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ABSTRACT:

In this paper, we describe a framework to find a good quality waste collection tour after a flood, without having to solve a com-
plicated optimization problem from scratch in limited time. We model the computation of a waste collection tour as a capacitated
routing problem, on the vertices or on the edges of a graph, with uncertain waste quantities and uncertain road availability. Multiple
models have been conceived to manage uncertainty in routing problems, and we build on the ideas of discretizing the uncertain
parameters and computing master solutions that can be adapted to propose an original method to compute efficient solutions. We
first introduce our model for the progressive removal of the uncertainty, then outline our method to compute solutions: our method
first considers a low-dimensional set of random variables that govern the behaviour of the problem parameters, discretizes these
variables and computes a solution for each discrete point before the flood, and then uses these solutions as a basis to build opera-
tional solutions when there are enough information about the parameters of the routing problem. We then give computational tools
to implement this method. We give a framework to compute the basis of solutions in an efficient way, by computing all the solutions
simultaneously and sharing information (that can lead to good quality solutions) between the different problems based on how close
their parameters are, and we also describe how real solutions can be derived from this basis. Our main contributions are our model
for the progressive removal of uncertainty, our multi-step method to compute efficient solutions, and our intrusive framework to
compute solutions on the discrete grid of parameters.

1. INTRODUCTION

The managing of risks associated with floods is a vast and im-
portant research domain. After a flood or another disaster, it
is crucial for cities to recover quickly and be able to run the
most vital activities as soon and as well as possible. In this en-
deavour, the clearing of unpracticable roads is a major stage,
and that often involves the collection of waste created by the
flood. Efficient waste collection is thus a major component for
the resilience of territories (Beraud, 2013). These waste include
vegetation, construction materials, domestic waste, household
appliances, individual transportation vehicles, dead animals,
chemical products... Their quantity can amount to several years
worth of domestic waste in normal conditions. For example,
the volume of waste produced by hurricane Katrina in 2005
is estimated to be around 90 millions of cubic meters (Luther,
2010). Immediately after a natural catastrophe, the first goal
is to clear roads by pushing waste on the side of the road, to
facilitate urgent operations (for health, security...). Once these
most pressing activities are over, waste are collected and taken
to specific facilities. To set up efficient waste collection tours, it
would be useful to know waste quantities beforehand, but these
quantities are very hard to evaluate. Methods have been pro-
posed to quantify domestic waste, using census data (Beraud et
al., 2012), but they can not be very precise, and waste generated
by floods remain inherently hard to predict. It is therefore im-
portant to take into account this high level of uncertainty when
setting up waste collection tours.

The management of post-disaster waste has been studied intens-
∗ Corresponding author

