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ABSTRACT:

This paper presents a study that compares the three space partitioning and spatial indexing techniques, KD Tree, Quad KD Tree, and
PR Tree. KD Tree is a data structure proposed by Bentley (Bentley and Friedman, 1979) that aims to cluster objects according to
their spatial location. Quad KD Tree is a data structure proposed by Berezcky (Bereczky et al., 2014) that aims to partition objects
using heuristic methods. Unlike Bereczky’s partitioning technique, a new partitioning technique is presented based on dividing
objects according to space-driven, in the context of this study. PR Tree is a data structure proposed by Arge (Arge et al., 2008) that
is an asymptotically optimal R-Tree variant, enables data-driven segmentation. This study mainly aimed to search and render big
spatial data in real-time safety-critical avionics navigation map application. Such a real-time system needs to efficiently reach the
required records inside a specific boundary. Performing range query during the runtime (such as finding the closest neighbors) is
extremely important in performance. The most crucial purpose of these data structures is to reduce the number of comparisons to
solve the range searching problem. With this study, the algorithms’ data structures are created and indexed, and worst-case analyses
are made to cover the whole area to measure the range search performance. Also, these techniques’ performance is benchmarked
according to elapsed time and memory usage. As a result of these experimental studies, Quad KD Tree outperformed in range

search analysis over the other techniques, especially when the data set is massive and consists of different geometry types.

1. INTRODUCTION

With the increase in spatial data usage, spatial query arises as
a fundamental problem in numerous applications with various
geometric problems. Spatial query is used to find the nearest
neighbors lying within specified ranges of coordinates (Laurini
and Thompson, 1992). Handling spatial queries in an effect-
ive manner, one needs access methods based on a data structure
called an index are needed. Spatial indexing serves to optim-
ize queries in spatial databases to organize records in memory
space. The general idea of spatial indexing is to place spatial
data in space or clusters stored in secondary storage. Some
methods create clusters by partitioning the area, while others
create clusters by grouping objects. Rigaux et al. classify these
two methods as space-driven and data-driven spatial indexing
methods (Scholl et al., 2002). In the space-driven structure, ob-
jects are partitioned into rectangular cells, and cells are mapped
concerning spatial associations (overlap or intersection). KD
Tree and Quad KD Tree are examples of this type of data struc-
ture in this study. Whereas, in the data-driven structures, the set
of objects is partitioned and grouped according to the distribu-
tion of the objects. PR Tree is an example of this structure in
this paper. These methods primarily try to access spatial data as
fast as possible. For this reason, these methods are also called
spatial access methods(Manolopoulos et al., 2000).

The spatial access method needs to take into account not only
spatial indexing but also clustering techniques. As spatial data-
sets, mostly, are so large that they cannot reside in the main
memory and must be stored in secondary storage such as a disk
(Longley, 2005). Clustering is often required to group objects
that are close together. Without such clustering, many different
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disk pages would have to be fetched, resulting in a delayed re-
sponse. Through clustering, objects that are spatially close to
each other are also stored close together in memory. Rigaux et
al. propose the using the Minimum Bounding Rectangle (MBR)
as a geometric key for constructing spatial indices (Scholl et
al., 2002). An MBR is a rectangle that minimally encloses the
geometric objects in two-dimensional space. It consist of four
coordinate values Zmaz, Ymaz> Tmin, Ymin. Lhe coordinate
values represent the left, right, upper and lower corners of the
bounding box. With this way, it is provided to reduce expensive
geometric predicates during index traversal and make constant
size clustering entries to simplify the structure’s design.

Spatial indexing data structures play a crucial role in displaying
and finding the records for a given specific boundary, especially
in time-critical applications and manipulations of massive spa-
tial data. The most crucial purpose of these data structures is to
reduce the number of comparisons to solve the range searching
problems (Lewenstein, 2013). A range search is an essential
query operation that retrieves all records within specified up-
per and lower boundary values in the spatial database (Mark de
Berg, 2008).

