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ABSTRACT:

In contrast to cars, route choices for cycling are barely influenced by the respective traffic situation, but to a large extent by the
routes’ comfort. Especially in urban settings with several alternatives, segments with many or long stops at traffic lights and badly
maintained roads are avoided due to a low comfort and cyclists vary from the shortest route. This fact is only indirectly considered
in common navigation applications.
This work aims to integrate surface roughness measurements collected from diverse bicycles to a joint scale via a least-squares
adjustment. Data was collected using smartphones, which were mounted to bike hand bars and measured positions and vertical
accelerations on user’s trips. As this way sensed roughness also depends on the bike setting and type, the resulting values would be
different for different users. Thus, this paper presents a novel approach to harmonize observations from differing sensitive setups.
The basic concept idea of bundle block adjustment is adapted to calibrate a basic scale model and in parallel adjust the observations
of surface roughness to a common scale.
This way a crowd-sourced roughness map can be generated. Such a map can be used to enrich bike focused routing services and
thus encourage cycling in daily live. In addition, it can also be used to derive hints for infrastructure servicing.

1. INTRODUCTION AND RELATED WORK

Due to the wide availability on smartphones, navigation applic-
ations are no longer used only for driving in unknown surround-
ings, but also for everyday rides by bicycle. In contrast to the
car where route choice is mainly influenced by estimated travel
time, cyclists rather look also for comfortable routes. Espe-
cially to avoid situations with low comfort like gradients, many
or long stops at traffic lights and badly maintained roads, cyc-
lists vary from the shortest route ((McCarthy et al., 2016), (van
Overdijk, R.P.J., 2016)). This fact is only indirectly considered
in common navigation applications.

In addition to the ongoing revival and increasing popularity of
the bicycle for everyday travel and leisure, this development is
also interesting from a public policy perspective, as it can be
seen as a way to address widespread urban traffic and related
environmental problems. In parallel, new bicycle related busi-
nesses arise, such as sharing services for bikes and scooters,
but also a significant spread of parcel and food deliveries by bi-
cycle. In many regions, this development is intended to be fur-
ther promoted by expanding the corresponding infrastructure,
which requires extensive planning and, in some areas, prioritiz-
ation. Options for optimizing the above mentioned services on
the existing infrastructure also depend to a large extent on the
available data. Detailed mapping and monitoring of the state of
infrastructure is therefore crucial for informed decision making
in a wide range of mobility domains.

In (Dane et al., 2019) a literature overview is given for different
factors influencing cyclists’ route choice in general, although
the focus of the paper is on E-bikes. Although based only on hy-
pothetical routes, (Bovy, Bradley, 1985) is one of the first stud-
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ies on cycling route choice behavior also taking surface quality
into account. In recent years authors like (Broach et al., 2012)
analyze the influence of attributes derived from sensor measure-
ments on cyclist route choice behavior. They are mostly based
on GPS data and do not specifically take the comfort or sur-
face quality into account. In the thesis by (van Overdijk, R.P.J.,
2016) is claimed that good quality paths and low slopes can be
worth more than 4 minutes of travel time reduction, and sur-
face quality is placed in the group of most relevant factors for
comfortable routes. In line with this, (McCarthy et al., 2016)
also state that cyclists are quite sensitive to comfort and safety
aspects and thus are not only interested in the most direct or
fast route. In the stated preference survey of (Stinson, Bhat,
2003), after travel time and distance to motorized traffic, also
the surface type is of highest interest for cyclists. Further, sur-
face quality seems to be the most important aspect compared to
other comfort measures like hilliness, continuity or delays from
stops. This supports the relevance of smooth surface conditions
for comfortable bicycle routes.

In order to incorporate these factors into a routing service, it
is necessary to have a preferably complete and up-to-date data-
base. Information on some of the comfort-relevant aspects can
be obtained from public or free sources. Gradients, for ex-
ample, can be derived from globally available surface models,
and intersections and traffic signals can now usually be found
in OpenStreetMap (OpenStreetMap contributors, 2020) (OSM).
However, the surface condition of paths is only partially in-
cluded in the latter. There is already a routing service, Komoot
(komoot GmbH, 2021), based on OSM surface tags, but this
requires a prior manual labeling of the paths by volunteers.

