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ABSTRACT: 
 
Multi-resolution representation has always been an important and popular data source for many research and applications, such as 
navigation, land cover, map generation, media event forecasting, etc. With one spatial object represented by distinct geometries at 
different resolutions, multi-resolution representation is high in complexity. Most of the current approaches for storing and retrieving 
multi-resolution representation are either complicated in structure, or time consuming in traversal and query. In addition, supports on 
direct navigation between different representations are still intricate in most of the paradigms, especially in topological map sets. To 
address this problem, we propose a novel approach for storing, querying, and extracting multi-resolution representation. The 
development of this approach is based on Neo4j, a graph database platform that is famous for its powerful query and advanced 
flexibility. Benefited from the intuitiveness of the proposed database structure, direct navigation between representations of one spatial 
object, and between groups of representations at adjacent resolutions are both available. On top of this, collaborating with the self-
designed web-based interface, queries within the proposed approach truly embraced the concept of keyword search, which lower the 
barrier between novice users and complicate queries. In all, the proposed system demonstrates the potential of managing multi-
resolution representation data through the graph database and could be a time-saver for related processes. 
 
 

1. INTRODUCTION 

A multi-resolution representation database is commonly defined 
as a structure that preserves linked representation, according to 
their degrees of geomatic or sematic abstraction, of the same 
spatial objects. (Sarjakoski, L. T. 2007). Therefore, how to well 
illustrate the links between the object, the abstraction level (or 
resolution), and the representation is the crucial part of 
constructing structures of such data. Existing approaches for 
spatial data show their limitation in many aspects. Tile-based 
structure, a method that is widely applied in web map services 
for its outstanding efficiency in information distributing, is rather 
time consuming when retrieving and updating representation(s) 
for spatial objects, since optimizing one spatial object may relate 
to reconstruction of all related tiles. Tree-based structures, which 
stores representation as independent entities, may be costly in 
traversal since queries within such structures may start from root 
nodes that are far from its target leaf nodes. The relational 
database, a mature technology, is displaying its limitation on 
fixed schema and expensiveness of join-style queries. To lower 
the cost of managing multi-resolution representation data, an 
alternative is needed. Neo4j, a No-SQL database platform that is 
high in flexibility and powerful in query, has proved its potential 
in fraud detection (Alsadi, Abuhamoud, 2018), recommendation 
engine (Stark et al. 2017) and social media analysis 
(Drakopoulos et al. 2017). In Neo4j, relationships between 
entities are explicitly and specifically defined, therefore with the 
query strategies of Neo4j, navigation between representation(s) 
could be simply performed within one query.  
 
The main contribution of this paper is a comprehensive approach 
for storing, managing, and querying multi-resolution 
representation data on top of Neo4j. We construct an intuitive 
database structure that provides direct navigation and fast 
retrieving on representations as well as groups of representations. 

 
* corresponding author 

With this structure, storing and visualizing more types of 
geometries in Neo4j is available. In addition, we propose a 
concise and easy-operation interface that provides simplified 
functionalities for both novice and advanced users.  
 

