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ABSTRACT 

 

In this article, we present a two-level approach for the crowd-based collection of vehicles from 3D point clouds. In the first level, the 

crowdworkers are asked to identify the coarse positions of vehicles in 2D rasterized shadings that were derived from the 3D point 

cloud. In order to increase the quality of the results, we utilize the wisdom of the crowd principle which says that averaging multiple 

estimates of a group of individuals provides an outcome that is often better than most of the underlying estimates or even better than 

the best estimate. For this, each crowd job is duplicated 10 times and the multiple results are integrated with a DBSCAN cluster 

algorithm. In the second level, we use the integrated results as pre-information for extracting small subsets of the 3D point cloud that 

are then presented to crowdworkers for approximating the included vehicle by means of a Minimum Bounding Box (MBB). Again, 

the crowd jobs are duplicated 10 times and an average bounding box is calculated from the individual bounding boxes. We will 

discuss the quality of the results of both steps and show that the wisdom of the crowd significantly improves the completeness as 

well as the geometric quality. With a tenfold acquisition, we have achieve a completeness of 93.3 percent and a geometric deviation 

of less than 1 m for 95 percent of the collected vehicles. 

 

1. INTRODUCTION 

Crowdsourcing, a neologism of the words “crowd” and 

“outsourcing” (Howe 2006), describes the outsourcing of 

activities of companies to an indefinite mass of people through 

an open call via the internet. Compared to classic outsourcing to 

well-known third-party companies, it is a more flexible and 

faster form of task distribution. Applications of this modern 

form of work organization are broad, ranging from data 

collection (Shehan 2018) to product design (Niu et al. 2019) to 

software development (Dubey et al. 2016), to name a few. 

 

Many crowdsourcing projects are based on the work of unpaid 

volunteers, such as Wikipedia (www.wikipedia.org) or 

Zooniverse (www.zooniverse.org). The voluntary collection of 

geospatial data is known as Volunteered Geographical 

Information - VGI (Goodchild 2007). The most popular VGI 

project is OpenStreetMap (OSM - www.openstreetmap.org), an 

open collaborative project to create a detailed map of the world 

that can be edited by anyone (Haklay and Weber 2008). 

 

VGI projects require an active community that is intrinsically 

motivated to work together. The main factors, that user collect 

OSM data voluntarily are, that their contributions are free and 

that other users benefit from it in the shape of digital maps 

(Budhathoki and Haythornthwaite 2012). This does not work 

for all applications: In the field of geodata collection, there are 

many tasks that could in principle be solved with 

crowdsourcing, but the bottleneck is finding enough volunteers 

and building an active community. 

 

The most common extrinsic motivation for crowdworkers to 

complete tasks, and the motivation that leads to the fastest 

results, is monetary incentives (Haralabopoulos et al. 2019). In 

paid crowdsourcing, tasks are published on online 

marketplaces, which are responsible for the recruitment and 

payment of workers. The workers are compensated financially 

for completing the tasks (Mao et al. 2013). Established 

marketplaces, such as microWorkers (www.microworkers.com) 

(Hirth et al. 2011) or Amazon Mechanical Turk (MTurk - 

www.mturk.com) (Ipeirotis 2010), have large numbers of 

registered crowdworkers. Beside monetary incentives, also 

other forms of motivation that result in economic gains can be 

used. For example, Juhász and Hochmair (2018) have 

demonstrated that an extra credit assignment for students in two 

GIS courses can be used for getting faster results. 

 

The realization of paid crowdsourcing projects is also possible 

without marketplaces, but the recruitment of crowdworkers 

would involve much effort. The workers on a crowdsourcing 

marketplace are automatically notified when an employer offers 

a new job. Employers may limit jobs to certain groups of 

employees. For example, it is possible to offer crowd jobs only 

to workers who live in a certain country, or to workers who 

have already successfully performed a certain number of other 

jobs. Further qualifications are possible with specially 

developed tests that must be solved before the crowdjob. 

 

Quality control is a challenge in paid and voluntary 

crowdsourcing (Leibovici et al. 2017; Liu et al. 2018), as the 

quality of crowdsourced jobs can vary widely (Vaughan 2017). 

