
MULTI-RESOLUTION REPRESENTATION USING GRAPH DATABASE

Yizhi Huang1, Emmanuel Stefanakis1*

1Department of Geomatics Engineering, University of Calgary, Calgary-(yizhi.huang, emmanuel.stefanakis)@ucalgary.ca

KEY WORDS: Spatial Information, Geographic Information System, Multi-resolution, Multi-representation, Graph Database, Neo4j

ABSTRACT:

Multi-resolution representation has always been an important and popular data source for many research and applications, such as
navigation, land cover, map generation, media event forecasting, etc. With one spatial object represented by distinct geometries at
different resolutions, multi-resolution representation is high in complexity. Most of the current approaches for storing and retrieving
multi-resolution representation are either complicated in structure, or time consuming in traversal and query. In addition, supports on
direct navigation between different representations are still intricate in most of the paradigms, especially in topological map sets. To
address this problem, we propose a novel approach for storing, querying, and extracting multi-resolution representation. The
development of this approach is based on Neo4j, a graph database platform that is famous for its powerful query and advanced
flexibility. Benefited from the intuitiveness of the proposed database structure, direct navigation between representations of one spatial
object, and between groups of representations at adjacent resolutions are both available. On top of this, collaborating with the self-
designed web-based interface, queries within the proposed approach truly embraced the concept of keyword search, which lower the
barrier between novice users and complicate queries. In all, the proposed system demonstrates the potential of managing multi-
resolution representation data through the graph database and could be a time-saver for related processes.

1. INTRODUCTION

A multi-resolution representation database is commonly defined
as a structure that preserves linked representation, according to
their degrees of geomatic or sematic abstraction, of the same
spatial objects. (Sarjakoski, L. T. 2007). Therefore, how to well
illustrate the links between the object, the abstraction level (or
resolution), and the representation is the crucial part of
constructing structures of such data. Existing approaches for
spatial data show their limitation in many aspects. Tile-based
structure, a method that is widely applied in web map services
for its outstanding efficiency in information distributing, is rather
time consuming when retrieving and updating representation(s)
for spatial objects, since optimizing one spatial object may relate
to reconstruction of all related tiles. Tree-based structures, which
stores representation as independent entities, may be costly in
traversal since queries within such structures may start from root
nodes that are far from its target leaf nodes. The relational
database, a mature technology, is displaying its limitation on
fixed schema and expensiveness of join-style queries. To lower
the cost of managing multi-resolution representation data, an
alternative is needed. Neo4j, a No-SQL database platform that is
high in flexibility and powerful in query, has proved its potential
in fraud detection (Alsadi, Abuhamoud, 2018), recommendation
engine (Stark et al. 2017) and social media analysis
(Drakopoulos et al. 2017). In Neo4j, relationships between
entities are explicitly and specifically defined, therefore with the
query strategies of Neo4j, navigation between representation(s)
could be simply performed within one query.

The main contribution of this paper is a comprehensive approach
for storing, managing, and querying multi-resolution
representation data on top of Neo4j. We construct an intuitive
database structure that provides direct navigation and fast
retrieving on representations as well as groups of representations.

* corresponding author

With this structure, storing and visualizing more types of
geometries in Neo4j is available. In addition, we propose a
concise and easy-operation interface that provides simplified
functionalities for both novice and advanced users.

2. RELATED WORKS

2.1 Approaches for Storing, Querying and Managing
Spatial Data

Existing approaches for operating spatial data mainly include
tile-based methods, tree-based methods and methods based on
relational databases. A tile in the tile-based method may refer to
a pre-generated image, or a topological dataset that stores
information of a certain area at a given resolution level. Google
Map employs the “Tile Overlays” methodology for fast loading
imagery and map data (MicroImages, 2012). In this pyramid
structure, tiles are sorted according to the level of detail, and the
higher the level, the more the tiles. For example, level 0 contains
only one tile in the roughest detail, while level 1 would contain
2x2 gridded tiles with finer resolution. In CanVec Series, an
official topological dataset of Canada, representations would be
gathered into shapefiles according to their resolution (Natural
Resources Canada, 2019). Therefore, retrieving representations
at the same resolution could be a one-step process, while
extracting representations for one multi-resolution spatial object
may relate to duplicated search in every tile. This is mainly
because connections between representations of the same spatial
objects are not explicitly defined, but demonstrated through
shared information, such as the name of the spatial object. Tree-
based methods addressed this problem by chaining
representations that refer to the same spatial object together, then
organizing them according to their resolutions. In the Map Cube
Model (Timpf, 1998), map elements are first divided into four
categories, then their representations would be organized in
decreasing levels of detail. However, as described in R-tree