Automating the acquisition of surface type and roughness by
means of the smartphones of volunteer cyclists would therefore
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be desirable, in the sense of crowd-sourcing and volunteered
geographic information. Recently (Brauer et al., 2021) presen-
ted a processing pipeline for bicycle movement data to determ-
ine the flow of different routes, based on the riders speed. In
recent years, applications with different approaches have been
developed in this direction. For example, (Bike Citizens Mobile
Solutions GmbH, 2021) from Austria offers a navigation app
for cyclists similar to Komoot, but also promotes the record-
ing and uploading of the trajectory traveled during use. This
is then analyzed in comparison to the shortest routes to adapt
future recommendations. In this way it can be inferred, at least
implicitly, that short but bypassed route segments are not com-
fortable. The SimRa and RideVibrations projects go one step
further, taking into account other sensors such as acceleration
sensors in addition to the smartphone positioning service. In
SimRa by (Karakaya et al., 2020) from Berlin, data is collected
with the objective of detecting sudden maneuvers due to (near-)
accidents. The aim is to identify dangerous spots. The app and
first collected data are open-source. In (Wage et al., 2020) po-
sition and acceleration data is collected in a very similar way
while riding. However, the focus of the development, data re-
cording and analysis was placed on capturing the way surface
conditions.

Published works such as (Bı́l et al., 2015), (Dawkins et al.,
2011) and (Wage et al., 2020) have shown that vertical accel-
eration measurements on bicycles (but also other vehicles) can
provide information about the roughness (or smoothness) of the
ground. However, scores of roughness were calculated from the
measurements of single, particularly known bicycles. The wide
availability and convenience of smartphones offers much more
possibilities, if used in a crowd-source manner, to achieve much
better coverage and actuality, than individual measurement sys-
tems could achieve. (Wage et al., 2020) reveals relevant influ-
ences of the ridden bike type and tire pressure on the measured
roughness. An open point to bring measurements of a wide
variety of bicycles and settings into a joint frame of roughness
is to model and handle their different sensitivities. As a solu-
tion to this problem, we present an approach for adjusting data
collected from diverse cyclists relatively to each other and thus
into a joint roughness level.

2. APPROACH

This approach is based on the data and findings described in
(Wage et al., 2020). The objective is not to classify discrete sur-
face types, but to score their roughness (and thus ride quality)
on a continuous scale. This way, the challenge of separating and
ordering meaningful and generically applicable classes is omit-
ted and a continuous roughness index can be integrated into a
variety of applications more directly. For example, in the con-
text of bicycles, they can be used for surface-sensitive routing
in the form of graph weights.

The approach includes a preprocessing of trajectories (see 2.1)
where they are matched to the underlying street network, a pre-
paration of the raw roughness observations (see 2.2) and the
actual adjustment step (see 2.3). Each step is presented in the
following and is given in the overview chart of Figure 1. The
mentioned analysis step is presented in the case study discus-
sion in section 4.

2.1 Trajectory preprocessing

The collected trajectories are a sequences of geo-located points
and need to be linked to the associated network segment (so

Figure 1. Approach process chain overview.

called map matching) to enable segment based analysis. Match-
ing each point naively just to the nearest network segment is
quite error-prone, because especially in covered urban spaces
the location inaccuracy can easily add up to several meters.
A probabilistic and more reliable approach was introduced by
(Newson, Krumm, 2009) and is used for this work. Instead of
considering each point individually, a Hidden-Markov-Model
is used to find the most probable sequence of segments tra-
versed by the cyclist. The distance and angular differences are
compared between the geographic and graph space to score the
matching candidates. In this way each trajectory point is re-
lated to the most probably passed network segment for upcom-
ing processing steps.