The primary purpose of this study is to present a benchmark
study of spatial indexing techniques covering an experimental
analysis for use in real-time safety-critical avionics navigation
map application. For this map application, the main goal is to
search the various critical spatial layers such as obstacle (elec-
tric tower, power line, etc.), border line, restrictive space in the
storage and then render. In addition, the time constraint is cru-
cial since real-time operating systems are based on time prior-
ity. In this context, well-known and frequently used spatial in-
dexing methods are examined, and these methods are presented
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in this study. Among these methods, a comprehensive experi-
mental study has been made for the methods compatible with
this system in terms of memory and performance constraints.

The experimental study consists of two stages: Construction of
the data structures, and Experimental analysis of the data struc-
tures. The stage of creating data structures is considered as a
pre-process. In this phase, the evaluation of data structures cre-
ated by algorithms in terms of elapsed time and space allocation
is presented. Experimental analysis of the data structures is the
fundamental element that will determine this application’s per-
formance. This analysis is based on range queries over and over
to cover the entire data set. As a result of a query, a set of re-
cords within the range and required time to access these records
are obtained. This time is equivalent to how many nodes have
been traversed to access these records within the data structure.
As a result of all range queries, the worst-case shows the per-
formance of these indexing algorithms.

1.1 Related Works

The spatial indexing techniques are essential in various fields:
database management, geographic information system, com-
puter graphic, game programming, terrain visualization, image
processing, and many others. In the context of spatial index-
ing algorithms literature, the studies have been generally fo-
cused on theoretical aspects rather than experimental studies.
Accordingly, the experimental analyses have been conducted to
provide the performances of their proposed approach in com-
parison to several spatial access methods. Elashry et al. presen-
ted a new partitioning technique based on the PR Tree algorithm
and comparisons of KD Tree, Quad Tree, and PR Tree with
each other in SpatialHadoop (Elashry et al., 2018). Sayar et
al. present a study that compares the algorithms of KD Tree
and Quad Tree concerning the feasibility and efficiency of us-
ing these partitioning techniques (Sayar et al., 2015). Azri et al.
present a survey on spatial indexing techniques for the scope of
large urban data management applications (Azri et al., 2013).
Kothuri et al. compare Quad Tree and R tree algorithms re-
garding the performance of large GIS datasets in Oracle Spatial
(Kothuri et al., 2002). Zhang et al. propose a new index struc-
ture based on the R tree, named Ul-Tree. It is space-effective
and complies with different shapes of range query (Zhang et
al., 2010). Wei presents a study that describes the basic prin-
ciples of the KD Tree and Quad Tree with the variation of
these algorithms. Furthermore, he enounced that when index-
ing a large data set, if the Quad Tree depth is too small, the
search performance is low; if it is too large, storage deteriorates
and index efficiency decreases due to the increase of duplicate
data (Wei, 2010). The related studies mentioned in this section
present various spatial indexing techniques and their analysis
for some interest fields. However, to our knowledge no previ-
ous study has presented the experimental analysis in real-time
safety-critical map applications. In this paper, the spatial in-
dexing techniques are described, and an extensive analysis is
performed to measure the performance of these techniques in
the field of real-time application.

2. METHODOLOGY
2.1 KD Tree
As Bentley and Friedman introduced, KD Tree (k-dimensional

tree) is a data structure based on the binary search tree concept
(Bentley and Friedman, 1979). It is useful for solving the space

partitioning and range searching problems to organize objects
in a space with k dimensions. Unlike a standard binary search
tree, which uses only one dimension for all levels, KD Tree uses
k dimension and cycles through these dimensions for all levels
of the tree (Moore, 1991). It recursively splits space into rect-
angular cells along the dimension in which the objects have the
greatest spread. Each level of the K-d tree specifies the branches
based on a specific search key associated with that level, called
the discriminator. Each non-leaf node, on the other hand, di-
vides the space into two parts with respect to the discriminator.
The left subtree of that node represents objects in the left part,
and objects falling to the right part represented by the right sub-
tree.