2. RELATED WORKS 

2.1 Approaches for Storing, Querying and Managing 
Spatial Data 

Existing approaches for operating spatial data mainly include 
tile-based methods, tree-based methods and methods based on 
relational databases. A tile in the tile-based method may refer to 
a pre-generated image, or a topological dataset that stores 
information of a certain area at a given resolution level. Google 
Map employs the “Tile Overlays” methodology for fast loading 
imagery and map data (MicroImages, 2012). In this pyramid 
structure, tiles are sorted according to the level of detail, and the 
higher the level, the more the tiles. For example, level 0 contains 
only one tile in the roughest detail, while level 1 would contain 
2x2 gridded tiles with finer resolution. In CanVec Series, an 
official topological dataset of Canada, representations would be 
gathered into shapefiles according to their resolution (Natural 
Resources Canada, 2019). Therefore, retrieving representations 
at the same resolution could be a one-step process, while 
extracting representations for one multi-resolution spatial object 
may relate to duplicated search in every tile. This is mainly 
because connections between representations of the same spatial 
objects are not explicitly defined, but demonstrated through 
shared information, such as the name of the spatial object. Tree-
based methods addressed this problem by chaining 
representations that refer to the same spatial object together, then 
organizing them according to their resolutions.  In the Map Cube 
Model (Timpf, 1998), map elements are first divided into four 
categories, then their representations would be organized in 
decreasing levels of detail. However, as described in R-tree 
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(Guttman, 1984), queries within such methods may start from the 
root node or parent nodes rather than hit the target directly. 
Approach in (Hampe M et al. 2004) optimized this problem by 
building links between one representation and all other one at 
lower resolution, which may increase the effort of updating. With 
more awareness of database control and operation, some 
approaches for spatial data are based on the existing database 
structure. The relational database is a mature technology that has 
been the fundamental of many desktop applications, e.g., the 
Geodatabase within ArcGIS (ArcGIS Desktop, 2017), in which 
one representation could be represented by multiple tables, and 
connections between each table is rather implicitly defined. The 
relational database has been proved to be suitable for well-
structured data but has also claimed its limitation in join-style 
query (Van Bruggen, 2014). In addition, with rather static 
schema, relational database demonstrates its circumscription 
when facing the rapid growth of geospatial data. Research shows 
that Neo4j, a No-SQL database famous for its highly dynamic 
conception, could be more efficient in querying linking data 
(Stothers, J. A. et al. 2020, Gong, F. et al. 2018), which 
demonstrate the possibility of modelling multi-resolution 
representation. 
 
2.2 Neo4j 

Neo4j is a graph database designed and optimized for highly 
connected data (Miller, 2013). Elements in the graph database 
mainly include vertices, edges, and attributes. Vertices are 
considered as instances, and edges are the connections between 
them, while attributes are the further description of both vertices 
and edges. In Neo4j, vertices and edges are represented by nodes 
and single-directed relationships, and users are allowed to utilize 
those two components to create their own structure, or patterns 
in the world of Neo4j. Like nouns and verbs in sentences, the 
combination of nodes and relationships is truly intuitive in 
architecture. Attributes of nodes and edges are mainly 
represented by three indexable information units: property, label, 
and type, which all could be defined by users. The property holds 
detailed information for both nodes and relationships. Label and 
type are two identifiers that categorize nodes and relationships 
accordingly. Label in nodes is not strictly required and is 
unlimited in amount. However, the type for relationship is 
mandatory, and each relationship only belongs to one type. 
Figure 1(a) illustrates an example graph that demonstrates 
connections between three instances: Jack, Jennifer and the 
Neo4j company. Represented by two blue nodes, Jack and 
Jennifer share the label “person” and “developers”, and could be 
distinguished by their name, age, and location. In addition, both 
Jack and Jennifer work for the Neo4j company. Therefore, the 
two blue nodes are connected to the yellow one by relationships 
that are the same in type. Similar to this, the friendship between 
Jack and Jennifer is represented by two relationships that are the 
same in type, yet different in direction. This structure is truly 
intuitive since it is semantically akin to real-world expression. 
Note that querying on labels or types is not the only way to “grab” 
homogenous elements, when querying on properties that are not 
unique, multiple results are always expected. 
 
Queries within Neo4j rely on Cypher, a declarative language that 
developed for highly connected data architecture. Queries in 
Cypher are performed linearly, which allows users to understand 
the whole process in an orderly way (Francis et al. 2018). Unlike 
another declarative language, SQL, Cypher prefers to express 
constraints with MATCH first, then use RETURN to have results 
at the end of each query. The number of results is decided by the 
number of constraints. Like painting a portrait of a person, the 
more the details, the clearer the appearance, and vice versa. 