The crowd is composed of people with unknown and diverse 

skills, abilities, interests, personal goals, and technical resources 

(Daniel et al. 2018). Another problem - especially in paid 

crowdsourcing - is dishonest workers who try to maximize their 

income by submitting as many tasks as possible, producing 

incomplete or sloppy results (Hirth et al. 2011). In addition, 

there may exist adversarial workers that could greatly harm the 

quality of the collected data (Zhang et al. 2016). A challenge in 

crowdsourcing is to derive high-quality ground truth from noisy 

data collected by non-experts (Zhou et al. 2012). 
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Basically, there are two approaches to control and improve the 

quality of paid crowdsourced data (Zhang et al. 2016): “Quality 

Control on Task Designing” and “Quality Improvement after 

Data Collection”. The first approach guides crowdworkers to 

provide high-quality data. There are many methods to do this, 

such as skill testing, reputation systems, task assignment, task 

and workflow optimization, training, real-time quality 

assurance, quality control points, or incentive payment 

mechanisms. A discussion of such techniques can be found in 

(Daniel et al., 2018). 

 

The second approach (quality improvement after data 

collection) is based on methods that improve the quality of data 

after it has been collected. A commonly used approach is based 

on repeated data collection by different crowdworkers. After 

data collection, procedures are used to filter out noisy data and 

infer truth. Estimating truth from noisy, repeatedly collected 

data is referred to as "truth inference" (Zheng et al. 2017). 

 

This follows the idea of the "Wisdom of the Crowd". 

Surowiecki (2004) has shown in his book “The Wisdom of the 

Crowd – why many are smarter than the few and how collective 

wisdom shapes business, economics, societies and nations” that 

averages of several guesses are often better than the best 

individual guess. Groups of people are smarter and can solve 

complicated problems even better than specialists. For this, we 

need multiple representations as input (which can be easily 

realized with paid crowdsourcing, but would be difficult to 

achieve with voluntary data collection) and an aggregation rule 

(e.g., averaging) to make a decision (Simons 2004). Sir Francis 

Galton first observed this principle in 1907 (Galton 1907). He 

found that the average estimate of the weight of an ox in a 

weight competition at a farmers' market exceeded the accuracy 

of expert opinions (butchers). The average estimation 

converged almost to an optimal result. On average, the fair 

audience estimated the weight of the ox at 1197 pounds. The 

actual weight was 1198 pounds. 

 
In this article, we use the wisdom of the crowd principle to 

improve the completeness and the geometric quality of the 

collection of vehicles from 3D point clouds. The interpretation 

of 3D point clouds is a non-trivial task and can be challenging 

for non-experts. Most of the existing work in the field of crowd-

based geodata collection concentrates on 2D image data and 

only few works use 3D point clouds as data basis. Herfort et al. 

(2018) describe the use of majority voting for the crowd-based 

detection of trees in 3D LiDAR point clouds. Koelle et al. 

(2020) discuss a “human-in-the-loop” system to classify 3D 

LiDAR point clouds where the machine in the shape of a 

machine-learning algorithm iteratively improves its 

performance by learning from paid crowdworkers. In a 

preliminary work (Walter et al. 2020), we discuss the crowd-

based collection of trees from 3D point clouds by means of 

minimum enclosing cylinders. Each crowd job was duplicated 

10 times. Integrated cylinders were calculated from the 

individual cylinders by averaging the centres and the heights of 

the individual cylinders. We demonstrated that the quality of the 

integrated cylinders is significantly higher than the average 

quality of the individual cylinders. The difference between the 

approach for tree collection and the approach we describe in 

this article is that in this approach we divide the data collection 

into two steps. First, crowdworkers are asked to identify only 

the coarse positions of the vehicles. These coarse positions are 

used as input for a second step in which the vehicles are to be 

approximated with MBBs. With this method, it is easier to 

collect data from areas with inhomogeneous distributed objects. 

 

The detection of vehicles in remote sensing data can be 

important for many applications, e.g. traffic management, traffic 

monitoring, urban planning, parking lot analysis, etc. The new 

aspect of our approach is that we use not images as input but 3D 

point clouds. The advantage of using 3D point clouds is that we 

get a full 3D approximation of the vehicles (position, 

orientation, and dimension).  

