
ON THE VISUALIZATION OF POSITIONAL PRECISION

J. Meidow

Fraunhofer IOSB, Ettlingen, Germany - jochen.meidow@iosb.fraunhofer.de

KEY WORDS: Visualization, point error, uncertainty field, confidence region

ABSTRACT:

Tasks such as image registration or pose estimation require the determination of transformations based on uncertain observations.
Hence, the position of any geometric object transformed according to this estimate is also uncertain, at least in terms of precision.
Often the knowledge of uncertainty changes the judgment of individuals. Thus, the visualization of this information is crucial
whenever a human decision-maker is involved. In the absence of error-free reference data, we consider the estimated precision as
the probably most important quantity characterizing the uncertainty. This contribution focuses on the visualization of positional
precision as provided by estimated covariance matrices. Basic design principles such as coloration and contouring in 2D and 3D are
presented and discussed in the context of practical applications, e.g., the superimposition of distance information as seen nowadays
in sports broadcasts. As a novel contribution, we propose quartic plane curves to represent the confidence regions of the loci of
conic sections.

1. INTRODUCTION

1.1 Motivation

“One of the most challenging aspects of data visuali-
zation is the visualization of uncertainty. When we
see a data point drawn in a specific location, we tend
to interpret it as a precise representation of the true
data value. It is difficult to conceive that a data point
could actually lie somewhere it hasn’t been drawn.”
(Wilke, 2019)

This observation motivates the quantification and visualization
of positional uncertainty in this contribution: Sampled spatial
data often features unknown positional errors, resulting in the
question of where a data point or an object should be displayed.
Unfortunately, the mere addition of scalar values to convey un-
certainty complicates the display already. However, a sophisti-
cated visualization of uncertainty is crucial in many practical
applications with the participation of human decision-makers.
As it is generally known, the inclusion of information about
uncertainty changes the judgment of individuals. More satis-
faction and a lower likelihood of regret is a consequence in the
decision process, cf. (Politi et al., 2007) in the context of medi-
cal applications.

Many representations of uncertainty rely on the concepts of
statistics, which are not always accessible to human intuition.
Furthermore, introducing information about uncertainty usually
increase the data dimension considerably. For example, the po-
sitional uncertainty of a two-dimensional point, represented by
a vector with expectation values and a corresponding covari-
ance matrix, already requires five parameters which hamper the
utilization of image representations. Thus, the challenge is to
transform quantified positional uncertainty into a visualization
that enables clear perception.

1.2 Related Work

A comprehensive overview of uncertainty visualization provide
(Bonneau et al., 2014). The various sources of uncertainty are

explained and discussed, a formal description inclusive of mat-
hematical modeling is given. Different techniques for the visu-
alization of uncertainty are present, e.g., comparison, the usage
of glyphs, or an attribute modification. Examples from medical
science, weather and climate, security application, and intelli-
gence are discussed. The visualization of the uncertain spatial
data is discussed in (Ślusarski and Jurkiewicz, 2020) for topo-
graphic objects.

In (Perwass and Förstner, 2006) circles are constructed by vir-
tue of three uncertain points in any case. The propagation of
the covariance matrices of the points enables the visualization
of the uncertainty of the resulting circles by showing the result
of sampling. For conic sections, sets of conics having probabi-
lity exp(−1/2) are used for visualization.

1.3 Contribution

In this contribution, we focus on the visualization of positional
uncertainty of basic geometric objects such as points, straight li-
nes, and conic sections. Essentially, this refers to the empirical
precision of the parameters. Hence, a reasonable representation
of an uncertain object’s position and geometry is the mean and
the covariance matrix of the parameters. These quantities are
usually obtained by estimation processes or via variance propa-
gation.

Essentially, we

• discuss applications in 2D and 3D, e.g., the mapping of
points for image registration or the visualization of uncer-
tain camera poses obtained by spatial resection

• illustrate common design principles and visualization tech-
niques, e.g., contouring, coloration, or uncertainty fields

• define confidence regions for 2D points, conic sections,
and 3D straight lines.