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-4-2022-173-2022 | © Author(s) 2022. CC BY 4.0 License.

173

(Guttman, 1984), queries within such methods may start from the
root node or parent nodes rather than hit the target directly.
Approach in (Hampe M et al. 2004) optimized this problem by
building links between one representation and all other one at
lower resolution, which may increase the effort of updating. With
more awareness of database control and operation, some
approaches for spatial data are based on the existing database
structure. The relational database is a mature technology that has
been the fundamental of many desktop applications, e.g., the
Geodatabase within ArcGIS (ArcGIS Desktop, 2017), in which
one representation could be represented by multiple tables, and
connections between each table is rather implicitly defined. The
relational database has been proved to be suitable for well-
structured data but has also claimed its limitation in join-style
query (Van Bruggen, 2014). In addition, with rather static
schema, relational database demonstrates its circumscription
when facing the rapid growth of geospatial data. Research shows
that Neo4j, a No-SQL database famous for its highly dynamic
conception, could be more efficient in querying linking data
(Stothers, J. A. et al. 2020, Gong, F. et al. 2018), which
demonstrate the possibility of modelling multi-resolution
representation.

2.2 Neo4j

Neo4j is a graph database designed and optimized for highly
connected data (Miller, 2013). Elements in the graph database
mainly include vertices, edges, and attributes. Vertices are
considered as instances, and edges are the connections between
them, while attributes are the further description of both vertices
and edges. In Neo4j, vertices and edges are represented by nodes
and single-directed relationships, and users are allowed to utilize
those two components to create their own structure, or patterns
in the world of Neo4j. Like nouns and verbs in sentences, the
combination of nodes and relationships is truly intuitive in
architecture. Attributes of nodes and edges are mainly
represented by three indexable information units: property, label,
and type, which all could be defined by users. The property holds
detailed information for both nodes and relationships. Label and
type are two identifiers that categorize nodes and relationships
accordingly. Label in nodes is not strictly required and is
unlimited in amount. However, the type for relationship is
mandatory, and each relationship only belongs to one type.
Figure 1(a) illustrates an example graph that demonstrates
connections between three instances: Jack, Jennifer and the
Neo4j company. Represented by two blue nodes, Jack and
Jennifer share the label “person” and “developers”, and could be
distinguished by their name, age, and location. In addition, both
Jack and Jennifer work for the Neo4j company. Therefore, the
two blue nodes are connected to the yellow one by relationships
that are the same in type. Similar to this, the friendship between
Jack and Jennifer is represented by two relationships that are the
same in type, yet different in direction. This structure is truly
intuitive since it is semantically akin to real-world expression.
Note that querying on labels or types is not the only way to “grab”
homogenous elements, when querying on properties that are not
unique, multiple results are always expected.

Queries within Neo4j rely on Cypher, a declarative language that
developed for highly connected data architecture. Queries in
Cypher are performed linearly, which allows users to understand
the whole process in an orderly way (Francis et al. 2018). Unlike
another declarative language, SQL, Cypher prefers to express
constraints with MATCH first, then use RETURN to have results
at the end of each query. The number of results is decided by the
number of constraints. Like painting a portrait of a person, the
more the details, the clearer the appearance, and vice versa.

