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ABSTRACT: 

 

3D city models are playing a growing role worldwide as sources of integrated information upon which different urban applications are 

developed. In the context of urban planning and design, semantic 3D city models can provide plenty of qualitative and quantitative 

information about the urban context and of the area(s) to be transformed. This paper takes inspiration and continues a work recently 

published in which several design parameters and Key Performance Indicators are computed from a semantic 3D city model, and later 

used in a GIS-supported urban design process to develop a new area. As many of such parameters are derived from the gross volume 

of the building stock, this paper investigates whether and to which extent different building stock models might affect the estimation 

of the gross volume. The study is carried out in anticipation of the upcoming LoD2-based, country-wide model of the Netherlands that 

is being finalised by our team. At the same time, the paper investigates whether and which information can be obtained regarding the 

quality of the LoD2 model from a comparison with the LoD1 one, with a focus on volume calculation. 

 

 

1. INTRODUCTION 

Holistic urban planning requires much qualitative and 

quantitative knowledge of the urban context and of the area(s) to 

be transformed. This applies not only to the built-up areas, but 

also to open spaces, existing infrastructures (above and below 

ground), and covers both the current situation and the estimation 

of impacts by the envisioned scenarios. Creating and sharing this 

knowledge among the different stakeholders and practitioners 

can still be however a rather complex and time-consuming 

process. At the same time, the number of cities in the world 

creating and using 3D city models as “digital geo-twins” (Lehner 

and Dorffner, 2020) has been growing continuously in the last 

decade, also thanks to the steady advances in all geomatics-

related disciplines. The adoption of a semantic 3D city model is 

associated with several beneficial effects for a city, as it can be 

seen as a source of integrated and harmonized spatial and non-

spatial information to be used for many applications. As of today, 

different applications based on and exploiting the added value of 

virtual 3D city models have been documented in literature. They 

range from noise mapping, augmented reality, up to energy 

simulation tools (e.g. Stoter et al., 2020; Blut and Blankenbach, 

2021; Wang et al., 2020; Rossknecht and Airaksinen, 2020). 

Biljecki et al. (2015) provide a review of applications based on 

3D city models. Further, more recent examples of applications 

are described for example in Bao et al. (2020) and 

HosseiniHaghigh et al. (2020). 

 

In the context of urban planning, this paper takes inspiration and 

continues the work recently published by Agugiaro et al. (2020), 

in which an new approach was proposed to support the computer-

assisted urban planning and design process by exploiting a 

semantic 3D city model. Additionally, a prototypic software tool 

was also presented and described. According to the authors, 

urban transformations of the future, generally defined as “the city 

of tomorrow”, always relate to the existing city (i.e. “the city of 

today”). The idea is then to extract a set of Key Performance 

Indicators (KPIs) from a 3D city model, to use them to analyse 

the “city of today”, on the one hand, and to provide quantitative 

support to the urban planner to create a number of design 

proposals for a new development area, on the other hand. More 

specifically, the proposed approach elaborates on a widely used 

notion in urban planning, i.e., the number of households per 

hectare, as one of the common units of measure for urban housing 

density (Torrents and Alberti, 2000). Generally, the term 

“household” refers to the number of people sharing the same 

living space (e.g., a family), and, although often used in urban 

planning, the actual size of the physical space used by a 

household (i.e., a dwelling) is seldom considered, neither in 2D 

nor in 3D. Therefore, a set of parameters computed from the 

semantic 3D city model is introduced to estimate the volume of 

the physical space “used” by a dwelling, both in terms of 

residential and non-residential spaces. These volumetric 

parameters are then used to support the successive urban design 

process. As such parameters are derived from the gross volume 

of the buildings, it is crucial that the building stock is accurately 

represented by the city model, as it will affect the successive 

analyses and design phases. The aforementioned prototypic 

software tool computes the KPIs from a semantic 3D city model 

of Amsterdam (more details about it in section 3). 