We propose quartic plane curves for the definition of confidence
regions of conic sections, i.e., bivariate quartic equations. The
zero sets of these polynomial equations define the curve’s locus
and hence the boundaries of the confidence regions.
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2. REPRESENTATION AND VISUALIZATION OF
BASIC UNCERTAIN 2D ENTITIES

We restrict our explanations to the geometric entities requi-
red for the applications presented in Section 3: 2D points, co-
nic sections, and straight lines in 3D. Confidence regions for
straight lines in 2D bounded by the branches of hyperbolas are
discussed and shown in (Wolf, 1938) in general and in (Fau-
geras, 1993) for epipolar lines. Two end-points delimit an un-
certain straight line segment with uncertainties depicted by two
ellipses and a hyperbolic error band for the joining straight line.
This yields a confidence region with the shape of an hourglass
or a bone; see (Meidow et al., 2009), for instance. In 3D, the un-
certainty of a plane is depicted in (Meidow et al., 2016, Fig. 5)
and the confidence region of a 3D straight line in (Förstner and
Wrobel, 2016, Fig. 10.16).

Notation We denote geometric 2D entities with lower-case
letters and 3D entities with upper-case letters. Matrices are set
sans-serif; vectors with serifs. For the representation of points,
straight lines, conic sections, and transformations, we also uti-
lize homogeneous coordinates. Homogeneous vectors and ma-
trices are denoted with upright letters, Euclidean vectors and
matrices with slanted letters. For homogeneous coordinates,
‘=’ means an assignment or an equivalence up to a non-zero
scaling factor.

2.1 Uncertain 2D Points

Uncertain 2D points with the coordinates x= [x, y]T are most
frequently represented by the vector µx of means and the cova-
riance matrix

Σxx =

[
σ2
x σxy

σxy σ2
y

]
=

[
σ2
x ρxyσxσy

ρxyσxσy σ2
y

]
(1)

with the correlation coefficient ρxy∈ [−1, 1] (Förstner and Wro-
bel, 2016, p. 366). A convenient two-dimensional visualization
is then the confidence ellipse defined by the points fulfilling

(x− µx)
TΣ−1

xx (x− µx) = k2 (2)

with k2 being the inverse of the chi-square cumulative distribu-
tion function with 2 degrees of freedom and probability α. For
k2=1, we obtain the so-called standard error ellipse. A plotted
confidence ellipse conveys the complete information provided
by the point representation {µx,Σxx}. This visualization is
chosen in combination with a vector field in Figure 1 to show
the uncertainty of point positions obtained by mapping via an
uncertain homography.

However, depending on the graphical ways to express the uncer-
tainty, a single characteristic number is often desirable. Promi-
nent scalar measures derived from the covariance matrix Σxx

of the point coordinates are Helmert’s point error (Helmert,
1868) and the point error according to Werkmeister (Werkmeis-
ter, 1920). Since the shape of the ellipse is of interest, the eigen-
decomposition Σxx = UΛUT of the covariance matrix is com-
puted with Λ=Diag([λ1, λ2]) and the orthogonal matrix U.

With this, Helmert’s point error is computed via

σH =
√

tr (Σxx) =
√
σ2
x + σ2

y =
√
λ1 + λ2 (3)

considering the square root of the trace of the covariance ma-
trix. The measure σH is geometrically the semi-diagonal of the

Figure 1. Combination of a vector field and an uncertainty field
showing the transformations and the resulting uncertainty of
error-free, equally spaced lattice points mapped by an uncertain
homography.

minimal bounding box of the standard ellipse. Note that Hel-
mert’s point error follows no distribution, thus cannot be used
as a test statistic for decision-making. An alternative is the point
location error according to Werkmeister

σ2
G =

√
det (Σxx) =

√
σ2
xσ2

y − σ2
xy =

√
λ1λ2, (4)

which considers the determinant of the covariance matrix. We
use the superscript ‘2’ to indicate the units of these measures,
i.e., σH features the same unit as the standard deviations of the
coordinates and σ2

G features the same unit as the variance of the
point coordinates. Two modifications of Werkmeister’s point
error (4) are common to facilitate the interpretation by human
observers: Multiplication of σ2

G by π yields the areaA=πab of
the confidence ellipse computed with the lengths a=

√
λ1 and

b=
√
λ2 of the semi-axes. Moreover, taking the square root of

σ2
G yields

σG = 4
√

det (Σxx) =
4
√
λ1λ2, (5)

which is the geometric mean of the standard deviations and mo-
tivates the subscript ‘G’ introduced in (4). The geometric mean
is the radius of the confidence circle with the same area as the
confidence ellipse (Förstner and Wrobel, 2016, p. 367).

After computing these measures for supporting points, contour
lines, i.e., curves joining points of equal value, can be computed
and visualized as shown exemplarily in Figure 5 below.