Performing queries with no constraints would lead to output with
all nodes or relationships in the database. Adding limited
constraints would lead to return nodes or relationships at the
same group, e.g.
MATCH (n1: developer) RETURN n1
MATCH ()-[r:Works_for]-() RETURN r
Distinguish queries within Neo4j mainly include pattern
matching queries and path-finding queries (Van Bruggen, 2014).
Pattern matching queries are like join style queries performed in
relational databases, since they both find qualified instances
through a series of constraints. Unlike relational databases,
connections between instances are explicitly defined in Neo4j,
join operations are transferred to hops from one node to another
over those relationships.

(a)

(b)
Figure 1. Example graph of Neo4j. (a)How a company and two

developers that are friends to each other are connected.
(b)Pattern defined within the example.

For example, when finding developers of Neo4j, the pattern is
specified as Figure 1(b) shows:
MATCH(n1:developer)-
[:Works_For]->(n2 :company{name:"Neo4j"})
RETURN n1,n2
In such a pattern, the detailed properties are ignored since there
is no constraint on, e.g., the name, age, or the relationships
between developers. Note that in this process, only structures
connected to starting node would be considered. Therefore, the
query performance is rather independent of the size of data.
In relational databases, it may be the user who tells the database
how tables are connected, while Neo4j is able to feed users the
connections between instances through path-finding queries. In
such queries, the user only needs to provide the starting and
ending nodes, and Neo4j would find how they are connected.
Take the structure in the figure above as an example, to find the
connection between developers and Neo4j company, Cypher
expression could be:
MATCH(n1:developer)-[r]-(n2:company{name:"Neo4j"})
RETURN r
Both pattern matching and path-finding queries demonstrate how
Neo4j simplifies complex and expensive queries in relational
databases, and eventually provides an efficient strategy for
extracting adjacent instance(s). Although Neo4j has advantages
in efficiency and flexibility in both dataset architecture and query,
storing and visualizing spatial data within it is rather limited
during our research period. In original Neo4j, point is the only
geometry type that is supported in storing, querying and
visualization. Hence, to store more types of geometry, Neo4j
Spatial, a library that enables various spatial operations within
Neo4j (Neo4j Spatial, 2010) is available. In addition, as an open-
source platform, Neo4j provides all kinds of drivers, such as Java,
JavaScript, Python, etc., which allow users to bridge between
self-developed interface and database.

3. METHODOLOGY

3.1 Data and Resources

To perform thorough experiments on the proposed system, data
applied in this research is expected to be rather diverse in

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-4-2022-173-2022 | © Author(s) 2022. CC BY 4.0 License.

174

geometry types, category, and large in resolution range.
Moreover, attention has also been paid to objects showing
Intersects, Contains and Within, which are the most common
spatial relationship queries in existing spatial databases. With
those ideas in mind, CanVec series, an open-access dataset for
the topographic data of the whole Canada, is selected as our data
source. Spatial objects within are in eight themes, including
Manmade, Hydrology, Transportations, etc. Resolution levels
within CanVec series are available from 1:50k to 1:5M. Note that
some manmade objects are only available at 1:50k resolution,
while transportation objects are usually wider in resolution range.
CanVec also feeds the demand for variety in both geometry types
and spatial relationships. Said that, CanVec Series still has some
fractures: 1) missing name or other identification, and 2) some
representations at higher resolution are subdivided into multiple
or even mislocated geometries. To address those problems,
reference has been made to Google Map. Without changing the
meaning of representations, some geometries are merged and
repaired through QGIS (QGIS, 2021). However, for
transportations represented by multiple LineStrings that are
different in direction, the original representations are preserved,
and direction-related properties are added when inserting into the
proposed database. Overall, 34 diverse spatial objects are
selected, and grouped into six maps according to their
geolocation and spatial relationships, as illustrated in Table 1.