 

The estimation of the gross volume of the building stock by 

means of the 3D city model, and – more specifically – from 

different LoDs (Levels of Detail) is the starting point of this 

paper. The topic has already been investigated to different extents 

by other authors (e.g. Macay Moreira et al., 2013; Wate et al., 

2016; Biljecki et al., 2018). Here we will restrict the reasoning to 

the CityGML “world”, as the number of possibilities tied to the 

different LoDs and the rather loose definition of LoD in the 

CityGML specifications can already lead to rather different 

results. Biljecki et al. (2016), for example, have suggested a more 

refined classification of LoDs. This classification is now widely 

accepted and used, especially in the Netherlands, and is presented 

schematically in Figure 1. Another common problem associated 

with 3D city models is the lack of information (metadata) 

documenting, for example, the source data and the reconstruction 
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process that has led to the final product (Labetski et al., 2018). 

This regards all possible objects in a city model, both in terms of 

geometry and associated thematic data – therefore also the 

computation of the gross volume of the building stock. 

As Figure 1 exemplifies, even in 3D city models with LoD1.x 

buildings the value of the enclosed volume can vary 

considerably, depending on the reconstruction technique. Still, it 

is generally accepted that LoD1 (building) models, or – more 

precisely – LoD1.0 to LoD1.2 can be rather easy to obtain, 

depending on the available data. The most common approaches 

are to extrude the footprint by a certain height value which is 

either obtained from spatial data, e.g. lidar point clouds or 

normalised DMS (nDSM), or by multiplying the number of floors 

by a certain offset. The overall loss of accuracy in terms of 

enclosed volume is counterbalanced by the possibility to generate 

such models rather quickly and for large areas. Still, automatic 

generation of city-wide LoD2 models is a current topic of 

research worldwide, as both quality of available surveyed data 

and development of new 3D reconstruction algorithms steadily 

improves (Rottensteiner et al., 2014; Lafarge, 2015). 

 

 
Figure 1. Revised LoD model for CityGML. Image taken from 

Biljecki et al. (2016). 

In terms of data availability for 3D city modelling, the 

Netherlands have a long tradition of providing high-quality, 

country-wide, up-to-date open (geo)data that can be accessed 

mainly via a centralised national portal (PDOK, 2021). Thanks to 

the already available datasets, and their continuous 

improvements, basic data needed for a country-wide semantic 3D 

“city” model are already available. In particular, when it comes 

to the modelling of the building stock, a LoD1 model of the 

whole Netherlands, consisting of over 10.2 million buildings, has 

been available since 2019. It is called 3D BAG (Dukai et al. 

2019) and it extends the Dutch BAG (Basisregistratie Adressen 

en Gebouwen) dataset (BAG, 2021) containing information 

about each address in a building, its current main use (residential, 

commercial, industrial, etc.), the year of construction and the 

registration status. The 3D Geoinformation group at TU Delft is 

currently working on releasing a new version of the 3D BAG, 

which will contain automatically reconstructed LoD2.2 buildings 

for the whole Netherlands, as well as LoD1.2 and LoD1.3 

buildings derived from the LoD2.2 models by means of 

progressive 3D generalisation. The final version of this new 3D 

BAG dataset is expected to be released in the course of 2021. The 

LoD2.2, LoD1.3 and LoD1.2 buildings models that are used in 

this paper are a preliminary preview of this new dataset. A brief 

overview of the underlying building reconstruction process is 

given in section 2. 

The main questions this paper deals with is whether the LoD2.2 

geometries provide better volume estimations than LoD1.3 (and 

LoD1.2). As a test case, the aforementioned city model of 

Amsterdam will be used as reference. At the same time, the idea 

is to compare the enclosed volume of each LoD model in the new 

multi-LoD dataset to assess its quality and check whether 

potential 3D reconstruction errors can be automatically (or semi-

automatically) identified and classified. 

 

2. AUTOMATIC 3D RECONSTRUCTION OF LOD2.2 

(AND LOD1.X) BUILDINGS 

The building geometries used in this paper were reconstructed 

using an improved version of the LoD1.3 reconstruction method 

described in Stoter et al. (2020). This method creates building 

solids automatically from a set of building footprints and a 

classified aerial lidar point cloud. Following is a description of 

the source data and a summary of the method. 

 

All source data are taken from PDOK, the aforementioned 

national open-geodata portal of the Netherlands. The building 

footprints come from the BAG dataset, containing information 

on all buildings in the Netherlands and the associated addresses. 

