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ABSTRACT:

Nowadays, the number of connected devices providing unstructured data is rapidly rising. These devices acquire data with a temporal
and spatial resolution at an unprecedented level creating an influx of geoinformation which, however, lacks semantic information.
Simultaneously, structured datasets like semantic 3D city models are widely available and assure rich semantics and high global
accuracy but are represented by rather coarse geometries. While the mentioned downsides curb the usability of these data types
for nowadays’ applications, the fusion of both shall maximize their potential. Since testing and developing automated driving functions
stands at the forefront of the challenges, we propose a pipeline fusing structured (CityGML and HD Map datasets) and unstructured
datasets (MLS point clouds) to maximize their advantages in the automatic 3D road space models reconstruction domain. The pipeline
is a parameterized end-to-end solution that integrates segmentation, reconstruction, and modeling tasks while ensuring geometric and
semantic validity of models. Firstly, the segmentation of point clouds is supported by the transfer of semantics from a structured to an
unstructured dataset. The distinction between horizontal- and vertical-like point cloud subsets enforces a further segmentation or an
immediate refinement while only adequately depicted models by point clouds are allowed. Then, based on the classified and filtered
point clouds the input 3D model geometries are refined. Building upon the refinement, the semantic enrichment of the 3D models
is presented. The deployment of a simulation engine for automated driving research and a city model database tool underlines the
versatility of possible application areas.

1. INTRODUCTION

Currently, large municipalities around the world develop 3D city
models. The wide availability of aerial images, Airborne Laser
Scanning (ALS) point clouds, accurate cadastral records, and ul-
timately efficient algorithms leads to the creation of urban 3D
models on an unprecedented scale. The models are often created
in a CityGML-compliant manner enabling the managing of 3D
semantic models. However, the automatic reconstruction meth-
ods have certain limitations resulting from the geospatial inform-
ation acquisition technique (Haala and Kada, 2010). One of the
pivotal downsides is the top-view looking acquisition that e.g.,
prevents capturing building façades and thus limits the achiev-
able Level of Detail (LoD) of the reconstructed object. The re-
cent interest in detailed road space modeling is driven by several
factors. Thereby, the development of automated driving func-
tions is a pivotal one. This trend reflects in an increased num-
ber of mobile mapping units scanning road environments. This,
however, results in an influx of geodata like Mobile Laser Scan-
ning (MLS) point clouds and High Definition (HD) Maps that
depict the road network and its space supporting the navigation
and simulation of automated vehicles. Nevertheless, HD Maps
may be valid for several test categories of automated driving func-
tions, but as soon as more complex physical sensor effects are
demanded for testing, they are not sufficient anymore (Schwab
and Kolbe, 2019). For that purpose, more detailed geometrical
and semantical representations of real environments are needed.
Moreover, the geodata flood is strengthened by the growth of
connected devices equipped with LiDARs, cameras, and RGB-
D sensors. Consequently, the question arises of how preexisting
models can be geometrically refined and semantically enriched

using the increasing influx of unstructured data. Simultaneously,
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Figure 1. Overview of the pipeline concept, whereas DS denotes
the application driving simulation

a broadening range of applications for different purposes is be-
ing developed. Depending on the task, each of these applica-
tions have different requirements and preferences for 3D mod-
els. For example, while maximizing the geometric accuracy of
roof surfaces may improve the results of a solar potential ana-
lysis (Willenborg et al., 2018), the increased complexity could
have a negative impact on the real-time capability of a driving
simulation (Schwab and Kolbe, 2019). For the latter, it might be
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tolerable that the geometric deviation increases quadratically with
the distance to the road. Moreover, the geometric accuracy may
be in conflict with the time required to conduct a citywide solar
potential analysis. Fundamentally, this is a multi-objective op-
timization problem with conflicting objectives (e.g., application
runtime, result accuracy, memory usage). Since the weighting of
the objectives is application or application run specific, a Pareto
efficient solution can be found at best. As application algorithms
react differently to changing 3D model characteristics, the cost
functions of the optimization problem are also application spe-
cific.