 

The remainder of this article is organized as follows. In 

section 2, we present an overview of the approach. The data 

from which the crowdworkers had to collect the data is 

presented in section 3. Section 4 is dedicated to the 

methodology and the results of the coarse positioning of 

vehicles. In section 5, we discuss the methodology and the 

results of the approximation of the vehicles with MBBs. A 

discussion of the overall approach and an outlook to future 

work can be found in section 6. 

 

2. DATA COLLECTION 

Most crowdworkers have no expert knowledge in the field of 

geospatial data collection and have never worked with 3D point 

clouds before. Therefore, it is necessary to design the data 

collection task as simple as possible in order that also non-

specialists can solve them. A common approach for designing 

paid crowdsourcing tasks is to divide large problems into 

smaller sub-problems that can be solved quickly and easily. The 

typical working time for paid crowdsourcing tasks is in the 

range of some minutes and the payment is often only in the 

range of several cents (Hirth et al. 2011, Hitlin 2016). In 

principle, geospatial data collection tasks can be subdivided by 

splitting the working area geographically into many small tiles 

and assigning these tiles to individual crowdworkers. However, 

this is only reasonable if the objects, which should be collected, 

are homogeneously distributed in the working area, which is not 

the case in our data. If we would split the working area simply 

into tiles, we would produce many tiles that contain no vehicles 

at all.  

 

Therefore, we suggest a two-level approach. In the first level, 

we subdivide the working area into large strips and present 

them as 2D rasterized shadings to the crowdworkers in which 

they must identify the positions of all vehicles. In the second 

level, we use these positions as prior information to cut out 

small parts from the 3D point cloud for each vehicle. Each of 

these small 3D point clouds is then presented to a crowdworker 

to approximate the vehicle with a MBB. This incorporates the 

additional advantage that each crowdworker has to download 

only a small part of the 3D point cloud, which considerably 

reduces the download time. 

 

All crowd jobs were published on the commercial platform 

microWorkers (www.microworkers.com) which handles the 

recruitment and the payment. According to their website, the 

platform has access to more than 2,200,000 registered 

crowdworkers (April 2021). 

 

3. TEST AREA 

For our test area, we focus on the western shore of the 

Hessigheim dataset presented in (Cramer et al. 2018, Haala et 

al. 2020). Hessigheim is located in the southern part of 

Germany. Our test area has a size of 0.25 km * 0.26 km (see 
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Figure 1). The point cloud was collected with a RIEGL VUX-

1LR LiDAR sensor combined with two Sony Alpha 6000 

oblique cameras using the RIEGL RiCopter octocopter in 

March 2018. The mean laser pulse density is 300-400 points/m² 

per strip and more than 800 points/m² for the entire flight block 

due to the nominal side overlap of 50%. The ranging accuracy, 

reported in the data sheet of the sensor is 10 mm (Riegl 2018).  

(c)

(a)

(b)

 
Figure 1. Test area Hessigheim: (a) overview of the 3D point 

cloud, (b) zoom-in 3D point cloud, (c) zoom-in 2D rasterized 

shading 

 

4. COARSE POSITIONING OF VEHICLES 

For the coarse positioning, the test area was subdivided in 

nine east-west-oriented strips of 50 x 260 meters (using a 50% 

strip overlap). Since vehicles can be occluded by vegetation, we 

first filter out the vegetation points from the 3D point cloud. For 

this, we derive a Digital Terrain Model based on filtered ground 

points to calculate for every point an individual height above 

ground. Only those points are used for the calculation of the 

shading that have a maximum height above ground of 3 m. 

Shadings were calculated according to Tanaka’s algorithm 

using a light source situated at 350 gon azimuth and 50 gon 

zenith angle. Due to the elimination of all points that are 3 m 

above ground, there may be raster cells which contain no 3D 

point at all (e.g. at buildings). In these cases, we use the 

maximum z-value of all points inside the cell to avoid holes in 

the shading. All calculations have been carried out using the 

Opals software (Pfeiffer et al. 2014).  

 

The first task of the crowdworkers is to identify all vehicles in 

one strip by means of line segments reaching from the front to 

the back of the vehicle or vice versa. An example is shown in 

Figure 2. 