The building footprints are 2D polygons and have a minimum 

planimetric accuracy of 30 cm (BAG, 2021). The source for the 

elevation data is the AHN3 (Actueel Hoogtebestand Nederland) 

dataset. This is a classified aerial lidar point cloud that was 

collected in 2014-2016 in the study area. It has an average point 

density of 6-10 points/m2, a planimetric accuracy of at most 13-

23 cm and an elevation accuracy of at most 10-20 cm (AHN, 

2021). For the reconstruction process, only the AHN3 points that 

are classified as ground or as buildings are used. From the BAG 

dataset only those footprints are selected that are current and for 

which elevation data are available in the AHN3 dataset. This 

means that all buildings constructed or demolished after 2014-

2016 are filtered out. 

 

The general principle of the developed building reconstruction 

method consists in creating a partition of the building footprint 

into roof parts, where each roof part is labelled with a roof plane. 

This is called the roof partition. The line geometries that induce 

this partitioning are extracted from the point cloud and a solid 

geometry for the building can be obtained by simply extruding 

this partitioned footprint. The overall method is illustrated in 

Figure 2. The first three steps (a-c) are identical to the procedure 

described in Stoter et al. (2020). First, the lidar points for each 

building are selected using a point-in-polygon procedure with the 

BAG footprints (Figure 2a). Then a region-growing plane 

detection algorithm is used to identify roof and wall planes in the 

point cloud (Figure 2b). From the detected roof planes, the 

boundary lines are extracted (Figure 2c). These lines, as well as 

the detected planes and the original lidar points, are then used to 

create the roof partition (Figure 2d) by means of a graph-cut 

optimisation approach, as described in Zebedin et al. (2008). The 

LoD2.2 building solid is created by extrusion from the roof 

partition (Figure 2e). The LoD1.3 building solid (Figure 2f) is 

also created by extrusion, but from a generalised roof partition. 

This generalisation is performed by setting each roof part to the 

70th percentile of the lidar points of the corresponding roof plane 

and by merging roof parts with a height discontinuity smaller 

than 3 m (i.e. the approximate height of a floor). The LoD1.2 

building solids are created by extruding the BAG footprint to the 

70th percentile of all lidar points in the roof planes. The elevation 

of the building ground surfaces is determined by taking the 5th 

percentile of the elevation values of the lidar ground points in a 

radius of 4 m around the building. In addition, in case the point 

cloud indicates that there are ground planes within the building 
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footprint, these parts are removed from the roof partition. For 

example, this can happen with underground parking lots and can 

lead to the creation of a multi-part building from a single 

footprint. With the described method applied to the city model of 

The Hague, the root mean square error (RMSE) between the lidar 

points and the reconstructed building solid surfaces is less than 

30 cm for 98% of the points and less than 10 cm for 63% of the 

points. 

 

 
Figure 2. Main steps in the building reconstruction method: (a) 

input point cloud + input building footprint, (b) plane detection 

in point cloud, (c) roof boundary line detection, (d) roof 

partition, (e) LoD2.2 solid extrusion, (f) LoD1.3 solid extrusion. 

3. VOLUME COMPARISON AND EVALUATION OF 

THE RECONSTRUCTED BUILDINGS 

In this section a comparison between the above mentioned LoDx 

building models (i.e. LoD2.2, LoD1.3, LoD1.2) and a so-called 

volumetric building model, based on a normalised DSM, 

generated for the city of Amsterdam and used here as ground 

truth, is carried out. For the sake of clarity, from now on the 4 

models will be named as nDSM, LoD22, LoD13 and LoD12 

models. First, a brief description of the 3D city model used as 

reference, i.e. the nDSM model, is given. Then the analyses are 

carried out and the results are presented. 

 

The nDSM model was generated by gathering heterogeneous, 

spatial, and non-spatial datasets that were then harmonised and 

integrated. The complete list of used dataset as well as details 

regarding the data integration process can be found in Agugiaro 

et al. (2020). Here only the most important characteristics will be 

mentioned. The nDSM model contains all buildings of 

Amsterdam (circa 171000), modelled as single-part buildings. As 

said before, the city model is “frozen” to the year 2016 due to the 

last availability of the AHN3 data (and derived products such as 

the DSM and the DTM). The nDSM model follows the CityGML 

2.0 specifications and is stored in a 3D City Database instance 

(Yao et al., 2018). Several candidate datasets were initially 

considered to model the building geometries. However, issues 

were found in both the existing 3D BAG LoD1 model and the 

LoD2 model provided by the Municipality of Amsterdam. 