In order to maximize the potential of structured and unstructured
datasets, we propose a customizable pipeline concept accommod-
ating for application-specific requirements as depicted in Fig-
ure 1. To optimally configure the parameters for a specific ap-
plication, a complete parameterization of the pipeline modules
should therefore be possible before the execution is triggered.
The pipeline should be considered as an end-to-end solution in
which different modules for geometry refinement and semantic
enrichment can be added. While there are various definitions of
semantic enrichment (Xue et al., 2021), we define it as a process
of joining semantic information to a semantic city model both as
a geometric and non-geometric semantic for application-specific
tasks following the definition of (Xue et al., 2021). Whereas
the geometry refinement refers to a challenge of the resolution
increase of existing geometries for application-specific tasks ab-
stracting from defined LoDs (Gröger et al., 2012) while maintain-
ing existing geometric semantics (Xue et al., 2021). Both con-
cepts, however, are inline with 2.0 and 3.0 versions of CityGML
modeling guidelines (Gröger et al., 2012; Kutzner et al., 2020).
The pivotal strength of the proposed end-to-end pipeline is the
integration of solutions from various domains like point cloud se-
mantic segmentation, object reconstruction, and modeling while
maintaining the geometric and semantic validity of processed ob-
jects. Moreover, the processing algorithms are supported by prior
knowledge extracted from city models reducing the complexity
of tasks. This underlines how existing semantic city models may
help in tackling issues like semantic segmentation of unstruc-
tured datasets without the need for e.g., computationally expens-
ive deep learning algorithms deployment. Moreover, our work
proposes an automatic plausibility test for surface reconstruction
based on point clouds coverage analysis as restrictions to data
acquisition often occur (e.g., backyard) and limit reconstruction
possibility (Xu and Stilla, 2021). Hence, we have placed plastic
surgery in the title as the pipeline forces enhancements of only
adequately covered city models. As a first feasibility test of the
concept, an exemplary pipeline with modules for geometry re-
finement and semantic enrichment for the purpose of automated
driving testing is presented. Moreover, parameterization tests
are conducted and pipeline results are evaluated using reference
building models in LoD2 and LoD3. Finally, the refined mod-
els are transferred to first applications, such as the Unreal En-
gine. The implementation is partly based on the Master’s Thesis
of (Wysocki, 2020).

2. RELATED WORK

Data or information can be distinguished w.r.t. its underlying
structure. Thereby, structured data is organized in a predefined
schema enabling efficient data processing and content navigation
(Sint et al., 2009). In order to structure geometric, topological,
appearance, and semantic information of cities and landscapes,
the open standard CityGML is utilized internationally. CityGML
is used for representing, storing, and exchanging semantic 3D
city and landscape models. It provides a common definition of

basic entities, attributes as well as relations and is therefore ap-
plied in a variety of application domains (Biljecki et al., 2015).
The standard is an application schema of the Geography Markup
Language (GML) and version 2 was issued by the Open Geospa-
tial Consortium (OGC) in 2012 (Gröger et al., 2012), with version
3 currently being finalized (Kutzner et al., 2020). To describe the
logic of road networks including their lane topology, geometries,
and traffic rules, the standard OpenDRIVE is widely adopted for
driving and traffic simulation applications. OpenDRIVE is based
on a linear referencing concept, whereby the lane geometries,
road objects, and traffic rules are defined in a track coordinate
system. The standard was developed for simulation and testing
purposes but is also used to describe HD Maps by georeferen-
cing the road network with a proj4 string. The current version 1.6
was published in 2020 by the Association for Standardization of
Automation and Measuring Systems (2020).