2.2 Roughness observation preparation

There is not a generic definition of roughness and many authors
use different approaches and indices. In numerous studies, the
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RMS (Root Mean Square) is derived from measured accelera-
tions to represent roughness, or own indices based on this are
constructed (see (Bı́l et al., 2015), (Dawkins et al., 2011)). Due
to many possible disturbances (isolated bumps such as gullies
or branches) on an individual road segment pass, which can
also be bypassed, a comparable, but more robust measure was
selected as a roughness index. The Median Absolute Devi-
ation (MAD) in (1) is therefore used in this study, where the
median of the absolute deviation between the individual meas-
ured values and their median is used (cf. (Leys et al., 2013)).
It takes double advantage of the greater outlier robust median,
compared to the commonly used mean based RMS.

MAD(p) = median (|azi(p)− ã(p)|) (1)

where ã(p) = median(azi(p))
azi(p) : vertical accelerations of segment passage p

As measure of dispersion the Median Absolute Deviation (1) is
used to calculate an index of roughness. Each time a user is
passing a segment, this observed vertical accelerations are used
to calculate a MAD-value.

The sensed vertical acceleration, and thus the calculated rough-
ness index, increases with increasing speed. (Dawkins et al.,
2011) and own comparisons indicate a linear relation. Based
on this all observations are normalized to a common speed of 5
m/s via Equation (2) with measured speeds vi in m/s.

lMAD(p) =
MAD(p)

ṽ(p) · 5 [m/s]
(2)

where ṽ(p) = median(vi(p))
vi(p) : measured speeds [m/s] on segment passage p

Giving an idea of scale, from our experience it can be said
that index values of about 1 are associated with smooth asphalt
tracks. Values from around 2 indicate some minor flaws, coarse
asphalt or a smooth paving. Unpaved, graveled or damaged
surfaces commonly result in values above 3. From 4 on bumps
might occur more frequently and values of 8 and more indicate
the presence of rough cobblestone, planks and similar surface
types.

2.3 Adjustment

The underlying idea of the approach is that the roughness of a
road segment is observed by different bicycles. Due to differ-
ent influences such as type of bike and setup, the observations
will not yield to the same roughness values. As there are many
observations of the same road segment, the problem can be for-
mulated as an optimization problem, where each measurement
contributes to the unknown roughness value of a segment, un-
der the constraint that all observations yield the same roughness
value. The problem is solved by a least-squares adjustment, so
in parallel to the segment roughness also parameters represent-
ing the main varying influencing factors are estimated.

Our design decisions are as follows:

• street segment: surface types are assumed not to change
during a road segment, so segments between two junc-
tions are assumed to be homogeneous. Separate paths (e.g.
street and bike path) are modeled as separate segments.

• possible external temporal effects on the surface roughness
are left out; temporal changes of the bike like load or tire
pressure are assumed to be constant for the related trip.

• speed: vertical acceleration is assumed to be related lin-
early to speed; speeds for each segment pass are handled
constant as the median; observations with speed smaller
2.5 m/s are assumed to be unreliable and are ignored.

Based on this assumptions, corrected roughness-observations
of the same street segments should lead to the same values after
the adjustment. As an analogy to the well-known bundle block
adjustment in photogrammetry (e.g. in (Luhmann et al., 2013)),
where corresponding tie points in images of different perspect-
ives are used to reconstruct their relative poses, our approach
utilizes street segments as tie points to adjust differing observa-
tions of their roughness. Like estimating camera model para-
meters in parallel, the trip specific parameters including user-
bike setting are determined. This way different shock sensitiv-
ities of the measurement system are modeled implicitly.

In the absence of suitable preliminary work on the functional
relationship between road roughness and resulting vertical ac-
celeration for bikes, a basic linear scale model is used. The
relation between observations and unknown parameters is in-
troduced via the functional model (3).

lMAD(p) = xtrip(t) · xrough(s) (3)

where lMAD(p) : speed normalized MAD observation of
segment passage p
xtrip(t) : unknown correction parameter of trip t
xrough(s) : unknown roughness of segment s

Due to no prior knowledge about stochastic relations, they are
assumed to be equally accurate and uncorrelated. Thus the sto-
chastic model is represented by an identity matrix.