Figure 1. A Representation of a KD Tree structure

Although there are many KD tree variations, we consider bal-
anced and 2-dimensional (Procopiuc et al., 2003) KD tree in
this paper. Since the datasets that we use in our experimental
study contain latitude and longitude attributes, also called xy-
coordinate, with the longitude field (x-coordinate) nominated as
dimension 0; latitude field (y-coordinate) nominated as dimen-
sion 1 (See Figure 1). At each level, the discriminator cycles
between x-coordinate and y-coordinate, respectively. To con-
struct a balanced tree, we also consider each node’s discrimin-
ator value as the median of the objects for each recursive sub-
tree.

Algorithm 1 Construction of a KD Tree

Input Point list P and the current level.
Output The root of tree

function CONSTRUCTKDTREE(P, level)
Determine P minimum bounding rectangle (MBR)
if P contains only one point then
return a leaf storing this point
else
if level is even then
Split P into two part with a vertical line [ through
the median x-axis of the points in P.
Let P, be the set of points to the left of [ or on [,
and let P2 be the set of points to the right of [.
else
Split P into two part with a horizontal line {
through the median y-axis of the points in P.
Let P; be the set of points below [ or on [,
and let P2 be the set of points above .
end if

Nyeft = CONSTRUCTKDTREE(P, level + 1)
nieft = CONSTRUCTKDTREE(F}, level + 1)
Create node n storing, make n;. ¢+ the left child of n
and make ngy; the right child of n

return n

The construction of a KD tree recursive algorithm is described
in CONSTRUCTKDTREE algorithm. Bentley and Friedman show
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that, for n points, building time is O(nlogn) time and total
amount of storage is O(n). A range query takes O(y/n+t) time
where t is the number of points found (Bentley and Friedman,

most under a leaf in a tree. This value is preferred to fit within
one disk page. The nodes are regimented, and each group is
stored on one page to minimize the number of disk access. In

1979). The range query algorithm is described in RANGEQUERYK- order to make the number of points within the leaf more bal-

DTREE recursive algorithm.

Algorithm 2 KD Tree Range Query

Input The root of tree and range R (Region of Interest).
Qutput The list point that lie in the range
IntersectedNodeList and the number of traversed node
count in order to access record T'raversedN odeCount
TraversedN odeCount =0
function RANGEQUERYKDTREE(n, R)
if n is a leaf then
Insert points to Intersected N odeList stored at n
if it lies in R.
else
for each sub-node sn in node n do
if sn boundary (MBR) intersects R then
TraversedN odeCount += 1
RANGEQUERYKDTREE(sn, R)

end if
end for
end if
return IntersectedN odeList, TraversedN odeCount

2.2 Quad KD Tree

The Quad KD Tree is a combination of KD tree and Quad Tree.
As Bereczky et al. introduced, Quad KD Tree (QKd shortly) is
a data structure for the storage of multidimensional spatial ob-
jects(Bereczky et al., 2014). Unlike the heuristic method pro-
posed by Bereczky et al., we worked on a new space-driven par-
titioning technique that contributes to this study. The method
aimed to partition as in KD Tree while the number of partition
in one cycle - or in other words, the number of the child- is de-
termined as in Quad Tree. The purpose of this data-dependent
method aims to partition by finding the median coordinate value
as in the balanced KD tree. The balanced KD-tree divides the
set of points into two sets of (approximately) equal size (Bent-
ley and Friedman, 1979), whereas Quad KD Tree divides into
four subsets with respect to the median value of points. It is
based on the equal division of 2D space by four regions accord-
ing to a particular value. Each node represents a bounding box
covering a set of points depending on the coordinate along the
x-axis and y-axis (Zhang and Du, 2017). Furthermore, each
node has four nodes, north-west, north-east, south-west, and
south-east (Azri et al., 2013) (See Figure 2).
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Figure 2. A Representation of a Quad KD Tree structure

Each node splits the set of points into four subsets according to
vertical and horizontal axes based on whether their coordinate
along these axes is greater than or less than a median coordinate
value. This splitting continues until each set contains a partic-
ular value at most. This value represents the maximum ob-
jects count’ in one MBR and indicates the number of points at

anced and adaptive(Egas et al., 2003) in constructing a tree,
additional splitting by two is applied in some cases (see CON-
STRUCTQUADKDTREE algorithm).