Therefore, and given the relevance of estimating the enclosed 

volume of buildings, a different approach was adopted, i.e. the 

focus was put less on the building “outer” shape and more on the 

enclosed volume, which was therefore derived from the 

normalised DSM, i.e. obtained as the difference between the 

available DSM and DTM datasets (also available via PDOK). 

The volume is computed by intersecting the nDSM with the BAG 

footprints. As a result, the so-called volumetric city model was 

generated, as this was found to be the least error-prone approach, 

and to best serve as input for the urban planning application built 

on top of it. A visual example is given in Figure 3. 

 

From a thematic point of view, national and local datasets 

containing building information (e.g. year of construction, 

building usage, etc.) were fused and integrated with the with the  

 

 
Figure 3. Example of the same building modelled according to: 

(a) the LoD2 model provided by the Municipality of 

Amsterdam, (b) the LoD1 model from the 3D BAG dataset, (c) 

the volumetric model obtained from the nDSM, and (d) a 

comparison of the 3 models to show the differences in terms of 

enclosed volumes. Image taken from Agugiaro et al. (2020). 

geometries. A set of rules was defined to classify all buildings 

into 5 main classes, corresponding to fully “Residential”, 

“Mixed-use”, “Non-residential (single-function)”, “Non-

residential (multi-function)”, or “Unknown”. In order to align the 

reference nDSM model with the 3 LoDx models, only those 

buildings identified by the same ID were chosen, resulting in 

circa 167000 buildings to be used in the successive comparison 

analyses. The reason for using the whole city model of 

Amsterdam is that it offers a significant number of heterogeneous 

buildings, covering different shapes, sizes, usages, years of 

construction, and it has been cleaned up sufficiently to be trusted 

as a reasonably accurate ground truth. 

 

From Table 1 (and Figure 4) it can be observed that the 4 models 

have rather similar characteristics, especially in the 5-95 

percentile interval, with a tendency to have higher values as one 

moves from the nDSM model to the LoD22, LoD13 and LoD12 

model (see the perc-50/median value, for example). 

 
 nDSM 

m3 

LoD22 

m3 

LoD13 

m3 

LoD12 

m3 

min 0.2 0.9 1.4 2.1 

perc_5 12.1 12.7 12.8 13.1 

perc_10 15.2 15.9 16.0 16.2 

perc_25 89.6 82.5 84.7 85.3 

perc_50 416.9 436.8 447.2 485.3 

perc_75 1038.3 1076.1 1072.7 1146.5 

perc_90 2090.4 2175.9 2145.9 2339.7 

perc_95 3588.4 3782.1 3712.6 4177.4 

max 1642195.6 4226450.1 4256801.3 2205115.1 

Table 1. Percentile-based characterisation of the distribution of 

gross volume of buildings in each model. 

 
Figure 4. Distribution of gross volume of buildings in each 

model. Top and bottom whiskers correspond to the 95th and 5th 

percentile, respectively.
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Functions 

Buildings Avg. 

footprint 

nDSM LoD22 
from nDSM 

LoD13 
from nDSM 

LoD12 
from nDSM 

Count (%) m2 m3 (×103) (%) m3 (×103) (%) (%) m3 (×103) (%) (%) m3 (×103) (%) (%) 

Residential 94364 (56.4) 87.5 88579.4 (34.3) 92592.7 (32.1) (4.5) 91865.2 (32.0) (3.7) 99758.8 (32.3) (12.6) 

Mixed-use 16451 (9.8) 287.6 62633.3 (24.2) 71916.0 (24.9) (14.8) 70780.5 (24.6) (13.0) 80299.8 (26.0) (28.2) 

Non-res. (single-f.) 11602 (6.9) 538.3 68059.7 (26.3) 80351.1 (27.9) (18.1) 80743.6 (28.1) (18.6) 81931.7 (26.5) (20.4) 

Non-res. (multi-f.) 634 (0.4) 1985.1 18228.7 (7.1) 21285.1 (7.4) (16.8) 21283.7 (7.4) (16.8) 23249.4 (7.5) (27.5) 

Unknown 44197 (26.4) 55.1 20942.6 (8.1) 22262.0 (7.7) (6.3) 22482.5 (7.8) (7.4) 23931.0 (7.7) (14.3) 

Total 167248 (100.0)  258443.7 (100.0) 288406.9 (100.0) (11.6) 287155.5 (100.0) (11.1) 309170.7 (100.0) (19.6) 

Table 2. Distribution of buildings according to the function classes. The average footprint size and aggregated gross volume are also 

listed. For LoDx models, the differences from the nDSM model are given in the coloured columns. 