To create semantically rich 3D models of the as-built environ-
ment, surveying campaigns are conducted, which yield unstruc-
tured data. E.g., point clouds acquired via Terrestrial Laser Scan-
ning (TLS) are often used in 3D building modeling, development
of digital surface models, and environment monitoring (Vossel-
man and Maas, 2010). Point clouds have been suggested as the
most appropriate data source for the sake of 3D mapping in large-
scale urban scenes because measured 3D points can provide dir-
ectly spatial coordinates of measured surfaces. The method for
generating building models from point clouds is split into several
steps. First, the segmentation and classification of the point cloud
into basic building elements like planes and cylindrical objects
can either be data-driven or model-driven. Data-driven methods
are based on point features (Habib et al., 2010) like intensity val-
ues or geometric features like i.e., normal direction from a local
point neighborhood (Niemeyer et al., 2014). These neighbor-
hoods can be fixed or adaptive with respect to the point density
(Weinmann et al., 2015). Such neighborhood can also be replaced
by a voxel structure where the feature description is then stored
per voxel instead per point (Xu et al., 2018b). Based on fea-
tures, points can be classified and similar points are connected
to segments (Yang et al., 2016). These segmentation and classi-
fication approaches are based on methods like Markov Random
Field (Lu and Rasmussen, 2012) or Random Forest (Chehata et
al., 2009) classifiers or neural networks (Wang et al., 2017). In the
next step, the extraction of primitives can be carried out on points
or voxels. Some objects can be represented by fitting geometric
primitives to point cloud segments like i.e., planes or cylindrical
objects (Xu et al., 2018a). After reconstruction, the resulting geo-
metric primitives, as well as voxels and points, are labeled with
classes and handed over to further processing to fulfill necessary
requirements for building or city models like CityGML.

The numerous works tackle the challenge of 3D reconstruction in
contrast to the enrichment of existing 3D city models that gained
little research attention (Xue et al., 2021). Nevertheless, adding
geometric and non-geometric semantics is addressed e.g., by de-
tecting and modeling windows on a façade based on the so-called
voyeur effect (Tuttas and Stilla, 2013). Other approaches fo-
cus on the city models enriching utilizing building information
models (BIM) (Stouffs et al., 2018). Also, the geometry refine-
ment research niche is expressed by (Willenborg et al., 2018) and
the linking of existing mesh models with superimposed semantic
models is presented.

However, these approaches do not comprehensively leverage the
information from already existing semantic 3D model datasets
derived from prior surveying campaigns. They focus on linking
existing meshes to semantic models, selectively apply prior in-
formation, or neglect the prior 3D models in the reconstruction
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process. Furthermore, previous works have primarily focused on
the reconstruction of single object types or groups. Thus, the
question arises of how to integrate the variety of methods into one
pipeline and how existing semantic models can support the recon-
struction methods at subsequent processing steps while maintain-
ing semantic and geometric validity w.r.t. to city model.

3. PROPOSED PIPELINE

In order to address the aforementioned challenges, we propose
the method shown in Figure 2. The strategy assumes utilization
of dense MLS point cloud data and HD Maps as OpenDRIVE
converted to the CityGML standard using the converter r:trån
(Schwab et al., 2020). The prerequisite for this method is a geor-
eferenced MLS point cloud at the cm-grade global accuracy. As
a supportive and optional dataset serves an ALS point cloud. All
the steps of the workflow are implemented within the FME 2020
environment with integrated LASTools, MeshLabServer, and Py-
thon scripts presenting an end-to-end solution. The implementa-
tion is available within the project’s repository 1.

After clipping the point clouds according to the objects to be
refined, the point cloud subsets representing a vertical-like ob-
ject (e.g., walls) are directed to the segmentation processing step,
while subsets representing a horizonal-like object (e.g., roads) are
directly directed to the surface reconstruction step. The splitting
into horizontal-like and vertical-like object representations is ar-
chitecturally shown in Figure 2 and enables a faster execution of
the pipeline. The suffix -like is added as neither horizontal nor
vertical objects are represented by ideal plane surfaces in reality.
For example, a single segment of a road is a horizontal-like ob-
ject consisting of horizontal-like parts but a building’s wall is a
vertical-like structure.
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Firstly, the raw semantic vector objects restrict the respective
MLS point cloud dataset to the maximum possible extent de-
pending on the input models as described in subsection 3.1. This
operation reduces the input dataset from city to building scale,
while simultaneously preserving inliers. Afterwards, the sep-
aration to vertical-like and horizontal-like objects is applied to
1 https://github.com/tum-gis/CityModelSurgery

remove the majority of outliers from horizontal-like structures
but not for vertical-like where large portions of outliers are still
present (e.g., vegetation). However, the horizontal-like structures
have gaps resulting from filtering objects occluding the depic-
tion of a surface. This is overcome by adding the ALS point
cloud to fill-in occluded areas in the dataset (see subsection 3.1).
Then, horizontal-like objects are passed to the reconstruction part
while vertical-like objects are further segmented, as described in
subsection 3.2. The reconstruction part with pre-processed point
clouds is controlled by four parameters – this process is described
within subsection 3.3. The refined geometries are augmented
by additional semantic information, as shown in subsection 3.4.
Thereafter, the output models are stored as CityGML 2.0 and 3.0
datasets, whereas the validation is performed inter alia with the
3DCityDB suite. Moreover, a converter from the CityGML to the
Datasmith format is created. This format is dedicated to utiliza-
tion in Unreal Engine applications. Based on the translated data
an interactive game is developed (see section 4.). This stands as a
proof of concept for the pipeline utilization in automated driving
applications and 3D cadastre among others.