The trip parameters xtrip(t) to be estimated beside the segment
roughness include all trip specific influences. The user-bike set-
ting is assumed to be the largest included effect. They are as-
sumed to be constant for each trip, thus for each trip one para-
meter value is estimated. Because most external effects’ influ-
ence can not be differentiated from each other, the main object-
ive is to model them implicitly. Included factors are the bicycle
and tire type (e.g. tight racing bike or spring damped MTB),
user’s weight and common pose and phone holder setup. Devi-
ations in an user-bike setup (and thus in the system’s sensitivity)
over time are this way also included in the related trip paramet-
ers, i.e. if the tires are pumped up between two trips or the bike
is changed. In this way, an assignment to specific users is not
strictly required.

3. CASE STUDY: HANOVER CITY

The previously introduced approach is applied to a real world
data set from Hanover (Germany) in this section.

3.1 Used data sets

In the following subsections the cyclists data and way network
used in this case study are explained.
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3.1.1 Collected smartphone data: In (Wage et al., 2020)
an Android smartphone application, called RideVibes, has been
developed to comfortably collect cyclist trajectory and acceler-
ation data. A sensor logging application for smartphones has
been used to comfortably collect cyclist trajectory and acceler-
ation data. To acquire data on their everyday rides, users just
need to attach their smartphone via a holder to their bike and
run the app. The participants must start and stop recording the
sensor data individually for each trip. Further, for maximum
control of the data, it is first logged locally and can be uploaded
selectively in a pseudonymized way to a backend infrastructure
including a database server.

The application records a smartphone’s position and speed once
per second via common GNSS-based location services. In con-
trast, accelerations affecting the smartphone are logged with
about 100 Hz. The influence of gravitation is removed and the
phone orientation in the holder is compensated by transforming
the acceleration measurements in the way that the z-axis points
to the sky. The rotation matrix is calculated using also the mag-
netometer and gyroscope of the smartphone.

The data was recorded over a period of about one and a half
years by about 8 test persons in Hanover with about 13 different
user-bike combinations. For this study trajectory and accelera-
tion data of about 1454 trips with a total length of 7200 km is
used. They include actual everyday trips, as well as sporadic
additional trips on less explored streets in and around the city
center for better coverage.

Figure 2. Trajectory heat map as overview for Hanover network
exploration. (base map by Stamen Design, map data from

OpenStreetMap)

About half of the trips were recorded by the authors alone (us-
ing different bikes). This way we were able to reach quite a
good exploration rate of the center districts network (Figure 2),
but also a basic coverage around. Due to the urban setting, a
bias towards paved surfaces can be assumed. However, the au-
thors do not see this as a problem for the test scenario, since it
is a realistic application area for such an approach. In line with
widespread behavior - but certainly reinforced by the desire to
protect the smartphone from wetness - few trips in acute rain
are included, but this should not have a significant impact on
roughness given the predominantly paved paths in urban areas.
Only some very soft dirt paths in parks, etc., could be influ-
enced in their roughness by greater wetness, but this is not the
purpose of this study.

3.1.2 Way network: To extract a georeferenced graph rep-
resentation of the bikeable way network topology OSM (Open-

StreetMap contributors, 2020) data was used. All segments are
interpreted bidirectional, because in the case of cyclists, many
paths are not restricted to a specific one.

Figure 3. Example of the used way network routing graph.
Including a park on the bottom right and a residential street with
separately modeled road and bike ways. (base map by Stamen

Design, data from OpenStreetMap)

For this case study OSM data (from April 2020) of the re-
gion around Hanover was processed with the open-source tool
osm2pgrouting (Kastl et al., 2017). Based on related tags, the
tool filters the comprehensive OSM data set for bike paths. Fur-
ther, the resulting way geometries are transformed into a topo-
logically connected (thus routable) graph structure and stored
into a database. In the resulting graph, nodes represent way
intersections and connecting edges reproduce street and path
segments in between. An example is given in Figure 3.