This is visible also in Table 2 that presents an overview of the 

distribution of the buildings (and their gross volume) according 

to their functions classes, as well as the sum of the gross volume 

for each model. Table 2 shows that the residential class is the 

most relevant, both in terms of number of buildings and gross 

volume, followed by mixed-use and non-residential buildings. 

Buildings of unknown function are numerically significant 

(26.4%) but the contribution in terms of volume is only 8.1%. In 

addition, looking at the average size of the footprint, it can be 

seen that the class of function “unknown” contains buildings with 

rather small(er) footprints. From a simple visual inspection, it can 

be confirmed that most of them are garages, sheds or other 

ancillary, small buildings. In the nDSM model, residential 

buildings account for 34.3% of the gross volume, followed by 

non-residential (single function) and mixed-use buildings (26.3% 

and 24.2%, respectively). Finally, non-residential (multi-

function) buildings represent 7.1% of the whole gross volume. 

Table 2 contains also the corresponding values for the LoDx 

models in terms of gross volume, volume distribution and (in the 

coloured columns) volumetric difference with regard to the 

nDSM model. In terms of internal distribution, within each model 

the distribution is approximately the same, and is comparable 

with the nDSM model. In terms of volume differences, the 

LoD2.2 and the LoD1.3 yields both circa 11% larger volumes 

than the nDSM. Looking at the class-specific volumetric 

differences of residential buildings, the values are quite similar 

for both LoD22 and LoD13 (+4.5% and +3.7% respectively) and 

indicate a rather good correspondence between the nDSM and 

these 2 models. Considerably larger are the differences in case of 

non-residential and mixed-use buildings, where all values are in 

the range between 13.0% and 18.6%. This could indicate that the 

reconstruction process of the buildings in these classes might be 

more problematic, as it deals with buildings having on average 

larger footprints and (likely) more irregular shapes, i.e. these are 

models with a higher complexity. Finally, all figures in the 

LoD12 model are generally worse than the others. The overall 

gross volume difference, for example, reaches 19.6%. 

 

As the next step, an analysis on the volume differences between 

the LoDx and the nDSM models was carried out. Table 3 contains 

the percentile-based characterisation of the distribution of the 

volume differences (in %, always referred to the nDSM). Figure 

5 shows the distribution of the differences of the 3 LoDx models 

grouped in intervals of growing size. In general, all 3 

distributions are shifted towards the positive x-axis, which is in 

line with the previous findings in terms of aggregated volume 

differences. The RMSE is similar for the LoD22 and LoD13 

(31.2% and 33.9%, respectively), and 58% for LoD12. However, 

if we consider only the 5-95 percentile interval, the RMSE values 

drop to 6.4% for the LoD22 model, 10.9% for the LoD13 and 

15.6% for the LoD12 ones. In particular, Figure 6 shows that over 

50% of the LoD22 buildings differ volumetrically no more than 

+5% from the corresponding nDSM value. If the interval is 

extended to all differences between -10% and +10% – which can 

be considered an acceptable threshold in terms of maximum 

volume difference – the percentage grows to over 80% of all 

buildings in the LoD22 model. If we keep the same interval, i.e. 

[-10%, +10%], the number of buildings of the LoD13 model 

drops to circa 55%, and to circa 45% in the LoD12 model. 

 
Volume differences 

from nDSM 

LoD22 

% 

LoD13 

% 

LoD12 

% 

min -98.9 -98.9 -86.7 

perc_5 -7.8 -22.4 -5.4 

perc_10 -0.6 -12.6 1.7 

perc_25 1.8 0.8 5.5 

perc_50 3.9 6.6 10.5 

perc_75 7.1 12.4 17.0 

perc_90 13.2 19.2 26.8 

perc_95 19.1 25.8 36.3 

max 6640.2 7001.7 15270.3 

    

RMSE 31.2 33.9 58.0 

RMSE (perc_5-95) 6.4 10.9 15.6 

Table 3. Percentile-based characterisation of the distribution of 

gross volumes differences (in %) in the LoDx models with 

respect to the nDSM model. The RMSE is computed on the 

whole sample and for the 5-95 percentile interval. 