3.1 Clipping & ground points filtering

To enable efficient processing, the first step is to select only those
points that represent the road space object to be geometrically re-
fined. Since this operation depends on the absolute accuracy of
the object, the clipping range is selected depending on the ob-
ject’s LoD. Here, the recommendations of the CityGML standard
are adopted as the preset, whereas this parameterization can also
be defined by the pipeline operator beforehand. For example, a
LoD1 building model leads to a buffer of 5 m, while a LoD2 geo-
metry of a road may require a different buffer optimum depending
on subsequent reconstruction methods.

Due to the calculations of Euclidean distances and the creation of
sphere-like masks, standard geographic buffer operations in 3D
can be computationally demanding. In order to avoid that, a mix-
ture of a 2D buffer with an extrusion operation is proposed. First,
a 2D buffer is created, then an extrusion is calculated in positive
and negative direction in the third dimension. Therefore, the re-
spective buffers operate in the X, Y, Z directions (Z positive and
negative) in a Manhattan-like manner overestimating the buffer’s
range. This approach prevents the removal of inliers while signi-
ficantly reducing the number of outliers.

After clipping, the point cloud subsets still contain outliers. As
shown in Figure 3, road objects may contain representations of
vehicles, whereas wall objects can still contain trees. To separ-
ate horizontal- and vertical-like objects within the subsets, the
lasground tool of the LASTools collection is applied with ded-
icated non-airborne and urban environment parameters. Due to
inherited semantics from the input models, the algorithm can de-
cide to mark horizontal-like points as positive or negative (e.g.,
roads or buildings respectively in horizontal-like subsets) and
subsequently steer the subsets for further segmentation or directly
to surface reconstruction. As shown in Figure 3, the segmenta-
tion is required for vertical-like subsets, since portions of point
clouds depicting irrelevant extruded objects, such as trees, are
still present. In the case of horizontal-like subsets, the fusion of
ALS and MLS data is performed in order to accommodate for
anticipated gaps resulting from filtering-out vertical structures,
as shown in Figure 3. Alternatively, a Digital Elevation Model
(DEM) can be used to compensate for areas where vertical occlu-
sions constantly exist (like parking lots). ALS point clouds are
not fused for vertical objects as the acquisition geometry results
in very sparse coverage of vertical structures.
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Figure 3. Application of the filtering to horizontal- and
vertical-like structures within clipped area. The red circle marks

outstanding outliers within vertical-like objects

3.2 Segmentation

Since the goal is to refine planar city features (e.g., fences, walls,
traffic signs), all complex extruded objects like vehicles and ve-
getation should be treated as noise. Most often, the vertical-like
structures consist of several vertical segments, such as a building
that is composed of several walls. However, due to occlusions or
objects not in the scanner’s field of view (e.g., backyard), not all
objects are adequately represented by the MLS point cloud. Such
structures should be skipped in the further processing.

Figure 4. Coverage assessment of the walls of a building
visualized from the top view: Qualified walls (brown), dense
patches (green), and sparse patches (purple). The large glass
fronts of the building resulted in substantial laser reflections

inside the building footprint.

Hence, the coverage needs to be analyzed to assess which walls
are suitable for refinement. The point cloud dataset is flattened to
2D and tiled to a 2 m × 2 m grid. Within each cell of the grid, a
sum of points is calculated and a rejection threshold for numbers
lower than the 80th percentile value is introduced. To avoid biases
caused by too densely covered parts of a wall, a measure for the
uniformity of the point distribution is proposed. First, a 2D buffer
is created around a wall according to the object accuracy (as in
subsection 3.1). The areas of patches and respective 2D buffers
are calculated and the percentage ratio of those is obtained. The
percentage ratio of 60% is utilized as a threshold for eligible walls
for reconstruction. The process is visualized in Figure 4.