3.2 Realization

As introduced in the approach, in a preprocessing the collected
bike trajectories are matched to the network graph. Next, as
observation input for the least-squares adjustment, the vertical
acceleration values of each time a network segment is passed
are processed via (2) into a roughness measure.

The available 1454 bike trips include 95337 segment passes and
thus result in a corresponding amount of observations as input
for the adjustment. Those cover 17694 distinct segments, which
result – in combination with the number of trips – in 19148
unknown parameters to estimate.

For an experimental evaluation, the adjustment approach of sec-
tion 2.3 was realized using the least squares function of the
Python library Scipy (Virtanen et al., 2020) including the fol-
lowing cost function:

F (x) =
1

2
·
∑

ρ
(
fi(x)

2)
ρ(z) = 2 ·

(√
1 + z − 1

) (4)

where ρ(z) : soft-l1 loss function
fi(x) : residuals

Since many outliers are to be expected, a more robust soft-l1
loss (smooth approximation of l1) is used instead of a standard
linear one. In contrast to the even more robust Cauchy loss,
experience has shown that this converges more reliably and was
therefore chosen as a compromise.
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Figure 4. Plotted observation residuals (blue) with 5- and 95-percentiles (red).

4. RESULTS AND DISCUSSION

For this study scenario after 156 iterations the adjustment con-
verged sufficiently. The change of the cost function (4) went
below the threshold of 10−8, so no further significant changes
of the overall cost are assumed. The initial cost of 28813 was
reduced to 17612. As a result, each segment is assigned an es-
timated roughness value and each trip a correction factor.

4.1 Resulting Residuals

In Figure 4 the resulting residuals of all observations are plotted
as scatter. Although it looks quite noisy, the absolute median
of all values is 0.27. The lower 5-percentile is at a level of
-1.22 and the upper 95-percentile at 0.94, indicating a small
asymmetry. As an orientation, a difference of less than 1 is
subjectively rated by the authors as little perceptible in practice.
In the case of very fine asphalt, this may already be caused by
several cracks or by a coarser asphalt composition.

Figure 5. Observation residuals plotted by related speed.

Further, in Figure 5 the residuals can be visually checked to
have no remaining systematic effects related to speed. The most
common speed seems to be around 6 - 7 m/s, so about 21 - 25
km/h, coherent with a sporty bias of the users.

4.2 Estimated Parameters

The estimated roughness parameters of the way segments are
mapped exemplary for the area of the university park and il-
lustrated in Figure 6 (right map). On the left are given the
ways’ surface types as kind of reference. In general, segments
of cobblestone or planks (with a roughness larger 6) are red,
badly paved and gravel paths (between 2.7 and 6) are colored
orange, smoothly paved ways are yellow (2 - 2.7) and plain
asphalt (roughness smaller 2) is green. Even a small wood
planked bride over a small pond in the park (A) is represented
(reasonably) as a quite coarse part. Most asphalted main ways
and streets show similar values less than 2, but those in a bad
condition (B) show similar roughness to paved parts. However,

the values of gravel paths diverge more, but their actual quality
also varies more.

Not only roughness is estimated, also trip (and thus implicitly
user-bike setting) specific corrections. The resulting parameter
values of a selection (all are too confusing in a plot) of users
is plotted in combination with their trips over time in Figure
7. Although the curves vary a lot, their different levels attract
attention: User 3, 24 and also 31 show up relatively high correc-
tion values most of the time, compared to others. Actually those
users rode sporty (track/racing) bikes with high tire pressures of
6-8 bar. In contrast, users 10 and 32 went by classic city bikes,
used between 2-3 bar and a more relaxed rider pose. Thus, even
if they are noisy, the trip specific scale corrections show up to
adapt varying shock sensitivities. Based on this, future research
could reveal anomalous behavior like badly inflated tires.

4.3 Multiply Observed Segments

Figures 8 and 9 give a more detailed insight into specific way
segments. Beyond the overview of adjusted roughness paramet-
ers in Figure 6, they show two exemplary segments with mul-
tiple observations over time. The values of corrected roughness
observations give an impression of the measurement dispersion.