2.2 Conic Sections

For conic sections, we propose using quartic plane curves, i.e.,
bivariate quartic equations, to delimit confidence regions. With
the homogeneous symmetric matrix C representing a conic sec-
tion and an image point in homogeneous representation x =
[x, y, 1]T, the relation

xTCx = (x⊗ x)T c = 0 (6)

holds for points on this conic section with the vectorization c=
vec(C). We can utilize the six parameters a= [a, b, c, d, e, f ]T

of the parametrization

C =

 a b/2 d/2
b/2 c e/2
d/2 e/2 f

 (7)

to rewrite (6), leading to the polynomial equation

aTu = 0 (8)
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with the homogeneous vector of coefficients a and the vector of
monomials u= [x2, xy, y2, x, y, 1]T also known as lifted coor-
dinates.

Then, given a homography matrix H for the point transfer x′=
Hx, the transfer of a conic reads

C′ = H−TCH−1 (9)

and the corresponding covariance matrix Σc′c′ of the result c′=
vec(C′) is obtained by variance-covariance propagation. The
six parameters a are then extracted from the conic matrix (7).
The rank of the covariance matrix Σaa is 5 due to the homoge-
neous representation and the null space of Σaa properly reflects
this by the relation Σaaµa=0.

Assuming a to be a Gaussian random vector with mean µa and
covariance matrix Σaa, we compute the squared Mahalanobis
distance d2M between a and µa. With the pseudo-inverse Σ+

aa of
the covariance matrix Σaa we obtain

d2M = (a− µa)
T Σ+

aa (a− µa) ∼ χ2
r (10)

which is chi-square-distributed with r=5 degrees of freedom.
Thus, for a percentage α of all vectors d2M ≤ k2 holds where
k2 is a quantile, i.e., the inverse of the chi-square cumulative
distribution function with r degrees of freedom and probability
α. For a given k, the set of parameter vectors ak with equal
likelihood is then given by

(ak − µa)
T Σ+

aa (ak − µa) = k2, (11)

which is equivalent to

aT
k

(
k2Σaa − µaµ

T
a

)−1

ak = 0, (12)

for Σaaµa = 0, cf. (Ochoa and Belongie, 2006) and (Hartley
and Zisserman, 2000, p. 298 ff.). Considering (8) and (12), we
obtain ak=

(
k2Σaa − µaµ

T
a

)
uk by comparison of coefficients

and therefore the relation

uT
kQkuk = 0 with Qk = k2Σaa − µaµ

T
a (13)

for points on the boundaries of the confidence region.

The graph of the polynomial equation (13) is a quartic plane
curve. The branches of this curve are contour lines depicting
the locus of all points with equal likelihood, i.e., the boundaries
of a confidence region enclosing the conic. For k2 =0 the po-
lynomial (13) becomes reducible and represents a double conic
with equation µT

auk =0 depicting the expectation value of the
conic’s locus. By rearranging equation (13) we can compute
the distances k2 for points (x, y) via

k2(x, y) =
(µT

au)
2

uTΣaau
, u(x, y) 6= µa, (14)

and u = [x2, xy, y2, x, y, 1]T. These distance values are non-
negative since Σaa is positive semi-definite. The values can
be visualized and used to generate contour lines as shown in
Figure 7 for instance.

3. EXEMPLARY APPLICATIONS

We discuss three applications in 2D and 3D which benefit from
the visualization of uncertainty: The assessment of positions in
images obtained by image registration, the superimposition of
distances in TV broadcasting of sporting events, and the visu-
alization of an uncertain sensor pose. Technically, this refers
to the visualization of results obtained by mapping a point via
an uncertain homography, transforming an ellipse via a homo-
graphy, and estimating a sensor pose.

3.1 2D Example: Point Transfer via Homography

The process of transforming different sets of image data into
one coordinate system is known as image registration. We con-
sider a linear transformation as the model for mapping image
point locations by estimating and applying a homography. Fi-
gure 2 shows two aerial images capturing almost the same scene.
One image is a color infrared image serving as the target or re-
ference image, and the other is an RGB image to be transformed
by image warping.
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Figure 2. Image pair and seven selected tie points used for the
investigations. Top: color infrared image serving as the re-
ference image. Source: Geobasisdaten: Bayerische Vermes-
sungsverwaltung. W Terms of use. Bottom: RGB image.

Given a 2D point in homogeneous representation x and a ho-
mography matrix H, the point transfer reads

x′ = Hx =
(
xT ⊗ I3

)
h, h = vec(H) (15)

with the vectorization h= vec(H), the 3×3 identity matrix I3,
and the symbol ⊗ denoting the Kronecker product.