Performing queries with no constraints would lead to output with 
all nodes or relationships in the database. Adding limited 
constraints would lead to return nodes or relationships at the 
same group, e.g.  
MATCH (n1: developer) RETURN n1 
MATCH ()-[r:Works_for]-() RETURN r 
Distinguish queries within Neo4j mainly include pattern 
matching queries and path-finding queries (Van Bruggen, 2014). 
Pattern matching queries are like join style queries performed in 
relational databases, since they both find qualified instances 
through a series of constraints. Unlike relational databases, 
connections between instances are explicitly defined in Neo4j, 
join operations are transferred to hops from one node to another 
over those relationships. 

 
(a) 

 

 
 
 

(b) 
Figure 1. Example graph of Neo4j. (a)How a company and two 

developers that are friends to each other are connected. 
(b)Pattern defined within the example. 

 
For example, when finding developers of Neo4j, the pattern is 
specified as Figure 1(b) shows: 
MATCH(n1:developer)-
[:Works_For]->(n2 :company{name:"Neo4j"}) 
RETURN n1,n2 
In such a pattern, the detailed properties are ignored since there 
is no constraint on, e.g., the name, age, or the relationships 
between developers. Note that in this process, only structures 
connected to starting node would be considered. Therefore, the 
query performance is rather independent of the size of data.  
In relational databases, it may be the user who tells the database 
how tables are connected, while Neo4j is able to feed users the 
connections between instances through path-finding queries. In 
such queries, the user only needs to provide the starting and 
ending nodes, and Neo4j would find how they are connected. 
Take the structure in the figure above as an example, to find the 
connection between developers and Neo4j company, Cypher 
expression could be: 
MATCH(n1:developer)-[r]-(n2:company{name:"Neo4j"}) 
RETURN r 
Both pattern matching and path-finding queries demonstrate how 
Neo4j simplifies complex and expensive queries in relational 
databases, and eventually provides an efficient strategy for 
extracting adjacent instance(s). Although Neo4j has advantages 
in efficiency and flexibility in both dataset architecture and query, 
storing and visualizing spatial data within it is rather limited 
during our research period. In original Neo4j, point is the only 
geometry type that is supported in storing, querying and 
visualization. Hence, to store more types of geometry, Neo4j 
Spatial, a library that enables various spatial operations within 
Neo4j (Neo4j Spatial, 2010) is available. In addition, as an open-
source platform, Neo4j provides all kinds of drivers, such as Java, 
JavaScript, Python, etc., which allow users to bridge between 
self-developed interface and database. 
 

3. METHODOLOGY 

3.1 Data and Resources 

To perform thorough experiments on the proposed system, data 
applied in this research is expected to be rather diverse in 
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geometry types, category, and large in resolution range. 
Moreover, attention has also been paid to objects showing 
Intersects, Contains and Within, which are the most common 
spatial relationship queries in existing spatial databases. With 
those ideas in mind, CanVec series, an open-access dataset  for 
the topographic data of the whole Canada, is selected as our data 
source. Spatial objects within are in eight themes, including 
Manmade, Hydrology, Transportations, etc. Resolution levels 
within CanVec series are available from 1:50k to 1:5M. Note that 
some manmade objects are only available at 1:50k resolution, 
while transportation objects are usually wider in resolution range. 
CanVec also feeds the demand for variety in both geometry types 
and spatial relationships. Said that, CanVec Series still has some 
fractures: 1) missing name or other identification, and 2) some 
representations at higher resolution are subdivided into multiple 
or even mislocated geometries. To address those problems, 
reference has been made to Google Map. Without changing the 
meaning of representations, some geometries are merged and 
repaired through QGIS (QGIS, 2021). However, for 
transportations represented by multiple LineStrings that are 
different in direction, the original representations are preserved, 
and direction-related properties are added when inserting into the 
proposed database. Overall, 34 diverse spatial objects are 
selected, and grouped into six maps according to their 
geolocation and spatial relationships, as illustrated in Table 1.  
 