Algorithm 3 Construction of a Quad KD Tree

Input Point list P and the current level.
Output The root of tree

function CONSTRUCTQUADKDTREE(P, level)

Determine P minimum bounding rectangle (MBR)
if P contains less than M ax FeatureCount point then
return a leaf storing this point
else
if P contains more than 2*MazFeatureCount
point then
Split P into two part (P;,P>) with a vert. line
Split P; into two part (Ps,Py) with a horiz. line
Split P» into two part (Ps,Ps) with a horiz. line

Nnw=CONSTRUCTQUADKDTREE(Ps, level+1)

Nne=CONSTRUCTQUADKDTREE(FP;, level+1)

Nnswy=CONSTRUCTQUADKDTREE(FPs, level+1)

Nnse=CONSTRUCTQUADKDTREE(Fs, level+1)
else

Split P into two part (P1,P>) with a vert. line

Nnw=CONSTRUCTQUADKDTREE(P,, level+1)
Nne=CONSTRUCTQUADKDTREE(F>, level+1)
end if

Create a node n storing , make 7p.w, Nne, Nse, and
nsw North-west, north-east, south-west, and south-
east child of n, respectively

return n

Algorithm 4 Quad KD Tree Range Query

Input The root of tree and range R (Region of Interest).

Output The list point that lie in the range
IntersectedNodeList and the number of traversed node
count in order to access record T'raversedN odeCount

TraversedN odeCount =0
function RANGEQUERYQUADKDTREE(n, R)
if n is a leaf then
Insert points to IntersectedNodeList stored at n
if it lies in R.
else
for each sub-node sn in node n do
if sn boundary (MBR) intersects R then
TraversedNodeCount += 1
RANGEQUERYQUADKDTREE(sn, R)

end if
end for
end if
return IntersectedNodeList, TraversedN odeCount

The construction of a Quad KD tree recursive algorithm is de-
scribed in CONSTRUCTQUADKDTREE algorithm. The range
query algorithm is described in RANGEQUERYKDTREE re-
cursive algorithm.

e KD tree: for n points, building time is O(nlogn) time,
and the total amount of storage is O(n). A range query
takes O(y/n + t) time, where t is the number of points
found (Lewenstein, 2013).

e Quad Tree: for n points, building time is O((d + 1) + t)
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time, where d is the depth of the tree. A range query takes
O(nlogn) (Mark de Berg, 2008).

2.3 PR Tree

As Arge et al. proposed in (Arge et al., 2008), PR Tree (Prior-
ity R-tree) is a data structure that is a provably asymptotically
optimal R-tree variant. The term priority in the PR tree’s name
originates from the bulk loading algorithm using priority rect-
angles. It is a data-driven structure that uses the idea of a spa-
tial containment relationship instead of the order of the index
(Scholl et al., 2002).

A PR Tree consists of a node with six children, the four leaves
(most-left, most-bottom, most-right, and most-top), and two
recursive subtrees (left, right). Regarding the construction of
the priority leaves: the first such leaf is denoted as the most-
left leaf and contains the leftmost geometric features in two-
dimensional space. Analogously, the other leaves contain the
bottommost, rightmost, and topmost objects, respectively. Hence,
the priority leaves store the objects according to the minimum
and maximum of coordinates’ values. After leaves construc-
tion, the rest of the space is divided into two subsets to cre-
ate two recursive sub-trees. The splitting is applied by using a
round-robin procedure similar to constructing a four-dimensional
KD Tree. Each leaf node contains a particular number of MBR,
and each MBR contains a particular number of geometric fea-
tures (Arge et al., 2008). The structure is represented as in Fig-
ure 3.