ively in the literature (Brown et al., 2011), while the problem of
the collection of regular waste has also been treated with a high
number of different methods (Bányai et al., 2019). The more
specific study of the logistics of post-disaster waste collection
has given rise to three main problems. The location prob-
lem consists in finding appropriate locations for depots (where
waste will be gathered) (Owen and Daskin, 1998), (Mladenović
et al., 2007). The allocation problem must establish a corres-
pondance between depots and demand sites, where waste lies
before being taken to depots. The goal of the routing problem
is to schedule routes for a fleet of vehicle in order to pick up the
waste at demand sites and bring it to the depot site. The rout-
ing problem can be modelled by a wide variety of optimization
problems, depending on the constraints that are implemented
and the hypotheses on the location of waste. The specific prob-
lem of waste collection after a disaster is often modelled as a ca-
pacitated vertices routing problem, or as a capacitated arc rout-
ing problem. These problems and the various resolution meth-
ods are described in (Laporte, 1992) and (Wøhlk, 2008). Many
resolution methods have been tested on these routing problems.
Exact methods can use a quasi-comprehensive exploration of
the space of solutions with branch and cut methods, or dy-
namic programming (Yi and Özdamar, 2007). Some authors
insist on the importance of computing good approximate solu-
tions quickly, even at the expense of optimality (Çelik et al.,
2015). Approximate methods generally use problem-specific
heuristics or meta-heuristics. Among the meta-heuristics used
to solve routing problems, one can cite simulated annealing,
ant colonies, genetic algorithms, or tabu search (Shen et al.,
2009). Works that take into account the uncertainties in the
parameters of the location problem or the routing problem are
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fewer. Some of them manage the uncertainty by establishing
a small list of scenarios, and look for solutions that perform
the best across these scenarios, when some decisions (typically
the location of depot sites) have to be taken in advance (Mete
and Zabinsky, 2010) (Rawls and Turnquist, 2010). Others ad-
opt a more continuous approach and study the behaviour of
solutions when some events are assigned probabilities (Camp-
bell and Jones, 2011), or combine a meta-heuristic search with
Monte-Carlo simulation to assess the performance of solutions
across the range of possible values for parameters of the prob-
lem (Gruler et al., 2017). Routing problems with stochastic
demand have been studied since (Jaillet, 1985), (Bertsimas et
al., 1988) and (Jaillet, 1988), and the aim of the research on this
subject has been to find a priori solutions that can lead to the
derivation of good solutions for all realizations of the stochastic
variables. This adaptation generally takes the form of simple re-
course actions to include new points or ensure the capacities of
vehicles are not exceeded. Oyola et al. (Oyola et al., 2018) give
an overview of probability distributions and recourse actions
put forward in the literature. Sampling scenarios and combin-
ing their solutions has also been used to solve stochastic routing
problems (Hvattum et al., 2006). Robust optimization (Ben-Tal
and Nemirovski, 1998), (El Ghaoui et al., 1998) has been put
forward, for problems with stochastic parameters, to find solu-
tions that have good performance even in the worst-case scen-
arios, by setting a min-max objective. The Master and Daily
Scheduling model (Sungur et al., 2010) uses several of these
ideas to compute a master solution that can be transformed into
good quality solutions for a range of instances. Daily schedules
derived from this master solution are then improved by tabu
search.

The uncertainty that has to be accounted for in the calculation
of efficient waste collection tours has two important character-
istics:

• It is very high-dimensional. After a flood, every single
variable, be it quantities of waste along a given street, or
even the availability of the street for motorized travel, is
uncertain. Models can postulate correlations between the
laws of these variables, but they may still take wide ranges
of values independently from each other.

• It is removed gradually in time. At first, one only has
access to a global evaluation of water height and waste
quantities. More precise evaluations may be gained before
setting up waste collection tours, but adjustments may still
need to be made on the fly, depending on the local situation
one vehicle is confronted to.

A high-dimensional uncertainty means that one can not attempt
to compute an optimal solution for every single situation that
could arise. On the other hand, the gradual removal of the un-
certainty incites one to try and compute rough solutions depend-
ing on a few high-level, global variables, and refine these master
solutions to adapt to the precise situation at hand. In this paper,
we will describe a framework on how to manage this gradual
removal of the uncertainty, and the computations that need to
be done at each stage, and the kinds of solutions that will be
sought after.

2. MODELIZATION OF WASTE COLLECTION
TOURS AND REMOVAL OF UNCERTAINTY

2.1 Possible models for waste collection tours

Waste collection tours can be treated with different models. We
describe two such models, the choice of which of these models
to use depends on the hypotheses one makes on how waste is
put down after the flood. If we make the hypothesis that waste
is grouped in heaps, for example at nodes of the road network,
then one should compute waste collection tours as solutions of
a vertices routing problem, where every vertex with a posit-
ive quantity of waste must be visited by a vehicle (and waste
must be picked up). The capacitated vertices routing problem
(CVRP) adds a constraint of vehicle capacity for a more real-
istic framing of the problem. As the important quantity of waste
is one of the key points that make waste collection a complic-
ated task after a flood, we think it is clearly the most useful
constraint to add in this context.