We utilize corresponding image points to estimate the transfor-
mation parameters. These ties points can be obtained automa-
tically by tracking or matching procedures. The result of this
registration usually depends on the spatial distribution of the
utilized tie points. To demonstrate the effect of this, we in-
teractively selected corresponding points in the image regions
showing areas covered with buildings. In doing so, we assume
uncertain positions of the tie points in both images.

After the estimation of the transformation parameters h, the
image registration is obtained by applying the mapping. Fi-
gure 3 shows the result of this registration with a checkerboard
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Figure 3. Result of the image registration representing both
images alternating in a checkerboard pattern.

pattern where both images are shown alternating. Points of the
RGB image are provided in the coordinate system of the color
infrared image.

As pointed out by the quotation in the introduction, the point lo-
cations are uncertain. However, variance propagation provides
an estimate for this uncertainty: With the covariance matrices
for the point coordinates and parameters of the homography, we
obtain the covariance matrix

Σx′x′ = Jx′hΣhhJT
x′h + Jx′xΣxxJT

x′x (16)

of the homogeneous point coordinates x′ by variance propaga-
tion assuming statistical independence with the Jacobians Jx′h=
xT ⊗ I3 and Jx′x=H. Eventually, with the homogeneous coor-
dinates x′ = [u′, v′, w′]T, the Euclidean representation of the
point reads x′ = [u′/w′, v′/w′]T and the corresponding cova-
riance matrix reads Σx′x′ = Jx′x′Σx′x′J

T
x′x′ with the Jacobian

Jx′x′ =
1

w′2

[
w′ 0 −u′
0 w′ −v′

]
, (17)

cf. (Förstner and Wrobel, 2016).

To summarize, we get for the Euclidean point coordinates x′=
[x′, y′]T the covariance matrix

Σx′x′ = Jx′x′

(
Jx′hΣhhJT

x′h + Jx′xΣxxJT
x′x

)
JT
x′x′ (18)

assuming statistical independence between point coordinates
and transformation parameters.

Equation (18) provides a covariance matrix for each image point
which can be visualized by an error or confidence ellipse. Visu-
alizing these ellipses for selected points, we get a visualization
of the so-called uncertainty field, see Figure 1 and (Förstner
and Wrobel, 2016, Fig. 10.18). Figure 4 depicts the uncertainty
field for one of the shown images. As to be expected, the plotted
standard ellipses are the smallest in the vicinity of the utilized
tied points. Furthermore, the major axes are pointing away from
the tie points. By exchanging the roles of reference and moving
image, one gets the uncertainty field in the coordinate system
of the other image.

Figure 4. Uncertainty field for point transfer via an estimated
homography. The standard ellipses enlarged by the factor 10
have been plotted for the point positions of a grid.

Figure 5. Contour plot depicting Helmert’s point error. The
values have been mapped to the hue of the image using the color
code of traffic lights.

The covariance matrix can be computed for each image point,
and we can consider Helmert’s point error (3) as a scalar mea-
sure for evaluation. Figure 5 shows a contour plot for the me-
asure varying from 6.5 to 82.4 pixels in the image. The values
have been mapped to the hue of the image using the universal
color code of traffic lights.

3.2 Transfer of a conic via Homography

As a second 2D application, we consider the transformation of
a conic via a homography in which both the conic and the trans-
formation might be uncertain. Such information is of interest in
situations where we consider point distances on a plane obser-
ved in a perspective view.

As an example, consider the overlay of ellipses in a video stream
showing a soccer match; see Figure 6. The largest ellipse deno-
tes the minimum distance of 10 yards to be observed by players
during a direct free kick. The homography is determined by
identifying image points that correspond to points with known
coordinates on the playing field. In addition or alternatively,
corresponding straight lines can be used to estimate the para-
meters of the utilized homography. As the result of this esti-
mation process, we obtain estimates for the transformation pa-
rameters h= vec(H) and the corresponding covariance matrix
Σhh. Without loss of generality, we assume the circle defined
on the playing field to be error-free.
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Figure 6. Direct free kick. The superimposed nested ellipses are
concentric circles on the field, with multiples of 1 yard as radii.
The encircled seven image points have been used to estimate the
field-to-image homography. Photo taken by Markus Dallarosa,
licensed by W CC BY-SA-3.0.

expectation
50.0 % confidence
95.0 % confidence

Figure 7. Confidence regions for the locus of the ellipse boun-
ded by quartic plane curves. The precision of the locus increa-
ses with diminishing distance to the used tie points.