Map 
Name/ 
Map ID 

Object 
Resolution 

Type Theme 1:15M 1:5M 1:1M 1:250k 1:50k 

City 
Center/ 
Map1 

16 Ave NW   √ √ √ 1 T 
Center 
Street   √  √ 1 T 

Bow River   √  √ 1 H 
AB16HW/ 

Map2 
AB16 

Highway  √ √ √ √ 1 T 

Around 32 
Ave/ 
Map3 

32 Ave NE    √ √ 1 T 
House1~5     √ 2 M 

McCall 
Lake    √ √ 2 H 

BF 
Runway/ 

Map4 

Armory 
Building     √ 2 M 

Blatchford 
Runway     √ 2 M 

Grass Land     √ 2 M 
NAIT 

Building     √ 2 M 

Storage 
Building     √ 2 M 

Lulu 
Island/ 
Map5 

Building1~7     √ 0 M 
Fraser River  √ √  √ 1 H 

George 
Massey 
Tunnel 

 √ √ √ √ 1 T 

Golf Course     √ 2 M 
Golf Water     √ 2 M 
Golf Wood     √ 2 M 
Lulu Island  √ √  √ 2 L 
Port Mann 

Bridge  √ √ √ √ 1 T 

TriR 
Building     √ 2 M 

Around 
Lac St. 
Jean/ 
Map6 

Lac 
Chigoubiche   √ √ √ 2 H 

Lac St. Jean √ √ √   2 H 
Railway √ √ √   1 T 

Type: 0 = Point, 1 = LineString, 2 = Polygon 
Theme: T = Transportation, H = Hydro, M = Manmade, L =Land 

Table 1. List of data 
Since the WithinDistance query only performed from points, 
Building1~ 7 are specially included, and as manmade object they 
are at 1:50k only. Besides, unlike ideal multi-resolution database, 
resolution in CanVec may be inconsistent for some spatial 
objects, such as Bow River and Fraser River, which means the 
“next” resolution level may be different from prior knowledge. 

Some fractured and concave objects are selected for verifying the 
geometry visualization, such as Center Street, Blatchford 
Runway and NAIT Building, as illustrated in Figure 2. Since 
Neo4j Spatial deploys WKT strings as one of the main geometry 
formats, representations are translated to WKT with the help of 
Get WKT for QGIS (Skeen, 2021) before constructing the 
proposed database. When developing the web-based interface, 
Turf.js (Turfjs, 2021), Terraformer (Terraformer, 2020) and 
Leaflet.js (Vladimir, 2019) are employed for more and better 
spatial queries, spatial information extraction, and geometry 
visualization. 

 
(a) 

 
(b) 

Figure 2. (a)Fractured geometry Center Street at 1:50k 
resolution (circled), (b)Concave geometries: Blatchford 

Runway and NAIT Building.  
 
3.2 System Structure 

One of the ideal approaches for multi-resolution representation 
data is storing one representation for each spatial object, then 
generating other representations automatically. Although this 
approach could be a space-saver, it is limited by two factors. 
Firstly, spatial relationships between spatial objects should be 
consistent at any resolution, which may be an enormous 
challenge to the fully automated generation process. In addition, 
map generation is a time-consuming process and may influence 
the performance of real-time applications (Jones et al. 2000). 
Consequently, common approaches, for now, are still focusing 
on storing series of representations. A simple way is to store 
multiple interconnected representations, which, however, leads 
to further questions on 1) how to define the connections between 
representations, and 2) how to store properties for 
representations at different resolutions. When taking database 
performance and user experience as a priority, it would be better 
to define connections explicitly, and assign the whole set of 
properties into every representation (Spaccapietra et al. 2000). In 
existed methods, such as R-tree (Guttman, 1984), and (Hampe M 
et al. 2004), the specific  IDs or address of the “next” 
representation are defined as attributes within representations for 
connection, such as Link _100k. Above the structure of data, 
(Jones, 1991) brought up awareness on the control of data 
updating, retrieving, and spatial process, which might be 
replaced by predefined data managing strategies deployed in 
well-developed databases, but still demonstrates the importance 
of cooperating database structure and query procedures. 
 