We consider a graph G = (V,E), where each vertex V has an
associated quantity of waste qV , each edge e has a cost ce, and
we note Q the capacity of a vehicle. One vertex V0 is the depot
vertex, where each vehicle starts and drops the waste once it
has been collected. We introduce the following formulation of
the CVRP to mirror the one we give of the CARP below. This
formulation is not the simplest, but it gives a very clear idea of
the individual vehicle rotations. Some resolution methods may
need to work on other format of solutions, but these can easily
be deduced from this one, which gives the detailed routes of
each rotation.

We look for a collection tour T = (T 1, . . . , TN ) composed of
several individual vehicle rotations, where each rotation T k =
(Xk, Y k) of length lk contains a path Xk = (xk1 , . . . , x

k
lk

) ∈
V lk and a vector Y k = (yk1 , . . . , y

k
lk

) ∈ ({0; 1}lk that indicates
at which vertices the vehicle effectively picks up the waste. The
solution must satisfy the following constraints:

• Each individual rotation starts and ends at the depot

∀1 ≤ k ≤ N, xk1 = xklk = VO (1)

• Each path is continuous

∀1 ≤ k ≤ N,∀1 ≤ i ≤ lk − 1, (xki , x
k
i+1) ∈ E (2)

• Each vehicle does not exceed its capacity

∀1 ≤ k ≤ N,
lk∑
i=1

yki qxk
i
≤ Q (3)

• All the waste must be picked up

N∑
k=1

lk∑
i=1

yki = |{v ∈ V | qv > 0}| (4)

∀(k, i) with yki = 1, qxk
i
> 0 (5)

∀(k1, i1) 6= (k2, i2) with yk1i1 = yk2i2 = 1, xk1i1 6= xk2i2 (6)

The solution must minimize the total cost of the edges that are
driven through:

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2021-61-2021 | © Author(s) 2021. CC BY 4.0 License.

 
62



C =
∑
k

lk−1∑
i=1

c(xk
i
,xk

i+1
) (7)

Another realistic hypothesis for the location of waste is that
waste is laid down along the streets. This hypothesis leads
to the formulation of another optimization problem, the ca-
pacitated arc routing problem (CARP), where all edges with
positive quantity of waste must be driven through (and waste
must be picked up). This problem can be modelled in a similar
way. Here, waste quantities qe are associated with edges of the
graph. We give a formulation inspired from (Mei et al., 2010),
which has the advantage of detailing each individual route.
The solution is a set of individual rotations (T 1, . . . , TN ) with
T k = (Xk, Y k). As before,Xk = (xk1 , . . . , x

k
lk

) a tuple of ver-
tices. This time we have Y k = (yk1 , . . . , y

k
lk−1) ∈ {0; 1}lk−1,

as the yki indicate on which edges (not vertices) waste is picked
up.

The constraints are written in a similar manner:

∀1 ≤ k ≤ N, xk1 = xklk = VO (8)

∀1 ≤ k ≤ N,∀1 ≤ i ≤ lk − 1, (xki , x
k
i+1) ∈ E (9)

∀1 ≤ k ≤ N,
lk−1∑
i=1

yki q(xk
i
,xk

i+1
) ≤ Q (10)

N∑
k=1

lk∑
i=1

yki = |{e ∈ E | qe > 0}| (11)

∀(k, i) with yki = 1, q(xk
i
,xk

i+1
) > 0 (12)

∀(k1, i1) 6= (k2, i2) with yk1i1 = yk2i2 = 1,

(xk1i1 , x
k1
i1+1) 6= (xk2i2 , x

k2
i2+1) and

(xk1i1 , x
k1
i1+1) 6= (xk2i2+1, x

k2
i2

) (13)

The cost that must be minimized has the same expression as
before.

2.2 A model for the progressive removal of the uncertainty

The uncertainties we want to take into account in the computa-
tion of efficient waste collection tours are of two types:

• The uncertainties on the quantities of waste qV (or qe de-
pending on the model)

• The uncertainties on the availability of individual streets
for motorized travelling. We write ρe = 1 when a given
edge is available, ρe = 0 when it is not.