Figure 3. A Representation of a PR Tree structure

Root
Rectangle

(Right Leaf)

Minimum
Bounding
Rectangle
(MBR)

Figure 4. General View of a PR Tree Construction

The construction of a PR tree algorithm has been described in
CONSTRUCTPRTREE algorithm and represented as in Figure
4. Arge et al. (Arge et al., 2008) show that, construction time
is O(% log u &) time where N is the number of rectangles

and B is the number of objects that is stored in each node. A

range query takes O(\/g + L) time in the worst case, where
T is the number of rectangles that satisfy the range query.The
range query algorithm is described in RANGEQUERYPRTREE
recursive algorithm.

Algorithm 5 Construction of a PR Tree

Input Point list P and the current level.
Output The root of tree

function CONSTRUCTPRTREE(P, level)
Determine P minimum bounding rectangle (MBR)
Cluster points in both vertical and horizontal direction
Create leaf node n; for the most-left part
Create leaf node n; for the most-bottom part
Create leaf node n, for the most-right part
Create leaf node n, for the most-top part

if Any point is left then
Split rest of points into two part P; and P>
n;;=CONSTRUCTPRTREE( P, level+1)
nt=CONSTRUCTPRTREE(Ps, level+1)
end if

Create a node n storing four leafs (n;, ns, 1, and n)
and two inner tree left (n;¢) and right (n,¢).
return n

Algorithm 6 PR Tree Range Query

Input The root of tree and range R (Region of Interest).

Output The list point that lie in the range
IntersectedNodeList and the number of traversed node
count in order to access record TraversedN odeCount

TraversedN odeCount =0
function RANGEQUERYPRTREE(n, R)
for each leaf [ (left, bottom, right, and top) in node n do
if  boundary (MBR) intersects R then
for each MBR m in MBR list of leaf [ do
TraversedNodeCount += 1
Insert points to IntersectedN odeList
stored at m if it lies in
end for
end if
end for
if n;; left sub tree boundary (MBR) intersects R then
TraversedNodeCount += 1
RANGEQUERYPRTREE(n;:, R)
end if
if n,; right sub-tree boundary (MBR) intersects R then
TraversedNodeCount += 1
RANGEQUERYPRTREE(n,¢, R)
end if
return IntersectedNodeList,TraversedN odeCount

3. EXPERIMENTAL STUDY

3.1 Experimental Setup

All experiments were performed on a Hp Prodesk desktop with
one Intel i5 processor with 16GB main memory running on
Windows 10. A local 512GB M.2 SSD hard disk was used
to store all required files. Since these studies are based on the
comparison numbers, these comparisons have been made with
a desktop. The numbers resulting from these comparisons show
the algorithms’ states relative to each other.

The real datasets extracted from Open Street Map were used for
all experiments (See Table 1), precisely a point of interest (POI)
data file that had 238K point records in Turkey, a POI data file
that had 8.3M point records in Europe, a Street data file that had
1.6M line records in Turkey and a Street data file that 20M line
records in Europe (Geofabrik Download Server, n.d.).

While creating the spatial access methods’ data structures, the
maximum number of objects in an MBR is used as a parameter.
This number is called ”’bucket size” (Azri et al., 2013) and is
mentioned as “"Max Feature Count in One MBR” in this paper.
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Location | Data Type | Data Size | Record Number
Turkey POI IT.1 MB 238K
Europe POI 388 MB 83 M
Turkey Street 671 MB 1.6 M
Europe Street 5.11 GB 20M

Table 1. Real Spatial Dataset

While determining this number, the skewness and the dataset’s
size were taken into account. When the number is determined
as small, the number of nodes, leaves, and MBRs will be in-
creased, and it will cause an increase in memory usage. For
these reasons, if the dataset’s size increases, this parameter is
expected to increase, which gives positive results in terms of
memory usage. In light of this information, the Max Feature
Count’s value in One MBR parameter was determined as 20,
50, 100, and 100 for Turkey POI, Europe POI, Turkey Street,
and Europe Street real datasets, respectively.