To create a comprehensible and intuitive structure, we borrow 
the map-layer-feature concept from the traditional understanding 
of map sets, and semantically illustrate it on a tree-like structure. 
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As demonstrated in Figure 3, nodes for one multi-resolution 
representation structure include Map Node, Layer Node and 
Feature Node. The Map Node is the “leader” of a map and stores 
unique name and id of the map, while Layer Nodes are the 
“leader” of representations (of different spatial objects) at the 
same resolution. And layers are understood as groups of 
representations for different objects at the same resolution. 
Feature Node stands for representations. Information within 
Layer Nodes include the name and resolution value (referred to 
as “scale” in structure). Every Feature Node holds the whole set 
of information from the spatial object it represented, such as a 
name and directions (transportation object only), as well as a 
scale value and a geometry. For Layer Nodes that are included in 
the same map, they share the same layer name, and contain a 
scale value according to their resolution. Similar things happen 
to the Feature Nodes that represent the same spatial object: every 
node contains the same name in property and could be 
distinguished by scale value and other attributes, e.g., direction 
for Transportations. Storing the same information in different 
nodes may increase the information redundancy. However, this 
is the key for users to “grab” homogeneous elements in one query. 
For example, querying on one layer name would retrieve all 
Layer Nodes within one map structure, and querying on one 
feature name would retrieve all representations of the one spatial 
object, or detailed information of them. For easy-updating 
purpose, some information is gained through real-time query, 
e.g., spatial relationships. Storing spatial relationship within 
nodes may reduce the time for query, but every time a 
representation changed, all other representations must be updated 
synchronously.  

 
Figure 3. System Structure. 

Relationships between nodes are also defined in an intuitive way. 
Relationship Member_of and Feature_of are designed to chain 
nodes at different levels and allow fast retrieving on various 
levels of data. Between Layer Nodes and Feature Nodes stand 
for neighboring resolutions, Zoom_in and Zoom_out 
relationships are introduced, which allow users to navigate 
between representations, or layers, at adjacent resolutions. We 
did consider grouping those relationships with unique IDs or 
different names according to their destinations, but this would 
lose the advantage of retrieving representations at adjacent 
resolutions with limited information of the “next” resolution 
level. For example, relationships between 1:50k and 1:250k 
could be [:50_to_250], but for Bow River the 1:250k is absent. 
Therefore, [:50_to_1M] needs to be specially defined for the 
river, which increase both the storage size and the query 
difficulty. For now, all the traversal between adjacent resolution 
could be done with one query, since providing no resolution in 
both (n1) and (n2) would return all adjacent representations, and 
the more resolution information, the more specific the query 
result: 
(n1)-[:Zoom_in]-> (n2) or (n1)-[:Zoom_out]-> (n2) 
Although this structure is levelled semantically, queries could be 
performed from any nodes, or on any relationships within it. 
Take the map in Figure 3 as an example, to find which map that 
Lac St. Jean belongs to, the system just simply tracks through the 
Feature_of and Member_of relationship, then displays the id 

and/or name of the result Map Node. This design reduces the cost 
on queries and allows users to perform queries with limited 
knowledge of data.  
 
To improve accessibility for users, and to provide visualization 
on geometries, a novel interface is also introduced, as illustrated 
in Figure 4. Framed with JavaScript, queries are simplified and 
re-grouped into more comprehensive and intuitive services based 
on their functionalities, including Find, Availability, Zoom, 
FindGeo, and GeoRelation. Keyword search strategy is 
thoroughly deployed when designing and simplifying those 
processes. Eventually, operations within functionalities above 
require no pre-earned knowledge of Neo4j, but only of the basic 
search process. In addition, Free Search, a functionality that 
requires full Cypher expressions and returns raw result streams, 
is also provided for advanced users. Results returned from 
queries are displayed in two parts, text area and map area, which 
would both be triggered in most of the cases. In the text area, 
properties of all kinds would be illustrated in a series of tables. 
Geometries are displayed upon map area, an interactive map that 
developed with Leaflet.js. Geometries in the result list are 
toggleable through a button displayed on the top of the text area. 
By zooming and dragging, users would gain some information 
outside of the database.  