Waste quantities will probably grow between the first hours
after the flood and the time waste is collected, and conversely
the availability of roads may get better. As we need to evalu-
ate the values of these uncertain quantities at the time the first
response waste collection tour will be carried through, we do

not model their evolution over time (in particular, we consider
they do not change too much for the duration of the collection
tour). As a consequence, the quantities of waste, their loca-
tions, and the set of available streets are fixed for our problem
(but unknown at first).

The uncertain waste quantities have probability density func-
tions fV : R+ → [0, 1] (or fe : R+ → [0, 1]), and edges
have an availability probability pe = P[ρe = 1]. Little is
known of the probabilities before knowing the specifics of the
flood. Moreover, information about the severity of the flood,
the quantities of waste and the availability of individual streets
is generally not known all at once but progressively. Thus, it
maked sense to model the progressive removal of uncertainty
with a rough filtration

F1 ⊂ F2 ⊂ F3 (14)

We do not use a continuous filtration because we try to in-
dentify critical points at which key new information can be ob-
tained. We now describe how the aforementioned probabilities
are treated at each stage of the process, and how efficient col-
lection tours can be progressively computed.

• Time t1 is during the flood or just after it. At that time,
only the global severity of the flood (which can me mod-
elled by a height h), and a few global indicators concerning
waste quantities (which can be given by pre-existing stud-
ies, and depend on the severity of the flood) are known.
This information is modelled as a vector (h, ξ1, . . . , ξD),
where D should remain small.F or example, the ξi could
be the quantities of waste that can potentially be produced
by households across different socio-professional categor-
ies ; in this case, the quantity of waste expected on a given
street depends on these variables and on the population of
the street. These ξi can also be the output of processes,
such as a Karhunen-Loève decomposition, designed to
produce uncorrelated variables ; in this case, each indi-
vidual variable xi is less interpretable.

At this stage, each uncertain quantity can be expressed in
terms of these variables:

fV (· | F1) = fV (· | (h, ξ1, . . . , ξD))

pe|F1
= pe|h

We also have access to conditional expectations for the
waste quantities:

E [qV | F1] = E [qV | (h, ξ1, . . . , ξD)]

Given this relatively low-dimensional information, an op-
timal collection tour can be computed for this level of in-
formation. As the uncertainty remains high, one may also
want to compute several different robust solution, to have
the opportunity to adapt one of them into an effective ac-
tual solutions at a later time.

• Time t2 is the time the collection tour is established. At
that time, people that decide on these tours can have access
to more local data, and we can expect actual waste quantit-
ies not to differ much from their estimations E [qV | F∈].
With enough local information about the severity of the
flood, local road availability should also be known with
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reasonable certainty on the biggest axes. Punctual sur-
prises, such a given waste quantity qV differing greatly
from its estimation, or a street being unpracticable even
as it was not supposed to be, can still not be excluded.

When this information becomes available, one should be
able to compute an efficient tour quickly by adapting one
of the solutions computed at time t1

• Time t3 is the time the waste is collected. At that time,
all uncertainty is removed and each quantity is known.
Drivers are not expected to make major modifications on
the established collection tour, but they might have to ad-
apt if the total quantity at the vertices (or edges) they are
expected to service exceeds their capacity, or if a street on
their expected path is not available. Then, there have to
be guidelines to make these modifications as simple and
efficient as possible.

One must note that the solution that is actually carried
will generally be computed as a modification of a pre-
computed solution. As such, it is not the result of a global
optimization algorithm, and there is no certainty that it will
be the best solution for the actual realization of the waste
collection problem. The goal of our method is to com-
pute a final solution that is efficient enough, and the role
of the model for the removal of uncertainty and the pre-
computation of a basis of solutions is to ensure that it will
be possible to compute such an efficient solution relatively
quickly when it is needed.

3. METHODS FOR A HIERACHICAL
COMPUTATION OF SOLUTIONS

3.1 Discretization of the low-dimensional uncertain vari-
ables

We make the hypothesis that the first information that can be
gathered about the severity of the flood and the waste quant-
ities is relatively low-dimensional, and described by a vector
(h, ξ1, . . . , ξD). As a consequence, it makes sense to pre-
compute a comprehensive set of solutions that can be used as
bases for the actual solutions when collection tours are com-
puted.