Since the analyzed structures are vertical-like planes, the RAN-
dom SAmple Consensus (RANSAC) algorithm is utilized, which
allows for certain deviations of the plane estimation. It enables
outliers filtering, which, due to prior operations, is performed
within a shrunken area, as shown in Figure 5. This makes the al-

Figure 5. RANSAC applied to the extent shrunken using
semantics of existing models

gorithm more robust by minimizing the possibility to fit a plane to
an irrelevant object within a point cloud subset. Also, this assures
consistency w.r.t to the input model. The parameters of RANSAC
are designed to utilize a general plane model with observations as
an unordered set of pre-processed points, with the topmost num-
ber of iterations set to 100, while the distance threshold is set to
0.1 m taking into account the high density of MLS point clouds.

3.3 Surface reconstruction

In order to use external implementations for point cloud pro-
cessing within the pipeline, the MeshLabServer is controlled via
FME and the parameterization is realized via automatically gen-
erated XML configurations. The reconstruction is performed as
follows: First, computation of the normals for the input point
clouds. Second, application of the Screened Poisson surface re-
construction algorithm (Kazhdan and Hoppe, 2013). Third, sim-
plification with the Quadric Edge Collapse Decimation function
(Corsini et al., 2012).

The reconstruction success is influenced by four main paramet-
ers. The parameter adaptive octree depth of the Screened Pois-
son algorithm controls the resolution of the reconstructed surface,
where the value 10 is selected as default. Here, a larger number
reflects a higher resolution of the reconstruction, but also a higher
computational cost. The target number of faces and percentage
reduction parameters of the Quadric Edge Collapse Decimation
function control the ultimate number of faces of the algorithm.
If there is an anticipated number of polygons, the target num-
ber of faces can simplify the complex mesh to a fixed number
of faces. This parameter is prone to errors and an absolute num-
ber of faces is rarely known. Hence, the percentage reduction
parameter is usually more suitable. The pipeline operator can es-
timate a rough anticipated representation of the refinement and,
by typing-in a percentage, the mesh is simplified by this number.
The post-simplification cleaning option enables the suppression
of features that have unreferenced vertices, bad faces, and similar
errors.

Due to the utilization of the Screened Poisson algorithm, a recon-
struction of a continuous surface is enforced. This is an advantage
in the case of unstructured datasets like MLS point clouds accom-
modating for gaps in the dataset. However, it also results in the
overestimation of the end range. Thus, a mask of the raw model
extent is applied to reduce the area and assure compatibility with
the input model.

The semantics of the raw model is transferred to parts and groups
in the cutting part to ensure compatibility with the whole input
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city model. Additionally, generic attributes are added to distin-
guish the raw from the refined geometries. The Timestamp marks
the refinement date in UTC format, the FeatureNo indicates the
number of refined faces per single feature, and HasGeoRefined
enables querying only reconstructed objects. Allowed GML geo-
metries suitable for storing such refined objects are saved as
MultiSurface. Depending on the class of the city model object,
the reconstructed geometry can either be replaced with a raw geo-
metry or be added as an additional feature. For example, to create
a CityGML 2.0 compliant building representation, a class Wall-
Surface can be utilized to store a raw wall geometry in LoD2
whereas the refined one in LoD3 – pointing to the same Build-
ing. However, this is not a feasible solution for the geometric
refinement of a model that is already represented in the highest
LoD.

3.4 Semantic enrichment

New challenges for city models are being addressed through
the ongoing revision of state-of-the-art data models, as exem-
plified by CityGML 3.0 (Kutzner et al., 2020). This involves
not only the revision of concepts, but also the introduction of
new feature classes like Hole and HoleSurface placed within the
CityGML 3.0 ecosystem (detailed relations with other city ob-
jects explained in (Kutzner et al., 2020)) to accommodate for
emerging application areas. We present an automatic semantic
enrichment method for water manhole covers defined by Hole
and HoleSurface CityGML 3.0 classes. The method utilizes prior
knowledge based on national norms, refined geometries as well as
intensity values of MLS point clouds. The method’s overview is
illustrated in Figure 6. Manhole covers can be distinguished from

Figure 6. Step 1, 2 and 3 show the manhole detection with the
red rectangles encompassing the approximate location. Step 4
shows the explicitly modeled geometry (green) of the manhole

within the refined road segment

the surrounding road surface based on their structure, material
and shape. Since these characteristics depend on the respective
countries, the German national norm class D 400 is utilized in
our case. It is assumed that this approach is also applicable to
manhole cover types in other countries by adjusting the intensity
and geometry patterns of the respective national or international
standards.