 
Figure 5. Distribution of volume differences (in %) between the 

LoDx models and the nDSM model. 

 
Figure 6. Buildings (in %) classified according to the respective 

interval of volume difference from the nDSM. 

A specific investigation on the remaining 20% of the LoD22 

buildings with a volume difference larger than ±10% was carried 

out. Most of the buildings in this category are multi-part 

buildings, and the graph in Figure 7 – analogous to the one in 

Figure 6 – shows that circa only 10% of the LoD22 multi-part 

buildings are within the ±10% threshold of volume differences. 

The percentage is slightly higher in the LoD13 model, and 
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smaller in the LoD12 model. This can be considered a first simple 

indicator of where to look for possible problems in the 3D 

reconstruction process. In the city model of Amsterdam, the 

number of multi-part buildings is however rather small (i.e. only 

0.2%, corresponding to 319 buildings out of 167248), 

nevertheless their contribution to the total gross volume differs 

significantly according to the model: 3.6% in the nDSM, 9.9% in 

the LoD22, 9.6% in the LodD13 and 5.8% in the LoD12 models. 

 

 
Figure 7. Multi-part buildings (in %) classified according to the 

respective interval of volume difference from the nDSM. 

 
Figure 8. Examples of multi-part buildings: [top] a correctly 

reconstructed building, [bottom] a wrongly reconstructed 

building. 

A visual inspection was carried out with particular attention to 

the multi-part buildings. Two examples are presented in Figure 

8. After further investigation, it turned out that the wrongly 

reconstructed building shown in Figure 8 (bottom) was the result 

of a bug in the reconstruction software which has since been 

fixed. This exemplifies the value of the analysis carried out here 

also as a means to quickly verify the correctness of the building 

reconstruction implementation. 

In order to further investigate volume differences between the 

models, more aspects were included into the analysis, i.e. the 

footprint area, the year of construction, and the building usage 

(class). For space reasons, the following sections will contain the 

results of the comparison only between the LoD22 and the nDSM 

models. 

 

3.1 Volume comparisons based on footprint size 

All footprint areas were classified into size intervals. Table 4 

gives an overview of the main characteristics associated with 

each class. Figure 9 shows that classes with larger variations are 

at the opposite sides of the graph: either buildings with very small 

footprints (≤20 m2) or with rather larger footprints (≥2000 m2). 

If, on the one hand, the number of small-footprint buildings is 

considerable (23.8%), their aggregated volume accounts for less 

than 0.4% in both the nDSM and the LoD22 models. As this does 

not hold for the larger-size buildings, the analysis was further 

refined considering also the usage of the buildings, as shown in 

Figure 10. Here the only class which greatly differs from the 

others in terms of variability of volume differences is the mixed-

use one, especially in the case of very large-footprint buildings 

(≥10000 m2). All other classes show similar characteristics, save 

for buildings of class “unknown” of footprint size smaller than 

100 m2 – for which, however, the same considerations hold as 

written before. 

 
Footprint size 

range (in m2) 

Buildings nDSM LoD22 

Count (%) m3 (×103) (%) m3 (×103) (%) 

0-20 39720 (23.8) 950.2 (0.4) 938.6 (0.3) 

20-50 29131 (17.4) 8170.7 (3.2) 8456.5 (2.9) 

50-100 64235 (38.4) 45508.7 (17.6) 47360.6 (16.4) 

100-200 19831 (11.9) 31479.6 (12.9) 32805.7 (11.4) 

200-500 8182 (4.9) 26519.6 (10.3) 27750.9 (9.6) 

500-1000 3016 (1.8) 25768.9 (10.0) 27375.6 (9.5) 

1000-2000 1753 (1.1) 29499.2 (11.4) 31990.2 (11.1) 

2000-5000 981 (0.6) 36174.0 (14.0) 40926.1 (14.2) 

5000-10000 254 (0.2) 21288.6 (8.2) 26480.3 (9.2) 

10000-20000 107 (0.1) 17129.9 (6.6) 21948.5 (7.6) 

>20000 38 (0.1) 15953.8 (6.2) 22374.1 (7.8) 

Table 4. Distribution of buildings (and associated gross 

volume) according to the footprint size. 