 

 
Figure 2. Example of two vehicles identified by crowdworkers 

in 2D rasterized shadings 

4.1 GUI for coarse positioning of vehicles 

The Graphical User Interface (GUI) for the coarse positioning 

of the vehicles is shown in Figure 3. The GUI is subdivided into 

four parts: 

 

 Data view (A): Shows the 2D rasterized shadings and the 

already collected vehicles. 

 Data control elements (B): The strips can be moved left 

and right with two control buttons. 

 Management area (C): All collected vehicles are shown in 

a list. Erroneously collected vehicles can be deleted from 

the list. An already collected vehicle can be activated and 

edited by clicking on the corresponding element in the 

list.  

 A submit button (D): The crowd job can be finished by 

clicking the Submit button. The collected data will then be 

submitted to the server. 

 

The GUI was developed with HTML, Javascript, CSS and PHP. 

All crowdjobs were be published on the microWorkers 

marketplace which handles the worker recruitment and 

payment. The recruited crowdworkers are pointed via an URL 

to the GUI that was installed on our own servers. 

 

 

A C

B

D
 

Figure 3. GUI for the coarse identification of vehicles 
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4.2 Crowdsourcing campaign for coarse positioning  

In each crowd job, the workers must collect all vehicles from 

one strip. Each crowd job was duplicated 10 times. The number 

of strips is 9.  For each crowd job, we paid $0.10. The total cost 

is 9 * 10 * $0.10 = $9.00. The average working time for one job 

is 5.06 minutes. Altogether 1920 vehicles were collected in all 

crowd jobs together. After the data integration 116 vehicles 

remained. The average cost per vehicle is $0.08. 

 

4.3 Data integration 

The multiple collected data is integrated by clustering the centre 

points of each collected line. We use DBSCAN (Density-Based 

Spatial Clustering of Applications with Noise), which is a 

density-based algorithm for the detection of clusters and outliers 

(Ester et al. 1996). The advantages of DBSCAN are that it is not 

necessary to specify the number of clusters in prior - like in k-

means - and that it is robust to outliers. 

 

DBSCAN requires two parameters: (1) Epsilon defines the 

maximum distance between two points to be considered as 

neighbours and (2) MinPts defines the minimum number of 

points in a cluster. Based on empirical tests we use 

Epsilon = 2 m and MinPts = 6. 

 

Figure 4 shows the 2D coordinates of the centres of the 

collected vehicles of a part of our test area. The outliers 

detected with DBSAN are marked with red colour. The total 

number of outliers in the whole test area is 113. The remaining 

1807 points are subdivided into clusters (Figure 5). The total 

number of clusters in the whole test area is 116. The final 

positions of the clusters are calculated by averaging the x- and 

y-positions (Figure 6). 

 

 

 
Figure 4. Collected centres (x- and y-position) of the vehicles 

for an exemplary subset of the test area. Outliers detected with 

DBSCAN are marked with red colour 

 

 
Figure 5. Remaining centres (x- and y-position) of the vehicles 

for an exemplary subset of the test area are subdivided with 

DBSCAN into clusters that are marked with different colours 

 

 
Figure 6. Result of integration for an exemplary subset of the 

test area 

 

4.4 Quality analysis 

The centres of the clusters represent the centres of the vehicles. 

The geometric quality of these centres is of minor importance 

since we only require approximated values as input for the 

following step. For the quality evaluation of the coarse 

positioning, we are mainly interested in the completeness and 

correctness. A common approach is to subdivide all collected 

data into the categories: True Positive TP, False Negative FN, 

False Positive FP and True Negative TN (compare Heipke et al. 

1997). From that, we can calculate Completeness = TP / (TP + 

FN), Correctness = TP / (TP + FP) and Quality = TP / (TP + 

FP + FN) where TP, FP and FN are the numbers of vehicles of 

each category. 
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Table 1 shows a comparison between these quality measures 

averaged over the ten data collections and the quality measures 

after the integration. The average quality measures describe the 

quality that we can expect when we collect the data only once. 

It can be seen that multiple data collection with subsequent 

integration significantly improves the results - especially the 

completeness. 

