentation was to demonstrate a 

significant correlation between the geometry of generated local 

solutions and the quality of the local solutions. This was 

demonstrated using a multifaceted analysis of a free network 

containing 10 points. A local solution was generated from fixing 

the furthest 2-points to the y axis. Further local solutions were 

calculated by fixing 3 points in every combination from the 

dataset. Then, a noisy dataset was created, and the processes were 

repeated. The initial solution was compared with the base and 

noisy data to confirm the trends observed. 

 

The purpose of this paper is to study a simple 10-point 2-

dimensional free network to model geometric considerations. 

The first method considered was the Gaussian Mixture Model. 

GMM solution utilized multiple different weight matrices. The 

covariance matrices involved diagonal and full matrices with 

weights using the range and collinearity. Results of the GMM 

indicated that a sparse matrix was ideal for modeling because the 

solutions were related. This is expected because the solutions 

share fixed nodes, so they are geometrically related.  Next, a new 

dataset was produced from the initial dataset by adding 5 meters 

of variance in the measurements. A new set of 3-constraint 

solutions are calculated and compared with the original solution 

using RMSE. The original data local solutions and the new noisy 

local solutions have the same correlation between points 

demonstrating the relationship between geometry and RMSE. 

The results of the Gaussian mixture model and the RMSE 

analysis demonstrate geometric considerations have large effects 

on the fixed solution quality. After studying the simple free 

network model, the considerations for an optimal geometry used 

in selecting control should be proximity to other points, the 

largest distance between points, and selecting points that are not 

collinear with more than 1 other point. 

 

Future work for this project will quantify the geometric 

considerations. The trends can be quantified with multiple initial 

solutions using variable geometry. This could include more 

points of using a convex geometry with internal points. Another 

consideration will be to utilize 3 dimensional solutions to create 

a more accurate representation of a field experiment. 
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