The variance of observations varies between different segments
and also coarse outliers can occur for different reasons. Due
to the very simple functional model, influences of the user-bike
system are assumed to be constant for a trip, so differing poses
over time or sequences of one/no hand riding are not handled
and can potentially distort the respective observations. A sim-
ilar effect will also result from incorrect map matching or miss-
ing way segments, which leads to wrong assignments of obser-
vations and segments. However, those issues should have no
major influence on the parameter estimation, because they only
occur infrequently and thus for multiple observations the robust
loss function downgrades them.

We refrain from presenting segment examples with perfectly
small deviations here and focus on two challenging examples
with rather scattered and inhomogeneous roughness. Based on
them, two observed inhomogeneity phenomena are differenti-
ated and discussed in more detail, spatial and temporal inhomo-
geneity:

4.3.1 Spatially inhomogeneous segments occur with very
scattered or reoccurring outlier roughness samples over the full
time period. Possible reasons are very inhomogeneous way
profiles or inconsistencies at road intersections. But also un-
modeled parallel tracks or incorrectly assigned segments can
result in this.
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Figure 6. To give an example of the results, way segments in and around the university park are colored by their surface type (left) and
by the estimated roughness value (right). They are ordered by smoothness and colored from green (asphalt - smooth) to red

(cobblestone/wood planks - rough). For an easy comparison the estimated roughness values are also grouped into four related classes.
(base map and data from OpenStreetMap)

Figure 7. Plot of estimated trip parameters over time. They are
colored by user and include the median as dashed line. User 3,
24 and 31 rode sporty track bikes with high tire pressures and

users 10 and 32 city bikes.

An example for this type of inhomogeneity is given in Figure 8.
Most of the samples are located on a level around the actually
estimated roughness (dashed green line). Beside those, some
outliers from different users with higher values of about 3-5 are
occurring infrequently over the time. The segment is one of
the roadways of Schneiderberg street shown in Figure 3 with
separated (but optional to use) bike paths on both sides. Thus
those outliers can be assumed to result from wrong matches
due to the small margin between both similar courses. Those
samples indicating a substantial higher level of roughness were
actually sensed on the poorly paved bike and foot path next
to the smoothly asphalted roadway and are only linked to the
roadway segment because of an inaccurate trajectory and thus
wrong map matching. However, the estimation of the actual
roughness adapts robustly to the majority of the observations,
thus a relevant influence is not expected, but of course this find-
ing could be used to correct the matching.

Similar patterns might occur when alternative/parallel paths are
missing in the underlying road network. In those cases, occa-
sionally reoccurring coarse outliers are a hint on actually exist-

Figure 8. Plot of adjusted roughness observations over time for
an exemplary street segment. The coarse outliers are assumed to
result from incorrectly assigned observations, actually belonging

to the parallel sidewalk.

ing alternative ways to be added to the network model. This
will be investigated in future work.

4.3.2 Temporally inhomogeneous way segments actually
changed their roughness over time. This might happen in both
directions, lower e.g. due to a reconstruction, or higher e.g. due
to additional damages or seasonal effects like massive autumnal
leaves and branches which can fall on the ground.

An example of this type is given in Figure 9. In the first half of
the plot the observations scatter around the estimated rough-
ness (dashed green line), but after a gap between April and
June 2020 further observations are located on a significantly
smoother (lower roughness) level. A plausible reason for this
effect is a road reconstruction of this segment’s asphalt, which
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Figure 9. Plot of adjusted roughness observations over time for
an exemplary street segment. The temporal discontinuity results
from a new asphalt surface in May 2020, before it had several

cracks.

Figure 10. Example of an automatic change detection via Otsu
segmentation in segment of Figure 9.

took place around May 2020. The asphalt surface before was
in a bad condition with several cracks and potholes. This way,
affected segments can be split into two (or more) virtual ones,
representing it before and after the break point. Alternatively,
even more straight forward, all observations before the break
point can be filtered out and ignored in a future adjustment to
represent only the latest network state. This, however, presumes
that such break points are identified automatically.