 

 Average over  

10 data collections  

After integration 

Completeness 79.9 % 93.3 % 

Correctness 94.2 % 96.9 % 

Quality 73.5 % 90.7 % 

Table 1. Quality evaluation of the coarse positioning of vehicles 

 

 

5. APPROXIMATION WITH MBBS 

The coarse positions are used for a second crowd campaign in 

which each vehicle is to be approximated with a MBB that is 

defined by 9 parameters: box dimensions a, b, c, position of the 

centre point x, y, z, and orientation α, β, γ. An example of a 

vehicle approximated with such a MBB is shown in Figure 7. 

 

 
 

Figure 7. Example of a vehicle approximated with a MBB 

 

 

5.1  Graphical User Interface (GUI) 

The GUI for the crowd-based collection of MBBs is shown in 

Figure 8. The GUI is subdivided into four parts: 

 

 Main data view (A): Shows a circular area of the 3D point 

cloud around the coarse positon of the vehicle and the 

MBB. The point cloud can be rotated and zoomed by 

mouse controls. The MBB can be moved and scaled in x, 

y and z. 

 Three sub-views (B): Show the 3D point cloud and the 

MBB as 2D projections in x-, y- and z-direction. It is 

possible to change the width and the height of the two-

dimesional projection of the MBB. 

 A button area (C): Contains six rotation buttons for 

rotating the MBB, a ‘reset view’ button, a ‘reset model’ 

button and a ‘help’ button. 

 A submit button (D): Used to submit the result and switch 

to the next vehicle until all vehicles of a job are 

processed. 

 

5.2 Quality control on task design 

In order to control and improve the quality during the data 

collection, we implemented three methods: 

 

Qualification Test: Each crowdworker must first collect a MBB 

of a reference vehicle. We calculate the position difference ΔP 

and the scale difference ΔS:  

 
 2 2 2( ) ( ) ( )P R C R C R Cx x y y z z        (1.1) 

 

 2 2 2( ) ( ) ( )S R C R C R Ca a b b c c        (1.2) 

 

with: xR, yR, zR, aR, bR, cR are the parameters of the reference 

MBB and xC, yC, zC, aC, bC, cC are the parameters of the MBB 

collected by a crowdworker. The maximum difference allowed 

is 0.4 m for both parameters. Each crowdworker can try 

maximum five times to reach this accuracy. Crowdworkers, who 

fail more than five times, are rejected. 

 

Plausibility Control: We check that all parameters of the initial 

MBB (size: 1m x 1m x 1m) have been changed in order to avoid 

that crowdworkers just click on the submit button without 

collecting a vehicle. 

 

Bonus payment: Each crowd job contains one point cloud with 

a reference vehicle. The crowdworkers get a bonus payment of 

$0.05 if ΔP and ΔS of the reference vehicle are smaller than 

0.1 m. The crowdworkers do not know which of the point 

clouds contains the reference vehicle. 

 

5.3 Crowdsourcing campaign 

Each crowd job contains five vehicles plus one reference 

vehicle (see section 5.2) for which the MBBs have to be 

collected. Each crowd job was duplicated 10 times. The number 

of vehicles is 116. The number of crowd jobs is: ceil(116/5) * 

10 = 240. 

 

For each crowd job we paid $0.20 plus a bonus of $0.05 that 

was paid out to 32 crowdworkers. The total cost is 240 * $0.20 

+ 32 * $0.05 = $49.60. The average working time for one job is 

11.8 minutes.  The average cost per vehicle is $0.42. 

 

5.4 Data integration 

Before the data integration, we first identify the outliers with 

two subsequent DBSCAN runs. The input for the first 

DBSCAN are the centre points xk, yk, zk and for the second 

DBSCAN the side lengths ak, bk, ck of the MBBs for each 

vehicle. Based on empirical tests we defined MinPts = 4 for 

both DBSCANs and Epsilon = 0.5 m for the first DBSCAN and 

Epsilon = 1.5 m for the second DBSCAN. If a MBB is 

identified as outlier in one of the DBSCANs, it is removed from 

the integration. The final MBB is calculated by averaging. 

Table 2 shows the number of outliers. Figure 9 shows the 

outlier detection and the integration on an example. 