 
Figure 9. Distribution of volume differences (in %) between 

LoD22 and nDSM models based on footprint size. Top and 

bottom whiskers correspond to the 95th and 5th percentile, 

respectively. 

3.2 Volume comparisons based on building age 

All buildings were classified into 5 age classes depending on their 

year of construction. Table 5 contains information about the 

distribution of buildings and the respective volume for each age 

class. Also in this case, for each age class the usage classes were 

considered, and the result is shown in Figure 11. 
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Figure 10. Distribution of volume differences (in %) between 

the LoD22 and nDSM models based on the footprint size and 

building function. Top and bottom whiskers correspond to the 

95th and 5th percentile, respectively. 

Looking at the graph, buildings of “unknown” function are the 

only ones that differ considerably in terms of variation of volume 

differences, while less striking differences can be highlighted for 

all other age and function classes. Recalling that buildings of 

“unknown” class account for only circa 8% of the whole gross 

volume in the city model of Amsterdam, there seem to be no clear 

dependency on the year of construction when it comes to the 

differences between the LoD22 and the nDSM models. 

 

Year of 

construction 

Buildings nDSM LoD22 

Count (%) m3 (×103) (%) m3 (×103) (%) 

≤1900 19291 (11.5) 33955.5 (13.1) 37082.2 (12.9) 

1900-1945 56811 (34.0) 53651.3 (20.8) 56613.1 (19.6) 

1945-1970 27060 (16.2) 39114.6 (15.1) 42926.3 (14.9) 

1970-2000 46759 (28.0) 79676.3 (30.8) 92160.0 (32.0) 

>2000 17327 (10.4) 52046.1 (20.1) 59625.4 (20.7) 

Table 5. Distribution of buildings (and associated gross 

volume) according to the age class. 

 
Figure 11. Distribution of volume differences (in %) between 

the LoD22 and nDSM models based on age class and building 

function. Top and bottom whiskers correspond to the 95th and 

5th percentile, respectively. 

3.3 Spatial analysis and visualisation 

The map presented in Figure 12 shows for each neighbourhood 

the distribution of the buildings according to the volume 

difference intervals described before and shown in Figure 6. The 

map shows that the buildings with largest differences are 

distributed approximately around the belt around the city centre 

of Amsterdam – where most likely larger shopping centres and 

other large-footprint facilities are located. Secondly, the maps 

shows all volume differences aggregated at neighbourhood level. 

This allows us to quickly recognise neighbourhoods with the 

biggest volume differences – and to check for potential problems 

in the 3D reconstruction process. Of course, a similar map 

detailing information at single-building level can also be 

obtained, but it is left out here for space reasons. 

 
Figure 12. Distribution of volume differences between LoD22 and nDSM aggregated at neighbourhood level. 
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A positive side effect of the visual inspection on the 

(volumetrically speaking) “problematic” neighbourhoods has led 

to the discovery of other – initially unexpected – phenomena. An 

example is shown for neighbourhood “N73D” – highlighted in 

Figure 12 by means of a dashed polygon. As Figure 13a shows, 

the footprint heights of the buildings in the nDSM model 

(represented as grey boxes) and the LoD22 model (as red 

wireframe) are misaligned, and this leads to a high share of 

volume differences between 10% to 30%. Figure 13b gives an 

example and provides some hints on the reasons: the presence of 

uneven terrain surrounding the buildings. However, as the error 

could depend itself on the nDSM model, or in the 3D 

reconstruction process (or both!), further investigation is 

currently being carried out. 

 

 
Figure 13. [a] Example of misalignment between footprint 

heights in the nDSM buildings (as grey boxes) and the LoD22 

buildings (in red wireframe). [b] Example of a building 

surrounded by terrain points at different heights. 

4. CONCLUSIONS 

In this paper, a volume comparison of different buildings models 

in the city of Amsterdam was carried out, namely between an 

existing volumetric city model, derived in a previous work from 

a normalised DSM, and a set of LoD2.2, LoD1.3 and LoD1.2 

models that are currently being prepared and are going to update 

the 3D BAG dataset, available for the whole Netherlands. The 

reasons that motivate the work presented in this paper are 

manifold. On the one hand, the current, nDSM-based city model 

is used to extract a number of volume-based KPIs used for urban 

planning and design. The first question is therefore whether the 

newer LoDx datasets (chiefly the LoD2.2 one) offer a significant 

improvement in terms of estimation of the enclosed gross volume 

of the building stock. On the other hand, the availability of a 

whole city model which has been cleaned up and already used for 

past works represents an opportunity to check whether potential 

errors in the new LoDx models can be quickly spotted 

automatically (or semi-automatically). Hence the second 

question, i.e. whether information on the accuracy of the 3D 

reconstruction process (in terms of volume) can be collected and 

used to further improve it. 