Based on the discussed example in Figure 9 a first test for an
automatic change (or break point) detection for a temporally
inhomogeneous segment was applied. Otsu’s method (Otsu,
1979), originally suggested for basic fore- and background seg-
mentation in image analysis, was adapted to segment the two
major roughness level over time. The result plotted in Figure 10
nicely shows the roughness of about 2.8 before and 1.1 after the
asphalt changes sometime between March and July 2020. The

algorithm correctly identifies July 15th as change point (based
on the minimum within class variance, depicted in Figure 10,
lower part). As an advantage of this method, there is no need
for assumptions about the change point. Further, no threshold
parameters need to be given.

5. CONCLUSION

This paper addresses the problem of integrating measurements
of roughness from diverse bikes and users into a jointly scaled
representation by applying a least-squares adjustment. A case
study is carried out to test the presented approach with real-
world floating smartphone data.

The underling way network was extracted from OpenStreetMap
and the sensor data was acquired with standard smartphones
running a special logging app. Participant just needed to attach
a phone to their bike and collected trajectory and acceleration
data while riding their trips.

The collected trajectory data is automatically map matched to
the way segments. Then, the vertical acceleration signal of
each segment pass is transformed into a robust roughness in-
dex. Those are used as observation input for a least-squares
adjustment, to estimate trip-wise scaling factors and a corrected
roughness parameter for each segment. Alongside the robustly
estimated roughness parameters for each segment, also a way’s
change over time can be analyzed across varying bike-user set-
tings. In addition, a method for automatic detection of abrupt
changes (e.g. due to reconstruction) in the surface quality is
suggested and applied to an exemplary street.

Even if the functional and stochastic models are quite basic, the
results and conclusions of the case study already show sufficient
performance for the intended purposes. Thus, this is a prom-
ising approach to collectively evaluate crowd-sourced ride dy-
namics using commonly available smartphones. Despite the re-
lated inhomogeneities and without explicit knowledge of the re-
spective settings, the information can be supplemented to form
a unified view of the ways surface roughness. With sufficient
dissemination, spatial and temporal coverage could be achieved
in a way that would not be possible with individual specialized
measurement systems.

Resulting outputs like a roughness map of the way and street
graph can be used as weight factor in comfort sensitive bike
routing services. Besides individual mobility, efficient bicycle
navigation is also gaining importance in commercial traffic, es-
pecially in the area of increasingly bicycle-based urban logist-
ics (e.g. food and parcel delivery services). Further, pain points
in the network can not only be bypassed via such a routing,
but also could be identified in quasi-real time for future infra-
structure maintenance and planning. Further, a conceivable re-
search option would be to use the knowledge gained about the
surface conditions for an additional similarity measure in map
matching. In this way, despite their spatial proximity, paral-
lel roads and bike paths could be better differentiated based on
their roughness.

Besides those findings, there are open issues, which should be
addressed and included in future works into the modular and
flexible process chain. One of those is to introduce reference
values for several segments into the adjustment. Such refer-
ence values could be determined using a theoretical analysis of
rough surfaces. An alternative is to use another data source, e.g.
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LiDAR point clouds, to analyze the surface and derive a proxy
for the roughness. In this way, there would be an absolute refer-
ence and also regions (e.g. different cities) which are not linked
by joint trips, could be leveled in a common scale and thus be
comparable. Also a more detailed accuracy investigation for
observations and parameters and a more refined integration of
stochastic information would be supported by absolute and su-
perior reference observations. Gained insights would also facil-
itate a refinement (and extension) of the functional model.

In summary, the calibration approach presented here for surface
roughness determination of bike paths is a relevant progres-
sion from recent bike specific approaches. The process chain
enables to analyze crowd-sourced data without further explicit
knowledge about the user and bike system. Only based on ac-
celeration (and location) data, the differently scaled trips can be
fit on each other via shared way segments.
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