The selection of the region of interest (ROI) is obtained as de-
scribed under subsection 3.1. Here, a road segment is delineat-
ing the ROI, as a manhole cover is assumed to be located within
a road surface. Although the measured intensity values depend
on instrumental effects, acquisition geometry, and environmental
effects, the intensity distributions can provide clues to material
properties. For example, the stucco building class is in the range
of 28400 to 29200 intensity value (Kashani et al., 2015), which
corresponds fairly well to the rough concrete surface used for
the manholes in Germany. After a min-max normalization of the
measured intensity values to the target range of 18000 to 32800,
all points not matching the manhole cover filling can be filtered
out. Due to the presence of noise and varying acquisition condi-
tions, this processing step does not yet return an absolute position
of the manhole cover, as shown in Figure 6 2). Therefore, in order

to find the location of a manhole, a density measure is pursued.
The point cloud is transformed into an image with a pixel size
of 0.1 m × 0.1 m storing the number of points as a band value.
The pixels now serve as patches of the point cloud representing
the corresponding density. To simplify processing, the pixels are
coerced to vector points that contain an attribute indicating the
total number of points in a patch. The patches are presented in
Figure 6 3). Afterwards, the 10 densest points are chosen to re-
ject the sparsest regions. The final search is decided based on
an overlap check. The buffers of 0.2 m around each point (due
to 0.1 m × 0.1 m pixel size of input points) are introduced. The
densest buffered patches, overlapping at least five times, determ-
ine whether there is a manhole within that segment. If the test is
positive, the most overlapping part is selected as an area within
each center of a manhole is localized. In order to find the final
center location, a gravity center is extracted from a polygon as a
seed point. This seed point serves as a location for the search of
the manhole’s center point creating a new area of interest with the
radius of: Diameter of the manhole + diameter of the stucco part
+ introduced pixel size as possible deviations. The dense patches
found (with at least 10 points per patch) within this area serve as
features to calculate the manhole’s center point as the centroid of
the patches.

The modeling of the manhole is performed as a cut around the
center with a diameter of 0.785 m (based on the respective man-
hole class). Then, the manholes are stored in CityGML 3.0 as in-
dependent geometries of a road segment, as illustrated in Figure 6
4). The revised CityGML standard allows to explicitly represent
manholes as a class Hole (holding semantics) and HoleSurface
which is designed to represent the surface geometry of the man-
hole cover.

4. EXPERIMENTAL RESULTS

4.1 Datasets

The testing area has an extent of roughly 0.5 km × 0.5 km and
is located within the city center of Ingolstadt, Bavaria, Germany.
The urban location is typical for a central European city not ex-
ceeding 200 000 inhabitants and consists of historic buildings,
urban roads, city furniture, and vegetation. The plethora of avail-
able datasets depicted in Figure 7 enhances the validation pos-
sibilities of the presented pipeline. Moreover, the utilized LoD3
buildings are published as open data,2 enabling further investiga-
tions. In order to evaluate the method, buildings and roads served
as vertical-like and horizontal-like structures, respectively. The
buildings with the lowest available LoD1 were selected for more
challenging testing as they have a lower accuracy and the least
number of additional attributes. The same applies to roads where
only drivable segments have been selected for testing. The LoD2
and LoD3 building models served for validation purposes. The
MLS and ALS datasets consist of co-registered point clouds.

4.2 Results evaluation

Besides testing the method itself, the evaluation provides insights
into the influence of the introduced parameters on the final res-
ults. Within the evaluation process, the percentage reduction
parameter was fixed to 0.01 % in order to compare the effects
of the other parameters under constant conditions. According to
the suggestions of Kazhdan et al., the parameter values 8, 10 and
12 were applied for the adaptive octree level. All experiments
were conducted on a computer with following parameters: Intel

2 https://github.com/savenow/lod3-road-space-models
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Figure 7. Overview of the Ingolstadt datasets

Core i7-8750H CPU @2.20 GHz as processor, 16 GB for memory
(RAM) and Windows 10 as operating system.