 

It is crucial to recall that in this work the nDSM-based model has 

been used as reference. If, in general, this is an acceptable 

assumption, it is reasonable to assume that it is still not 

completely error-free. As a matter of fact, some errors were 

found, e.g. when it comes to small buildings (e.g. sheds) that 

might be completely covered by vegetation – or, as shown in 

Figure 13 – in the case of misaligned building footprint heights. 

Still, using it as a reference for comparing the other LoDx models 

has proven useful to quickly find some issues in the building 

reconstruction pipeline, and to reason on how to address them. 

Generating a “clean” DSM by first filtering out the vegetation 

from the AHN3 point cloud (unlike it is now the case) could 

surely lead to an improvement of the resulting nDSM as ground 

truth, but at the cost of additional pre-processing steps. 

 

In conclusion, from the analysis carried out using the 3D city 

model of Amsterdam, we can say that: 

 The LoD22 model is the closest to the nDSM model, and – 

from a volumetric point of view – it differs globally by circa 

+11%. Circa 60% of the LoD22 buildings differ in volume no 

more than +5% from the corresponding ones in the nDSM 

model, and the figure reaches 80% of the buildings if the 

interval ±10% is considered – which is an acceptable threshold 

in terms of gross volume accuracy. In terms of errors, multi-

part buildings resulting from the 3D reconstruction process 

tend to be more error-prone, despite their relative scarce 

number within the 3D city model. 

 If the different functions in the building stock are considered, 

residential buildings (which represent numerically circa 56% 

of the whole model) are the class with the smallest volume 

difference: globally the LoD22 residential buildings differ in 

volume only +4.5% from the nDSM model. Non-residential 

and mixed-use buildings (together circa 17% of the building 

stock) show larger volume differences, ranging circa from +15 

to +18% with regard to the nDSM model. 

 When it comes to the LoD13, it is quite similar to the LoD22 

and the same considerations done before still hold. On the other 

hand, the LoD12 model shows larger volume differences, both 

globally (+19.6%) and in terms of building classes. Residential 

buildings, for example, are still the class with the smallest 

volume difference, but it yields now +12.6% 

 If we refine the analysis by classifying the buildings according 

to the size of the footprint, it is mostly at the extremes that there 

are major volume differences: small-footprint buildings (≤20 

m2), e.g. garages, sheds, etc., or very large footprints (from 

2000 m2 upwards) where the roles of mixed-use and non-

residential buildings becomes more significant. 

 If we focus on the year of construction, there are no particular 

trends that seem to imply a dependency of the reconstruction 

success rate on the age of the building, with the exception of 

the building of class “unknown” – but they make up only circa 

8% of the total gross volume of the whole dataset. 

 

From an urban planning point of view, and, more specifically, 

when it comes to the extraction of volume-dependent design 

parameters and KPIs, it can be concluded from this analysis that 

the nDSM-based 3D city model can be used as a good proxy in 

case a LoD22 city models is not available, especially if the focus 

is on residential buildings. This means that advantages in terms 

of data availability and easier reconstruction process may 

compensate for the lack of a geometrically more detailed LoD22 

building model – which in general is still less widely available 

and more complex to produce. Alternatively, the LoD13 model 

might represent a good alternative, while the LoD12 model 

shows too large volume deviations to be used in this context. 

 

By means of the comparison between the nDSM and the LoD22 

footprints, a misalignment of the absolute footprint heights has 

been found in certain areas. Theoretically, they should coincide 

or be very close to each other, so this has turned out to be a quick 

way to identify potentially problematic buildings. However, the 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2021-169-2021 | © Author(s) 2021. CC BY 4.0 License.

 
175



 

reasons for this issue are still subject of investigation and so far 

no conclusive findings have been collected. The plan is therefore 

to further investigate and report on them in future publications. 
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