 
Figure 4. Layout of interface 

 
4. FUNCTIONALITIES WITHIN THE PROPOSED 

DATABASE 

4.1 Data Management 

For now, data management is processed through Neo4j Browser 
(Neo4j, Inc, 2021), the original interface of Neo4j, which is 
mainly because Neo4j Browser provides a clear view of database 
structure with diverse approaches, which means database could 
be shown in node-relationships, or list of details. To avoid 
meaningless queries, in Neo4j Spatial, spatial queries are only 
appliable between geometries under the same layer. Therefore, 
Layer Nodes and Feature Nodes are introduced by inserting 
layers and then WKT geometries through Neo4j Spatial. 
However, the similar restriction is specially designed in other 
spatial operations to maintain consistency in spatial queries. 
There is no sequence between creating Map Nodes and the other 
two since there is no strict inheritance between nodes. 
Relationships are always created after nodes following the 
standard process of Neo4j, and all of them are created 
independently from nodes.  
 
4.2 Global Search Function 

In tile-based structures such as the CanVec Series, querying 
layers could be done in archives, while finding representations 
could only be done after opening layers in tools, e.g., ArcGIS. 
Here we group those queries into two functions: Find and 
Availability. They search for information of representations, 
layers, maps in the whole database, as illustrated in Figure 5. The 
Find function searches through the name properties. When 
searching at the feature level, users could provide a full name to 
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retrieve all the representations of one spatial object, as illustrated 
in Figure 6(a). When providing partial of name, the system would 
perform fuzzy queries and find representations that contain such 
field in name, see Figure 6(b). When finding layers and maps, 
both full-name and fuzzy quires would return information for 
both layers and maps in text result only, see Figure 7. Since there 
is no geometry on display, the button for toggling is hidden. 

 
(a) 

 
(b) 

Figure 5. Panel of functions. (a) Find (b) Availability. 

 
(a) 

 
(b) 

Figure 6. (a)Find all representations of Lac St. Jean. (b)A fuzzy 
query that finds representations containing “A” in name. 

Results from both functions seem to be duplicated yet show the 
diversity of accesses to the proposed database. Since it is 
impossible for the developer to foresee the information preserved 
by users, we provide multiple functionalities that allow queries 
to be performed with even small pieces of information. The 
Availability function finds spatial objects that are available at the 
resolution inputted by users and extract all representations at a 
given resolution level within one click, see Figure 8. Both Find 
and Availability demonstrate how we balance between the 
information redundancy, and the fast information retrieving 
when designing the proposed system. For example, explicitly 
defining resolution value within every Feature Node allows 
performing the global search in a straightforward and efficient 
way. If the resolution value is inherited from layer or map level, 
the search process may involve multiple traversals. 

4.3 Zoom Function 

The Zoom function provides directed navigation between   
representations and layers at adjacent resolutions, as shown in 
Figure 9.  
 

 
(a) 

 
(b) 

Figure 7. Results of finding (a) Layer that contain “B” in name. 
(b) Layer under the AB16HW map.  

 
Figure 8. Results of finding spatial objects that are available at 

1:5M resolutions. 
 

 
Figure 9. Buttons for the Zoom function are designed in a more 

straightforward way. 
 
When querying for features, the result area would display both 
starting (inputted) and result representations, and by clicking the 
DuoSwitch button, both geometries would be rendered onto a 
base map simultaneously, see Figure 10(a). When rendering on 
more representations at either starting or destination resolutions, 
clicking the DuoSwitch button would toggle between them. The 
query for both layers and transportation object may return 
multiple representations. See Figure 10 (b) and (c). 
 