Accuracy assessment

The quantitative assessment of the refined structures is measured
using the one-sided Hausdorff distance (Cignoni et al., 1998).
The testing scenario is designed to compare the refined building
and road structures at different octree levels (sampled surface)
with the available city model (target surface). The horizontal-
like objects that are represented by 94 road segments depict the
surface within the input borders of the HD Map features. This en-
sures the input topology relation between adjacent objects. How-
ever, this approach prevents refinements of the feature’s extent
and thus the final refinement is highly dependent on the quality
of the input vector dataset. The utilization of a supportive data-
set (i.e., ALS point cloud) increases the stability of the surface
reconstruction. As depicted in Figure 8, the comparison of raw
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Figure 8. Deviations, obtained by Hausdorff metric given in
meters, projected to the refined road surface at level 12 in

comparison to the input road model

geometries enables verification or modeling of road’s superelev-

ation. Additionally, depending on the accuracy, relatively small
changes are modeled by this method. For example, cobblestone
structures and potholes can be observed in Figure 8.

The vertical-like objects consist of 87 buildings in this test scen-
ario. The coverage analysis (see subsection 3.2) has rejected 18
buildings from the reconstruction process. This accelerated the
reconstruction process and avoided reconstruction errors. Fur-
thermore, only those LoD1 walls were accepted for further re-
construction for which the corresponding LoD3 wall contained an
DataAvailable attribute of Sufficient (except two on the periphery
of the area). These attributes have been added by the creators of
the LoD3 dataset and document the MLS point cloud coverage of
the LoD3 buildings. Similar to the road segment experiment, the
assumption of rigid boundaries has certain advantages and dis-
advantages that also apply to the buildings. For example, due to
the rigid borders of the LoD1 input model, the modeling of walls
of gable roof buildings present in LoD2 and 3 was prevented, as
shown in Figure 9. On the other hand, an increased depiction of
details on the building surface, such as windows and doors, can
be observed. These are not present in LoD2 but LoD3 building
models. Ultimately, the refined structure shows higher geomet-
ric details and captures even small deviations compared to the
generalized geometries of the LoD3 building model, as shown in
Figure 9.

Figure 9. Comparison of a refined LoD1 buildings geometry
(red edges) with LoD3 buildings

Moreover, the additional building features not present and signi-
ficantly distant from the searched plane in the input dataset like
balconies (in case of LoD1) are not reconstructed. Also, ob-
jects adjacent to buildings, such as tree branches, can be mis-
classified as buildings parts. This is due to the assumption that
the RANSAC algorithm should find one portion of inliers per
building feature. However, this only occurs if the object is loc-
ated within the respective accuracy range and on the prolonged
plane direction and within the plane margin introduced by the
RANSAC fitting plane model. This can be extended by the intro-
duction of another stopping criterion.

Since the walls of the LoD1 building models are the subject of
the refinement, this comparison reflects the deviations between
the raw buildings and the reconstructed surfaces that shall be per-
ceived as a gain of the method. The validation, however, is per-
formed using the building models in LoD2 and LoD3. As shown
in Table 1, the validation against LoD3 confirms that the refined
structures at the highest octree level 12 have the highest qual-
ity w.r.t. chosen measure. The discrepancies encountered when
comparing to the LoD2 models are due to the different meas-
urement techniques. The outliers present in the max column of
Table 1 are caused by falsely segmented points or balconies, as
shown in Figure 10, where the histogram indicates that most faces
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Octree
level

LoD1 (raw geom.) LoD2 (ref. geom.) LoD3 (ref. geom.)

max µ RMS max µ RMS max µ RMS

8 6.85 0.18 0.41 6.80 0.41 0.69 4.78 0.18 0.43
10 3.93 0.16 0.31 6.70 0.37 0.60 4.40 0.13 0.31
12 2.94 0.16 0.31 5.88 0.39 0.63 3.59 0.11 0.27

Table 1. Comparison of refined LoD1 building geometries with
the geometries of LoD1-3 building models, with all metrics

given in meters

Octree level LoD2 (raw geom.)