To compute this base of solutions, the method we propose is to
discretize the uncertain variables h and ξi, to obtain a grid for
the random variables, as it has been done for partial differential
equations(PDEs) since (Ghanem, 1999). Keese (Keese, 2003)
gives a comprehensive overview on how such random variables
are chosen and discretized, and how PDEs with stochastic coef-
ficient can be solved using this discretization. This kind of dis-
cretization has been used for elliptic and parabolic PDEs (No-
bile and Tempone, 2009), where solutions generally depend
continuously on the random variables, and also for hyperbolic
equations (Tryoen et al., 2010), where solutions u(·, h, ξ) can
exhibit discontinuities in the physical space but also in the space
of random variables.

As the vector (h, ξ) is in F1 and does not resolve all the uncer-
tainty of the collection problem, the quantities qV (or qe) and
ρe do not have fixed values for a given realization of (h, ξ) (as
is usually the case when this discretization framework is used
for PDEs), but are defined by their conditional probability dens-
ity functions or their conditional laws. As we want to compute
solutions for set values of these quantities, a natural method to

obtain such set values is to consider the expectations for waste
quantities, and the most probable result for street availability:

qV,F1 = E [qV | F1]

ρe,F1 =

{
0 if P [ρe = 1 | F1] < 0.5
1 if P [ρe = 1 | F1] ≥ 0.5

To maximize the usefulness of this set of precomputed solu-
tions, every uncertain variable (h or ξi) is discretized according
to its prior probability density function. For example, for a vari-
able ξ with prior probability density function

fξi : R→ [0, 1],

n discretization points ξ(1)i , . . . , ξ
(n)
i are chosen such that∫ ξ

(1)
i

−∞
fξi(t)dt =

∫ +∞

ξ
(n)
i

fξi(t)dt =
1

n+ 1

and for all 1 ≤ j ≤ n− 1,∫ ξ
(j+1)
i

ξ
(j)
i

fξi(t)dt =
1

n+ 1

Figure 1. Discretization of an uncertain variable.

This discretization according to prior probability density func-
tion is illustrated in figure 1.

When this discretization is done for every variable, we have
a grid on the space of random variables on which we want to
compute our base of solutions. Figure 2 illustrates such a grid
with two uncertain variables ξ1 and ξ2.

3.2 Pre-calculation of robust solutions

If we consider a low-dimensional vector (h, ξ) (with D = 3 or
4 for example) and take a small number of discretization points
(typically not exceeding 10), it is not unreasonable to try and
produce one or a few solutions for every discretized value of the
vector (h, ξ), as these computations can be made offline (that
is, not during or immediately after a flood, when the need for a
quick recovery does not allow the launching of long computa-
tions), and once and for all (at least as long as the populations
of each individual street do not change too much, which would
modify the relationships between the variables qV and rhoe and
the vector (h, ξ).

Finding optimal solutions for the CVRP or the CARP can be
done using meta-heuristic methods, such as simulated anneal-
ing, genetic algorithms, or ant colonies, although exact methods
can also be successful even on large problems. While it is pos-
sible to compute the solution of each problem independently,
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Figure 2. A two-dimensional grid in the space of random
variables.

we remark that the routing problems for neighbouring points
of the grid in the space of random variables give routing prob-
lems whose parameters (waste quantities and road availability)
are not very far from each other. Therefore, it maked sense to
try and take into account these similarities, and to compute all
the solutions simultaneously, while sharing elements between
neighbouring nodes at various stages of the computation. This
principle can be implemented with algorithms based on vari-
ous meta-heuristics, where the elements that will be shared will
generally be either good solutions for one node, or parameters
that lead to the finding of good solutions.