The pattern matching query, which finds specific connections 
from a starting node, resemble the query strategy deployed in the 
Zoom function. In the Zoom function, the starting node(s) is 
defined through inputs, and the system finds result nodes that are 
connected to the starting one with [:Zoom_in] or [:Zoom_out] 
relationships. Therefore, different from Find and Availability, 
Zoom requires a full name and a scale value as input. Direct 
navigation between adjacent layers and representations mostly 
relies on the explicitly defined directed relationships between 
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both Layer Nodes and Feature Nodes. In tile-based maps where 
connections between representations are shown through shared 
names, jumping between layers at adjacent resolutions could be 
convenient, while jumping between representations for the same 
object may need to search in every related tile. In tree-based 
maps, jumping between representations may not be time 
consuming, yet there may not be a concept like layer in such 
structure, which limits its efficiency of traversal between them. 
In addition, in the proposed structure, since all adjacent 
representations or layers are connected through the same type of 
relationships, the unsure of the number of input and output will 
not affect query performance. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. (a) Result of Zoom out from Railway at 1:5M. (b) 
Zoom in from Port Mann Bridge at 1:250k and receive an 

“uneven” result. (c) Navigating from the Layer Node 
CityCenter at 1:250k to 1:50k. 

 

4.4 Spatial Query 

Spatial queries in the proposed interface are performed through 
FindGeo and GeoRelation. The FindGeo function searches for 
object that is spatially related to the inputted one. The 
GeoRelation function takes two geometries as input, then returns 
the spatial relationship in between. In both functions, 
representations are specified through 4 factors: name, scale, road 
direction, and lane direction. Among them, the name and scale 
are mandatary, while the direction properties are only appliable 
to Transportations that have multiple representations. During one 
query process, only representations connected to the same Layer 
Node would be considered, since comparing representations at 
different resolutions is meaningless. 
 
Spatial relationship types available in FindGeo include Intersects, 
WithinDistance, Contains, and Within. The first two queries are 
deployed with Neo4j Spatial, while the others are from Turf.js. 
The Intersects query finds representations that share any part of 
the inputted one, as displayed in Figure 11. WithinDistance 
searches for spatial objects that are within a certain radius from 
the given spot, which is appliable to point objects only. Unlike 
text results provided by other spatial queries, the calculated 
distance would also be displayed, see Figure 12. The Contains 
tells whether the second object is completely in the first one, 
while the Within shows the opposite results (Figure 13). 

 
Figure 11. Results of geometries intersecting with CenterStreet 

at 1:50k. 

 
Figure 12. Result of finding objects that are within 0.5km from 
Building1. Since LuluIsland contains Building1, the distance in 

between is 0. 
 
When having information of two representations yet their 
relationship is missing, users may consider performing several 
possible spatial queries. However, in the proposed interface, the 
GeoRelation is designed to address this problem in a 
straightforward way. In GeoRelation, the system would 
determine whether the inputted representations are Intersect, 
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Contains, or Within, and displays the text result through boolean 
value, as illustrated in Figure 14. Queries in GeoRelation are 
supported by the boolean function within Turf.js. Note that point-
point queries would be automatically detected and paused by the 
system since they are meaningless. 
Both FindGeo and GeoRelation aggerates multiple spatial 
processes into one function, which reduces the time of jumping 
between different panels. Functionalities within FindGeo and 
GeoRelation may seem to be duplicated since they are both 
spatial queries. However, information held by users could be 
more limited than we expected, therefore approaches for 
accessing the database are always diverse. 

 
(a) 

 
(b) 

Figure 13. (a)Results of finding geometries that are contained 
by Blatchford Runway. (b) Result of find geometries that Grass 

Land is within. 

 
Figure 14. Spatial relationship between LuluIsland and George 

Massey Tunnel. Since they only intersect with each other, 
Contains and Within are displayed as “False”. 