3.2 Experimental Result

Experimental studies have been performed regarding space com-
plexity and time complexity. While the space complexity has

been evaluated by memory consumption for the indexed data,

the time complexity has been measured by elapsed time for in-

dexing. On the other hand, the minimum bounding rectangles’

(MBR) figures created by the indexing algorithms are presented
in the following sections. These rectangles represent the lowest
level nodes where the desired records are involved.

3.2.1 Construction of the Data Structures: The value of
”Max Feature Count in One MBR” was determined according
to the dataset’s data density and size. The data structures were
created based on the algorithms. The memory consumption and
the elapsed time for indexing time, for all real data set have been
presented with the following charts (See Figures 5-6-7-8).
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Figure 5. Space Allocation and Indexing Time for Turkey POI
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Figure 6. Space Allocation and Indexing Time for Europe POI
dataset
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Figure 8. Space Allocation and Indexing Time for Europe Street
dataset

As shown in the space allocations charts created according to
different data sets, PR Tree outperforms in terms of space alloc-
ation, while Quad KD Tree allocates relatively more space than
it. On the other hand, KD Tree is recorded as the most resource-
consuming algorithm than others in terms of memory. Further-
more, in indexing time charts, KD Tree outperforms over the
other indexing techniques since it is approximately one-fifth of
the PR Tree indexing time and two-third of KD Tree indexing
time.

For instance, the indexed data structure created after mentioned
spatial indexing algorithm techniques is provided in the Figures
9-10-11 and in the Table 2 for Turkey POI real dataset. The im-
ages show the minimum bounding rectangles (MBR) that is cre-
ated by the mentioned techniques. These rectangles represent
the lowest level nodes where the desired records are involved.
As can be seen in these figures, it can be observed that the Quad
KD Tree clustered more explicit than the others. So that, it can
be seen that the rectangles created by the KD Tree and PR Tree
algorithm are larger and wider, whereas it can be seen that the
rectangles created by the Quad KD Tree algorithm are tighter
and smaller than the others.

Algorithm | MBR Count | Total Node Count
KD 16384 32767
Quad KD 16384 21845
PR 12268 18407

Table 2. MBR and Total Node Counts of the indexed data
structure for Turkey POI Real Dataset

Constructing data structures is a preliminary preparation for the
real-time map application that is planned to be used. Within the
scope of these systems, the memory allocation process required
for the data structure resulting from the preliminary stage is es-
sential for the system’s functioning. For this reason, PR Tree
and Quad KD Tree come to the fore first, which has a signi-
ficant effect on memory allocation. However, the main factor
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Figure 9. KD Tree: Indexed Data Structure for Turkey POI Real
Dataset

Figure 10. Quad KD Tree: Indexed Data Structure for Turkey
POI Real Dataset

Figure 11. PR Tree: Indexed Data Structure for Turkey POI Real
Dataset

determining the system’s performance, in general, is the output
it gives to search queries. In relation to this, a comprehensive
analysis process is covered in the next section.

3.2.2 Boundary Analysis: The boundary analysis is per-
formed to measure the spatial indexing algorithm performance,
and this section presents the details of the boundary analysis to
evaluate algorithms’ run time performance.

Boundary analysis aims to make a comprehensive analysis to
include the entire dataset in 2D space. The region of interest
for using range search is created concerning the specified para-
meters. A range query is performed in relevant data structures
for each region of interest to cover all boundaries in the data-
set. In this analysis, the number of intersected MBRs and the
traversed node (while traversing on the tree) are recorded. The
comparisons are evaluated according to the maximum number
of intersected MBRs and the maximum number of the traversed
node for the worst case.