We can give a more precise idea of how this sharing can be done
in practice for the most well-known meta-heuristics (ant colon-
ies, simulated annealing, genetic algorithm). Each of these
methods functions with discrete steps, where at each step a
solution or a group of solutions is computed, using inform-
ation from the previous step. When solutions are computed
simultaneously on the whole grid, at each point Ξ(i∗,j∗) =(
h(i∗), ξ

(j∗1 )

1 , . . . , ξ
(j∗D)

D

)
, the new solution of group of solu-

tions is dervied using information at the previous step at
point Ξ(i∗,j∗), and also at neighbouring points Ξ(i,j) with
|(i, j)− (i∗, j∗)| = 1. This communication of information
between points of the grid is illustrated by figure 3.

Figure 3. Propagation of information across the grid in the
random space.

We give more details for each of these three meta-heuristic
methods. for all three methods, the communication of inform-
ation between nodes would be straightforward, were it not for
the changes in the set of available roads, and the sets of avail-
able nodes or edges that must be served. Specific adaptations
must be made to account for these changes. The guidelines we
give are for the CVRP, there are some differences for the CARP,
due to the fact that almost all edges must be served.

• Ant colonies : at each point and at each step, a family of
solutions is evaluated and, as a result, arcs are given a de-
sirability value (quantity of pheromones in the ant colony
analogy) depending on how often they appear on good
quality solutions. Here, a simple way to propagate inform-
ation is to compute these quantities normally for each point
of the grid Ξ(i,j), and then replace them by the weighted
mean of their values on point (Ξ(i,j)) and on its neigh-
bours. the weight can be chosen to give more or less im-
portance to the information gathered at the neighbouring
points.

If a given edge is not available at one or several of the
neighbouring nodes, the mean weighted value at this edge
can be taken by excluding these nodes for the computation
of the mean, or by including them with the value 0 (to dis-
courage the use of this edge in solutions as its availability
is unsure).

• Simulated annealing : We consider a simulated annealing
where a solution is an ordered list of vertices. The indi-
vidual rotations are computed by splitting this solution.
For each point, there is one current solution that evolves
and converges to an optimal (or a satisfying) solution. At
each step, a modified solution is computed. The new cur-
rent solution is either the better of the former current solu-
tion and the modified solution, or the modified solution,
this second case being chosen with a probability that di-
minishes at each step. For a standard simulated annealing
computation, the modified solution is created by modific-
ation of the current solution. Our proposition to share in-
formation between nodes is to take the modified solution at
node Ξ(i,j) either as a modification of the current solution
at node Ξ(i,j), or as a modification of the current solution
at a neighbouring node.

This transmission of information could possibly be made
faster if computations are organized such that each step
benefits the most from its neighbours information before
launching its computation at one step. We can imagine
multiple ways to do so, two simple ones are an alternated
ordering and a sweeping ordering. In an alternated order-
ing, at a given step t ∈ N, only computations for node s
Ξ(i,j) with i+ j having the same parity as n are launched.
For example, for an even value of t, at some node Ξ(i,j)

with i + j even, the computation is launched using the
state of the solution for node Ξ(i,j) after step t − 2 as a
basis, and using the solutions of neighbouring nodes after
step t−1. This effectively creates two batches of nodes on
which solutions are computed alternately (see figure 4).

For the sweeping ordering, we proceed by alternately
sweeping the grid following the direction of each variable.
For a sweep in the direction of the variable ξd, one step is
performed first for nodes with jd = 1 (i.e. ξd = ξ

(1)
d ), then

for nodes with jd = 2, until we reach the end of the grid
with the nodes having jd = N (see figure 5). A sweep
in direction ξd allows a quick transmission of information

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2021-61-2021 | © Author(s) 2021. CC BY 4.0 License.

 
65



Figure 4. Illustration of the two batches of nodes for the
alternated ordering.

in this direction, and alternating these sweeps ensures in-
formation is transmitted from all directions.

Figure 5. Order of computations for a single sweep of the grid.

If this process leads to the construction of a modified solu-
tion that serves a vertex that can not be reached with avail-
able edges, this vertex is removed from the solution. If the
modified solution does not serve a vertex with qV > 0 that
can be reached, this vertex must be added to the solution.
One way to do so is to add it immediately after one of the
nearest vertex that appears in the solution.