 

Number 

MBBs 

Outliers centre 

points 

Outliers box 

dimensions  

Outliers centre 

points or box 

dimensions 

1160 154 (13.3%) 135 (11.6%) 214 (18.4%) 

Table 2. Number of outliers detected by two DBSCANs 
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A

B

C

D

 
Figure 8. GUI for the crowd-based collection of MBB

 

 
Figure 9. Example of outlier detection and integration of the 

MBBs (2D-view from above, red: outliers, blue: remaining 

MBBs, green integrated MBB) 

 

 

5.5 Quality analysis 

We evaluate the geometric quality of the MBBs with two 

quality indicators: (1) the position difference ΔP between 

crowdsourced and reference MBBs and the volume ratio Vc/VR 

of crowdsourced to reference MBBs. 

 

Figure 10 shows the position difference ΔP before and after 

outlier detection and integration. It can be seen that more than 

50% of all crowdsourced MBBs have a ΔP smaller than 1 m, 

which shows that most of the crowdworkers work very accurate.  

However, there is a significant amount of MBBs with a ΔP up to 

6 m. The outlier detection and integration clearly improves the 

results: 95% of all integrated MBBs have a ΔP smaller than 1 m. 

The maximum ΔP is less than 3 m. 
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Figure 10. Position difference ΔP between crowdsourced and 

reference MBBs: (a) before outlier detection and integration, (b) 

after outlier detection and integration 

 

Figure 11 shows the volume ratio Vc/VR of crowdsourced to 

reference MBB before and after outlier detection and 

integration. A ratio of 1 indicates that the volumes of the 

crowdsourced MBB and the reference MBB are identical. It is 

interesting to see that the majority of the ratios are larger than 1. 

The reason for this is that crowdworkers tend to collect 

oversized MBBs (i.e. excessive box dimensions are chosen), 

because it is easy to see that some points of a vehicle are outside 

an MBB, but it is difficult to position an MBB exactly so that 

there is absolutely no empty space between the points and the 

MBB. Again, it can be seen that the outlier detection and 

integration significantly improves the quality of the results. 
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Figure 11. Volume ratio Vc/VR of crowdsourced to reference 

MBBs: (a) before outlier detection and integration, (b) after 

outlier detection and integration 
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6. DISCUSSION 

The problem with geospatial data collection by paid 

crowdworkers is that very heterogeneous results are to be 

expected. Even when experienced experts collect geospatial 

data, the results can be very heterogeneous due to the subjective 

nature of geospatial data collection (Walter and Soergel 2018). 

When non-experts collect geospatial data, this effect is even 

stronger because individuals with completely different 

backgrounds work together  (Senaratne et al. 2017). While the 

majority of the workers try to solve the tasks as well as possible, 

a significant percentage of crowdworkers only produce data 

with poor quality. Without quality control, it is not possible to 

infer high quality data. 

 

At the example of crowd-based collection of vehicles from 3D 

point clouds, we have shown that outliers can automatically be 

detected by multiple data collection and subsequent averaging, 

and that a high degree of completeness and geometric quality 

can be achieved. With a tenfold acquisition, we have achieved a 

completeness of 93.3 percent and a geometric deviation of less 

than 1 m for 95 percent of the collected vehicles. The average 

cost per vehicle are $0.08 for the coarse positioning plus $0.42 

for the approximation with a MBB. The average total cost is 

$0.50 per vehicle.   

 

Figure 12 shows the obtained results on a section of the test 

data. Although the described method was developed especially 

for the collection of vehicles, it can also be adapted to the 

collection of other object classes from 3D point clouds.  

 

 

 
Figure 12. Result of crowd-based vehicle collection projected 

into the original point cloud 

 

 

The number of how often the data is collected influences the 

quality of the results and the amount of cost. Higher quality can 

be achieved by a higher number of multiple collections, but this 

also leads to higher cost. If the cost are to be minimized, the 

number of multiple collections can be reduced, but this has a 

negative effect on the quality. 

 

In the end, the optimal number of multiple collections is a 

compromise between data quality and cost. In our future work, 

we will investigate this relationship in more detail to gain a 

better understanding of how the number of multiple collections 

affects the results and how we can optimize this process. We 

will also investigate the limits of this process and the maximum 

quality that can be achieved. 
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