Map
Name/
Map ID

Object
Resolution

Type Theme 1:15M 1:5M 1:1M 1:250k 1:50k

City
Center/
Map1

16 Ave NW √ √ √ 1 T
Center
Street √ √ 1 T

Bow River √ √ 1 H
AB16HW/

Map2
AB16

Highway √ √ √ √ 1 T

Around 32
Ave/
Map3

32 Ave NE √ √ 1 T
House1~5 √ 2 M

McCall
Lake √ √ 2 H

BF
Runway/

Map4

Armory
Building √ 2 M

Blatchford
Runway √ 2 M

Grass Land √ 2 M
NAIT

Building √ 2 M

Storage
Building √ 2 M

Lulu
Island/
Map5

Building1~7 √ 0 M
Fraser River √ √ √ 1 H

George
Massey
Tunnel

 √ √ √ √ 1 T

Golf Course √ 2 M
Golf Water √ 2 M
Golf Wood √ 2 M
Lulu Island √ √ √ 2 L
Port Mann

Bridge √ √ √ √ 1 T

TriR
Building √ 2 M

Around
Lac St.
Jean/
Map6

Lac
Chigoubiche √ √ √ 2 H

Lac St. Jean √ √ √ 2 H
Railway √ √ √ 1 T

Type: 0 = Point, 1 = LineString, 2 = Polygon
Theme: T = Transportation, H = Hydro, M = Manmade, L =Land

Table 1. List of data
Since the WithinDistance query only performed from points,
Building1~ 7 are specially included, and as manmade object they
are at 1:50k only. Besides, unlike ideal multi-resolution database,
resolution in CanVec may be inconsistent for some spatial
objects, such as Bow River and Fraser River, which means the
“next” resolution level may be different from prior knowledge.

Some fractured and concave objects are selected for verifying the
geometry visualization, such as Center Street, Blatchford
Runway and NAIT Building, as illustrated in Figure 2. Since
Neo4j Spatial deploys WKT strings as one of the main geometry
formats, representations are translated to WKT with the help of
Get WKT for QGIS (Skeen, 2021) before constructing the
proposed database. When developing the web-based interface,
Turf.js (Turfjs, 2021), Terraformer (Terraformer, 2020) and
Leaflet.js (Vladimir, 2019) are employed for more and better
spatial queries, spatial information extraction, and geometry
visualization.

(a)

(b)

Figure 2. (a)Fractured geometry Center Street at 1:50k
resolution (circled), (b)Concave geometries: Blatchford

Runway and NAIT Building.

3.2 System Structure

One of the ideal approaches for multi-resolution representation
data is storing one representation for each spatial object, then
generating other representations automatically. Although this
approach could be a space-saver, it is limited by two factors.
Firstly, spatial relationships between spatial objects should be
consistent at any resolution, which may be an enormous
challenge to the fully automated generation process. In addition,
map generation is a time-consuming process and may influence
the performance of real-time applications (Jones et al. 2000).
Consequently, common approaches, for now, are still focusing
on storing series of representations. A simple way is to store
multiple interconnected representations, which, however, leads
to further questions on 1) how to define the connections between
representations, and 2) how to store properties for
representations at different resolutions. When taking database
performance and user experience as a priority, it would be better
to define connections explicitly, and assign the whole set of
properties into every representation (Spaccapietra et al. 2000). In
existed methods, such as R-tree (Guttman, 1984), and (Hampe M
et al. 2004), the specific IDs or address of the “next”
representation are defined as attributes within representations for
connection, such as Link _100k. Above the structure of data,
(Jones, 1991) brought up awareness on the control of data
updating, retrieving, and spatial process, which might be
replaced by predefined data managing strategies deployed in
well-developed databases, but still demonstrates the importance
of cooperating database structure and query procedures.

To create a comprehensible and intuitive structure, we borrow
the map-layer-feature concept from the traditional understanding
of map sets, and semantically illustrate it on a tree-like structure.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-4-2022-173-2022 | © Author(s) 2022. CC BY 4.0 License.