• Genetic algorithms : As with simulated annealing, we con-
sider genetic algorithms whose solutions are ordered lists
of vertices (that are split later). At each step, each node
has a population of solutions. Two of these solutions can
be mixed to obtain (generally two) children solutions. A
larger population of children solutions is produced by this
means, and the new population at the next step is taken
as a subset of this children population, with a selection
favoring the quality of the solutions, and their diversity.
To share information between nodes, children solutions at
node Ξ(i,j) can be created as mixes of two solutions at
node Ξ(i,j), or of one solution at node Ξ(i,j) and one solu-
tion at a neighbouring nodes. As for simulated annealing,
vertices may have to be added or removed to obtain a valid
child solution. When an addition is needed, it can be done
on the parent solution by adding the vertex immediately
after a neighbouring vertex.

As we want to compute the actual collecting tour as a modific-
ation of one solution in this basis of solution, it makes sense to
have several solutions available for each node, and to look for

more robust solutions, which would need less alterations, and
less drastic ones, to give a valid solution. In the literature, the
main method to obtain robust solutions is to look for solution
that perform the best against the worst intances of the paramet-
ers, with a min-max optimization (as is done in (Bertsimas and
Sim, 2003)). There are several reasons we think this approach
is not practical for our problem. First, it is hard to give a reli-
able upper bound on waste quantities. Even with a good global
estimate of the quantity of waste produced, we can not exclude
high local dicrepancies, with quantities much more important
than expected in a given street. If reliable upper bounds could
be given, they would be far superior to the expected values of
waste quantities, and robust solutions based on worst case scen-
arios would be inefficient in many cases. Moreover, uncertain-
ties on the availability of roads can not simply be managed by
a worst case approach.

As a consequence, we give a few other paths to compute robust
solutions. These solutions will not be as immunized to uncer-
tainty as those constructed with robust optimization as defined
in the literature, but they are designed to strike a compromise
between robustness and efficiency.

To account for roads being less available than expected, one
can take a higher threshold to include an edge in the problem
at node Ξ(i,j), for example P [ρe = 1 | F1] > 0.75, but there is
a risk of creating vertices that can not be reached, thereby ex-
cluding them from the tour. Another way to mitigate the risk of
road unavailability is to favor individaul vehicles visiting ver-
tices that are close to each other. This can make rerouting a
vehicle easier if an edge is no more available.

To account for the risk of waste quantities being locally more
important than expected, one can limit vehicles to a fraction (for
example 90%, or 95% of their true capacity in the initial basis
of solutions, to avoid having to change the list of vertices they
are to visit (which happens when the total quantity of waste at
these vertices exceeds the capacity of a vehicle). One can also
compute solution where a small fraction of sites is visited twice,
to have more leeway with vehicle capacities.

With genetic algorithms, and, in a more limited fashion, with
ant colony solvers, it is possible to look for a set of diverse
solutions for each node. This makes it more likely that one of
these solutions can be easily adapted into a valid solution in the
second phase.

3.3 Derivation of actual solutions

At time t2, a large part of the uncertainty is removed as the col-
lection tour is decided upon. The goal of our process is to be
able to derive a valid collection tour using the basis of solutions
constructed beforehand. To do this, one can reevaluate para-
meters h and ξ in light of the new information available, and
consider solutions at nodes Ξ(i,j) near the reevaluated values.
If one (or several) of these solutions are valid solutions of the
problem at t2, or can be easily adapted into valid solutions, one
can take the best of these possibilities as the actual tour that is
settled upon. What we call easy adaptations are:

• If an edge of the solution is unavailable, it is bypassed us-
ing a shortest path between the previous visited and the
next visited node.

• If the nodes that are to be visited by a vehicle have a total
quantity of waste that exceeds its capacity, one or more
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nodes are dropped of its schedule and reattributed to other
vehicles that are still under their capacity.