Figure 7 shows the result for the uncertain ellipse obtained by
mapping the 10-yards-circle into the image via (9). Confidence
regions for the locus of the ellipse are given by the quartic plane
curves (13), which in this case decomposes into pairs of nested,
not necessarily convex ovals. The precision of the ellipse’s lo-
cus increases with diminishing distance to the seven interacti-
vely selected tie points.

3.3 3D Example: Pose Estimation

As a 3D example, we consider the image-based pose estimation
for a calibrated camera. The pose or orientation of a camera
comprises the position C of the projection center in a world
coordinate system and three parameters r for the rotation from
a world coordinate system to the camera coordinate system. Gi-
ven measured image points corresponding to known 3D points,
the six parameters of the pose can be determined by spatial re-
section.

Figure 8 shows the utilized image captured by a camera moun-
ted on a low-flying drone, approximately 40 m above ground.
The camera’s field of view covers 68° horizontally and 41.5°
vertically. The maximum likelihood estimation yields estima-
tes for the parameters values and the covariance matrix of the
parameters. The estimated confidence region for the three coor-
dinatesC of the projection center is an ellipsoid, as depicted in
Figure 9.

Figure 8. Pose estimation using the marked image points. The
camera is mounted on a quadcopter drone.

In principle, the covariance matrix Σrr of the three rotation pa-
rameters r could be displayed similarly. However, the interpre-
tation of rotation parameters is usually challenging, and so is
the visualization of the attached precision. Therefore, we do
not consider the rotation parameters but the z-axis of the ca-
mera coordinate system, which coincides approximately with
the optical axis of the camera system, cf. Figure 9. This sub-
stitute allows for intuitive visualization of directional precision
but provides few visual cues for the precision of the roll angle.

Given the projection centerC and the matrix R(r) for the rota-
tion form the world into the camera coordinate system, a point
X on the optical axis is given by the point-direction form

X = C + λRT[0, 0, 1]T, (19)

where λ is the Euclidean distance between the points C and
X . The confidence region for the straight 3D line depicted in
Figure 9 is the envelope of all confidence regions, i.e., ellip-
soids, for the points along the optical axis (Förstner and Wro-
bel, 2016, p. 379). Starting at the projection center and moving
along the optical axis, this illustrates an uncertain ray or half-
line. The confidence region with the shape of an hourglass is
most narrow in the vicinity of the 3D points used for the spatial
resection.

Please note that the confidence region for a straight line is not a
quadric in general, in particular not a hyperboloid of one sheet.
However, if we fix the projection center, i.e., set ΣCC :=O3, we
obtain a double cone with an elliptical base. Conversely, if we
fix the rotation, i.e., set Σrr := O3, we obtain a cylinder with
an elliptical base. Note that usually strong correlations exist
between the parameter groups C and r if cameras with narrow
fields of view are used. These correlations are not perceivable
by the visualization in Figure 9.

4. CONCLUSIONS AND OUTLOOK

Proper visualization of the uncertainty of object positions is vi-
tal for many practical applications that demand judgment by
human decision-makers. While it is comparable easy to depict
positional uncertainty in the 1D case, e.g., by using box plots,
it becomes challenging with an increasing number of dimensi-
ons. Thus, the desire to comprise multidimensional information
in single measures to be visualized is comprehensible. Howe-
ver, by this action, information, e.g., about correlations, gets
lost inevitably. Even with this subsumption, it is still unclear
which design principle should be selected to convey the infor-
mation, e.g., hue, texture, or contour lines. The exemplary two-
dimensional applications discussed in Section 3 illustrate some
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Figure 9. 99% confidence regions. Top: Position of the pro-
jection center as an ellipsoid. Middle: Straight line, here the
optical axis of the camera system. Bottom: Half-line defined
by projection center and optical axis. The confidence region
is most narrow in the vicinity of the 3D points used for spatial
resection.

of these ways to provide this information. And in 3D the si-
tuations get worse. Here, animations or interactive virtual 3D
models appear to be more beneficial, maybe even the utilization
of sound (Lodha et al., 1996).

For the future, we are planning to study the impact of different
visualization techniques. For this, experiments with human ob-
servers are envisaged to answer the question of which visuali-
zations are subjectively more appealing. For applications as-
king for decisions, we would like to design experiments with
decision-makers to compare results obtained with and without
the presentation of uncertainty.
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