175

As demonstrated in Figure 3, nodes for one multi-resolution
representation structure include Map Node, Layer Node and
Feature Node. The Map Node is the “leader” of a map and stores
unique name and id of the map, while Layer Nodes are the
“leader” of representations (of different spatial objects) at the
same resolution. And layers are understood as groups of
representations for different objects at the same resolution.
Feature Node stands for representations. Information within
Layer Nodes include the name and resolution value (referred to
as “scale” in structure). Every Feature Node holds the whole set
of information from the spatial object it represented, such as a
name and directions (transportation object only), as well as a
scale value and a geometry. For Layer Nodes that are included in
the same map, they share the same layer name, and contain a
scale value according to their resolution. Similar things happen
to the Feature Nodes that represent the same spatial object: every
node contains the same name in property and could be
distinguished by scale value and other attributes, e.g., direction
for Transportations. Storing the same information in different
nodes may increase the information redundancy. However, this
is the key for users to “grab” homogeneous elements in one query.
For example, querying on one layer name would retrieve all
Layer Nodes within one map structure, and querying on one
feature name would retrieve all representations of the one spatial
object, or detailed information of them. For easy-updating
purpose, some information is gained through real-time query,
e.g., spatial relationships. Storing spatial relationship within
nodes may reduce the time for query, but every time a
representation changed, all other representations must be updated
synchronously.

Figure 3. System Structure.

Relationships between nodes are also defined in an intuitive way.
Relationship Member_of and Feature_of are designed to chain
nodes at different levels and allow fast retrieving on various
levels of data. Between Layer Nodes and Feature Nodes stand
for neighboring resolutions, Zoom_in and Zoom_out
relationships are introduced, which allow users to navigate
between representations, or layers, at adjacent resolutions. We
did consider grouping those relationships with unique IDs or
different names according to their destinations, but this would
lose the advantage of retrieving representations at adjacent
resolutions with limited information of the “next” resolution
level. For example, relationships between 1:50k and 1:250k
could be [:50_to_250], but for Bow River the 1:250k is absent.
Therefore, [:50_to_1M] needs to be specially defined for the
river, which increase both the storage size and the query
difficulty. For now, all the traversal between adjacent resolution
could be done with one query, since providing no resolution in
both (n1) and (n2) would return all adjacent representations, and
the more resolution information, the more specific the query
result:
(n1)-[:Zoom_in]-> (n2) or (n1)-[:Zoom_out]-> (n2)
Although this structure is levelled semantically, queries could be
performed from any nodes, or on any relationships within it.
Take the map in Figure 3 as an example, to find which map that
Lac St. Jean belongs to, the system just simply tracks through the
Feature_of and Member_of relationship, then displays the id

and/or name of the result Map Node. This design reduces the cost
on queries and allows users to perform queries with limited
knowledge of data.

To improve accessibility for users, and to provide visualization
on geometries, a novel interface is also introduced, as illustrated
in Figure 4. Framed with JavaScript, queries are simplified and
re-grouped into more comprehensive and intuitive services based
on their functionalities, including Find, Availability, Zoom,
FindGeo, and GeoRelation. Keyword search strategy is
thoroughly deployed when designing and simplifying those
processes. Eventually, operations within functionalities above
require no pre-earned knowledge of Neo4j, but only of the basic
search process. In addition, Free Search, a functionality that
requires full Cypher expressions and returns raw result streams,
is also provided for advanced users. Results returned from
queries are displayed in two parts, text area and map area, which
would both be triggered in most of the cases. In the text area,
properties of all kinds would be illustrated in a series of tables.
Geometries are displayed upon map area, an interactive map that
developed with Leaflet.js. Geometries in the result list are
toggleable through a button displayed on the top of the text area.
By zooming and dragging, users would gain some information
outside of the database.

Figure 4. Layout of interface

4. FUNCTIONALITIES WITHIN THE PROPOSED

DATABASE

4.1 Data Management

For now, data management is processed through Neo4j Browser
(Neo4j, Inc, 2021), the original interface of Neo4j, which is
mainly because Neo4j Browser provides a clear view of database
structure with diverse approaches, which means database could
be shown in node-relationships, or list of details. To avoid
meaningless queries, in Neo4j Spatial, spatial queries are only
appliable between geometries under the same layer. Therefore,
Layer Nodes and Feature Nodes are introduced by inserting
layers and then WKT geometries through Neo4j Spatial.
However, the similar restriction is specially designed in other
spatial operations to maintain consistency in spatial queries.
There is no sequence between creating Map Nodes and the other
two since there is no strict inheritance between nodes.
Relationships are always created after nodes following the
standard process of Neo4j, and all of them are created
independently from nodes.