max µ RMS

8 0.24 0.04 0.05
10 0.24 0.04 0.05
12 0.25 0.04 0.04

Table 2. Comparison of the refined road geometries with the raw
geometry, with all metrics given in meters

deviate by about 0.2 m distance. The deviation measures for the
road segments (see Table 2) show no significant gain when the
octree level is increased. Nevertheless, the qualitative assessment
indicates that more details can be extracted, as presented in Fig-
ure 8.
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Figure 10. Deviations, obtained by Hausdorff metric given in
meters, projected to refined structures at level 12 in comparison

to LoD3 buildings

Evaluation of geometric fidelity & its impact

For our test datasets, the octree level 10 was found to be a suitable
compromise between processing time, exploration possibilities,
and occupation of disk space. While the main benefit of octree
level 12 is the high degree of detail, it is also necessary to take
into account the large amount of memory required – 120 MB for
94 road segments, whereas level 10 requires only 25 MB in such
a case. For buildings, this translates to 437 MB for 69 refined
buildings, while level 10 requires only 138 MB. The octree depth
parameter also has a high influence on the final processing time.
It spans from roughly 25 min for 94 reconstructed road segments
to almost 140 min at the level 8 and 12, respectively. The dif-
ferences in computational time between horizontal and vertical-
like objects emphasize the complexity of structures and of the
dedicated algorithm. However, the selection of the parameter
value should be guided by the final reconstruction requirements,
whereby this parameter revealed to be the most influential.

4.3 Possible applications

The enriched models from the experimental results have been
used to create an interactive game that is shared in the aforemen-
tioned GitHub repository1 – the visualization is shown in Fig-
ure 11. This confirms that semantic models can be used in the

Figure 11. Refined models used in city models management tool
(left) and automated driving simulator engine (right)

Unreal Engine software which is an engine of tools like CARLA
that serves purposes of automated driving research. Besides, the
models can be utilized in 3D GIS solutions like the 3DCityDB-
Web-Map-Client, as shown in Figure 11, and serve the purposes
of a 3D or 4D cadastre (Döner et al., 2011), as our concept also
includes the time factor. Since semantic LoD3 road space models
required for validation are currently only available in Ingolstadt
to the best of our knowledge, the presented pipeline was tested
with datasets from this area. The pipeline is expected to gen-
erate comparable results for mid-sized cities in Europe, but the
transferability should be further examined for more architectural
styles, such as skyscraper environments of megacities.

5. CONCLUSIONS & OUTLOOK

This work presented a first implementation of the proposed
pipeline concept for automated geometry refinement and se-
mantic enrichment of existing 3D city models using MLS point
clouds. The solution proved that pre-existing knowledge from
semantic city models can be incorporated to reduce the com-
plexity of point clouds segmentation for refinement purposes. In
order to generate suitable results for various application needs,
the pipeline was implemented as an end-to-end solution with re-
finement modules that can be parameterized before the launch.
Moreover, the effects of parameter variations were evaluated by
comparing the refined geometries obtained from the pipeline with
LoD2 and LoD3 building models that served as references. It
was shown that the refinement can substantially reduce the geo-
metric deviation to the LoD3 building models, whereby the res-
ulting geometries required considerably more storage space and
computational power. Furthermore, a method for semantic en-
richment for manholes has been successfully integrated into the
pipeline and already supports the export of CityGML 3.0 data-
sets, whereas a validation of this method is intended as one of the
next steps. Since the RANSAC method currently estimates only
one plane per wall surface, the next step is to investigate the en-
richment of balconies, building installations, and also stairs. This
applies not only to façade elements but also to street space ob-
jects in general, for which the position may already be known in
the HD Map, such as trees, bushes, fences, and wall barriers.

Every set of parameters used for refinement and enrichment
thereby leads to a result that represents a tradeoff between
conflicting objectives (e.g., simulation accuracy vs. simulation
runtime). Both the weighting of the objectives and the impact
of the model characteristics on these objectives depend on the
requirements and preferences of the applications and its user.
Hence, the question arises of how to formalize these requirements
and preferences for 3D models. Based on the formalizations, a
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pipeline could find the set of parameters that leads to the result
which is Pareto optimal for the particular application.
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