The boundary analysis parameters are specified according to the
region of interest’s height and width (Extent width and height)
and the geographical degree varying horizontally and vertic-
ally for moving the rectangle. For this experimental study (5
KM, 0.025°), (25 KM, 0.1°) and (200 KM, 0.25°) have been
selected as (region of interest extent width and height in KM,
sampling intervals value in degree) value tuple. The size of the

0.025° (Horizontal Increment)

0.025° I
(Vertical |
Increment) |:::> | SKM (Extent Height)
¥
——————
SKM (Extent Width)

Figure 12. Region of Interests: Sliding Window for the Query

region of interest refers to the horizontal and vertical distances
of the box (in KM), while the sampling interval value indic-
ates how often the floating window (in degree) will move (See
Figure 12). These values have been chosen to perform a range
search to cover the whole area. The sampling interval values
are determined in degrees since the dataset uses geometric de-
gree coordinates system (WGS-84). For instance, the first value
tuple (5 KM, 0.025°) is tried to find records within the area of 5
kilometers (box) horizontally and vertically. For the analysis to
cover the whole area, 0.025 ° (approximately 2.5 KM) windows
are shifted in the x-axis and y-axis, respectively.

Relevant MBRs within the specified area as a result of the range
search query are retrieved. There are related features in these
MBRs. Boundary analysis in this experimental study, the num-
ber of intersected features in these boxes is based on instead
of the MBR numbers obtained the query result. The smaller
number of MBRs generated by the algorithms does not mean
fewer records at the intersection. For example, if we indexed
the entire data set to a single node, we would always get a single
MBR from a range query result. However, we would have to go
through the entire dataset to find relevant records. Since this
method is not a logical comparison method, it is a more logical
measurement method to compare the intersected feature count
obtained due to the range query.

With the given boundary analysis charts (See Figures 13-14-15-
16-17-18-19-20), maximum intersected feature count and max-
imum traversed node count in the worst-case scenario of the
data structures that are created according to the three spatial in-

dexing techniques are presented.
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Figure 13. Intersected Feature Count for Turkey POI
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Figure 19. Intersected Feature Count for Europe Street
When these results are evaluated, PR Tree and Quad KD Tree
outperform as the two best results. For Turkey’s real POI data ults, but a little different in favor of PR Tree by a small mar-
set, PR Tree and Quad KD Tree are gave the nearly same res- gin. For Europe real POI data set, PR Tree and Quad KD Tree
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are yielded nearly the same results for the 5 KM and 25 KM
boundary analysis. However, Quad KD Tree is outperformed
significantly over the others for 200 KM boundary analysis. For
another data set, Turkey Street, Quad KD Tree is outperformed
significantly over the other algorithms when all control para-
meters are taken into account. Besides, It can be observed that
the algorithm with the least dead space in the nodes and MBR
can be stated as the Quad KD tree. It is the reason that gives
a good result during the range search in terms of the number
of intersected feature counts and the number of traversed node
count.

4. CONCLUSION

In this paper, the spatial indexing algorithms were explained
and the differences between each other were presented. The
amount of memory usage by these algorithms and the indexing
time when run on the real dataset were presented and evaluated.
On the other hand, an extensive experimental study was per-
formed to compare the three spatial indexing algorithms. Vari-
ous techniques were experimentally evaluated using different
types of real datasets, and the experimental results of the worst-
case scenarios were presented as experimental output.

In line with these experimental results, the KD tree gave the
best result in terms of indexing time during construction, while
Quad KD Tree came after the KD tree with a minimal differ-
ence. In another criterion, PR Tree and Quad KD Tree were
identified as the two best memory allocation algorithms and
performance algorithms. Moreover, PR Tree took relatively less
space in memory for all real datasets than Quad KD Tree. How-
ever, as the size and the complexity of the dataset increased, the
Quad KD Tree stood out remarkably in terms of range query
performance (Geometry type can be evaluated as data complex-
ity). In conclusion, when these experimental outputs are evalu-
ated, the Quad KD Tree is better than the other spatial indexing
algorithms in map applications of the safety critic avionics nav-
igation systems since the real dataset is massive, comprehens-
ive, and different in geometry type.
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