Sungur et al. (Sungur et al., 2010) have devised a more sophist-
icated way to obtain a valid solution from a basis of solutions,
with their ”Master and Daily Scheduler” method. Before uncer-
tainty is removed, they build a master solution, as the solution
that can be best adapted on a fixed sample of scenarios. This
adaptation is done by an insertion routine that adds new ”cus-
tomers” that need to be visited in a scenario but were not in the
master solution. When a daily schedule needs to be produced,
it is derived from the master solution, and then improved by a
tabu search. While they work on a slightly different problem,
their adaptation approach, combining an insertion routine and
an improvement by tabu search, should also be tractable for our
problem.

If it is not possible to find a valid solution by adapting the basis
of solutions, we search for a valid solution of good quality by
using again the same meta-heuristic algorithm. As the goal is
not necessarily to find optimal solution, it is possible to use a
quicker algorithm with fewer iterations. Solutions of the basis
of solutions can be used as initial solutions (in a way that is sim-
ilar to preconditioning for linear problem), with the reasoning
that even if these solutions can not be used in full to produce a
valid solution, they contain parts that could help build a good
valid solution.

At time t3, a solution is settled upon, and it is up to drivers to
change their itinerary if one given road is not available, or head
back to the depot once they have reached their full capacity.
It is therefore useful to keep some robustness in the solution
determined at t2.

4. CONCLUSIONS

We have put forward a model for the progressive removal of
the uncertainty, in the context of the computation of waste col-
lection tours after a flood, the uncertain variables being waste
quantities and road availability. With this model in mind,
we have made two main contributions. We have described a
method to find an efficient collection tour adapted to a particu-
lar situation in a constrained timeline, as there is generally little
time between the time enough information is gathered to con-
ceive a feasible tour and the time the waste collection should
start. To do this, we proposed a method in three steps, the con-
struction of a basis of solutions (based on the discretization of
a low-dimensional set of random variables governing the be-
haviour of the final random variables), the computation of an
actual solution by modification, using this basis, and the ad-
aptation of the solution on the fly, when some variables are
different from what was planned. We also proposed a frame-
work to compute efficiently a set of solutions for the nodes of
the grid in the space of random variable. This framework im-
plies the simultaneous computation of solutions for every node
of the grid, and the transmission of information between nodes.
Such a transmission of information can be implemented using
algorithms based on different meta-heuristic. We also described
how to derive actual solutions from this basis, and how they can
be adapted during the collection tour if necessary.

Much work remains to be done about the computation of the
solutions on the grid in the space of random variables, first
to prove that our method based on the sharing of information

between nodes effectively accelerates the finding of optimal
solutions, and then to study which algorithms, and which mod-
els for the communication of information lead to the most effi-
cient method. Another subject for further research is the char-
acterization of robust solutions, in the sense that they are more
likely to lead to the finding of valid final solutions, and how al-
gorithms can be adapted to find these robust solutions. Finally,
the last improvement needed to make this framework practical
is to define more possible modifications to adapt solutions and
obtain a valid solution quickly, either during the computation of
the actual solution, or even during the collection of the waste.
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2007. The p-median problem: A survey of metaheuristic ap-
proaches. European Journal of Operational Research, 179(3),
927–939.

Nobile, F., Tempone, R., 2009. Analysis and implementation
issues for the numerical approximation of parabolic equations
with random coefficients. International journal for numerical
methods in engineering, 80(6-7), 979–1006.

Owen, S. H., Daskin, M. S., 1998. Strategic facility location: A
review. European journal of operational research, 111(3), 423–
447.

Oyola, J., Arntzen, H., Woodruff, D. L., 2018. The stochastic
vehicle routing problem, a literature review, part I: models.
EURO Journal on Transportation and Logistics, 7(3), 193–221.

Rawls, C. G., Turnquist, M. A., 2010. Pre-positioning of emer-
gency supplies for disaster response. Transportation research
part B: Methodological, 44(4), 521–534.

Shen, Z., Dessouky, M. M., Ordóñez, F., 2009. A two-stage
vehicle routing model for large-scale bioterrorism emergencies.
Networks: An International Journal, 54(4), 255–269.
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