 

4.5 Free Search 

Functionalities in the sections above reduce the effort of learning 
and typing complicated queries. However, for undeployed 
queries, and for advanced users who prefer the original Cypher 
language, Free Search, a function that takes pure Cypher queries 
as input is developed. As its name, Free Search holds no 
limitation on the inputted queries, which means expressions here 
are unpredictable. Since properties that return from Neo4j must 
be claimed in queries before rendering onto the result area, 
results of Free Search would be illustrated as untranslated results, 
and visualization for geometries is unavailable, see Figure 15. 
Free Search is a function that not only designed out of frames, 
but also for gathering user-demanded processes in the upcoming 
development. It also provides a window for users to understand 
the transmission between Neo4j and the proposed interface. 

 
Figure 15. Result of Free Search 

 
4.6 Error Proofing 

Although processes deployed within the proposed interface is 
highly intuitive and accessible, error proofing methods are still 
needed to prevent users from performing meaningless queries 
and receiving confusing results. Methods deployed here are to 
initiative detect possible errors in the backend, and if 
misoperation is confirmed, the system would pause the 
undergoing session and warn the users with alerts. In the 
proposed system, we insert checkpoints for 1) invalid input. If 
the user submits the queries before providing enough information, 
the system will pop up an alert at the top of the website, which 
displays information accordingly. For example, “Please Input 
Value Before Submit!” goes for empty queries, while “Please 
Input Scale and Name Before Zoom In or Out” is for missing 
scale value only in Zoom. 2) No match for input. When 
submitting full information while input geometry(s) does not 
exist, the system would show “No match!” with some additional 
hint. 3) End of the result list. When clicking the toggle button 
and the display reaches the bottom of the result list, the system 
would popup with “End of Result! ” to remind users. 4) 
Meaningless queries. WithinDistance function is designed for 
point only. When performing with other types of geometries, the 
system would inform users with “Please Input Point Feature”. In 
addition, when performing spatial queries at different resolutions, 
the system would alert “Different Scale! Meaningless Spatial 
Query!”. With a well-designed error proofing strategy, for now, 
the system thoroughly prevents users from retrieving 
meaningless query results, which increases the accuracy of the 
proposed functionalities. Meanwhile, hints and guidance 
provided through alerts not only pause current sections, but also 
help prevent misoperations in further processes. From this aspect, 
error proofing approaches could be considered as a tool that 
enhances system robustness. 
 

5. CONCLUSION AND FUTURE WORK 

In this paper, the graph-based system consists of two parts: an 
intuitive and understandable database structure, as well as a 
concise and accessible interface. With explicitly defined 
relationships between representations and layers at adjacent 
resolutions, direct navigation between them could be performed 
in a straightforward and easy-operation way. By sharing 
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information between nodes, we also achieve one-step data 
retrieving in both representation and layer levels. Benefited from 
the high tolerance of Neo4j, various geometry types and diverse 
spatial operations are now available by deploying multiple plug-
ins. Cooperate with Neo4j Bolt Driver for JavaScript, more 
simplified functionalities and interactive geometry visualization 
are provided, which benefits both novice and advanced users, as 
well as the upcoming development. With the error proofing 
strategy, we secure the reliability of the proposed system. Overall, 
this paper demonstrates the potential of developing a 
comprehensive, efficient, and robust system for multi-resolution 
representation through Neo4j. 
 
As for future work,1) More functionalities. For now, 
functionalities within are still basic. 2) Operations on historical 
queries. The proposed interface processes queries through 
individual sessions, which would be closed after displaying 
results. With operation for historical queries available, traversal 
between more resolutions will be possible. 3) Larger dataset and 
more users. Neo4j used in this paper is deployed in low 
computing power pc, which limits the number of users and the 
size of the dataset. Therefore, performance comparation with 
other approaches, e.g., relational database, are expected.4) Batch 
import. During our research, data importing process is 
accomplished step by step since the batch import is partially 
available in both original Neo4j and Neo4j Spatial. 
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