4.2 Global Search Function

In tile-based structures such as the CanVec Series, querying
layers could be done in archives, while finding representations
could only be done after opening layers in tools, e.g., ArcGIS.
Here we group those queries into two functions: Find and
Availability. They search for information of representations,
layers, maps in the whole database, as illustrated in Figure 5. The
Find function searches through the name properties. When
searching at the feature level, users could provide a full name to

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-4-2022-173-2022 | © Author(s) 2022. CC BY 4.0 License.

176

retrieve all the representations of one spatial object, as illustrated
in Figure 6(a). When providing partial of name, the system would
perform fuzzy queries and find representations that contain such
field in name, see Figure 6(b). When finding layers and maps,
both full-name and fuzzy quires would return information for
both layers and maps in text result only, see Figure 7. Since there
is no geometry on display, the button for toggling is hidden.

(a)

(b)

Figure 5. Panel of functions. (a) Find (b) Availability.

(a)

(b)

Figure 6. (a)Find all representations of Lac St. Jean. (b)A fuzzy
query that finds representations containing “A” in name.

Results from both functions seem to be duplicated yet show the
diversity of accesses to the proposed database. Since it is
impossible for the developer to foresee the information preserved
by users, we provide multiple functionalities that allow queries
to be performed with even small pieces of information. The
Availability function finds spatial objects that are available at the
resolution inputted by users and extract all representations at a
given resolution level within one click, see Figure 8. Both Find
and Availability demonstrate how we balance between the
information redundancy, and the fast information retrieving
when designing the proposed system. For example, explicitly
defining resolution value within every Feature Node allows
performing the global search in a straightforward and efficient
way. If the resolution value is inherited from layer or map level,
the search process may involve multiple traversals.

4.3 Zoom Function

The Zoom function provides directed navigation between
representations and layers at adjacent resolutions, as shown in
Figure 9.

(a)

(b)

Figure 7. Results of finding (a) Layer that contain “B” in name.
(b) Layer under the AB16HW map.

Figure 8. Results of finding spatial objects that are available at

1:5M resolutions.

Figure 9. Buttons for the Zoom function are designed in a more

straightforward way.

When querying for features, the result area would display both
starting (inputted) and result representations, and by clicking the
DuoSwitch button, both geometries would be rendered onto a
base map simultaneously, see Figure 10(a). When rendering on
more representations at either starting or destination resolutions,
clicking the DuoSwitch button would toggle between them. The
query for both layers and transportation object may return
multiple representations. See Figure 10 (b) and (c).

The pattern matching query, which finds specific connections
from a starting node, resemble the query strategy deployed in the
Zoom function. In the Zoom function, the starting node(s) is
defined through inputs, and the system finds result nodes that are
connected to the starting one with [:Zoom_in] or [:Zoom_out]
relationships. Therefore, different from Find and Availability,
Zoom requires a full name and a scale value as input. Direct
navigation between adjacent layers and representations mostly
relies on the explicitly defined directed relationships between

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-4-2022-173-2022 | © Author(s) 2022. CC BY 4.0 License.

177

both Layer Nodes and Feature Nodes. In tile-based maps where
connections between representations are shown through shared
names, jumping between layers at adjacent resolutions could be
convenient, while jumping between representations for the same
object may need to search in every related tile. In tree-based
maps, jumping between representations may not be time
consuming, yet there may not be a concept like layer in such
structure, which limits its efficiency of traversal between them.
In addition, in the proposed structure, since all adjacent
representations or layers are connected through the same type of
relationships, the unsure of the number of input and output will
not affect query performance.

(a)

(b)

(c)

Figure 10. (a) Result of Zoom out from Railway at 1:5M. (b)
Zoom in from Port Mann Bridge at 1:250k and receive an

“uneven” result. (c) Navigating from the Layer Node
CityCenter at 1:250k to 1:50k.

4.4 Spatial Query

Spatial queries in the proposed interface are performed through
FindGeo and GeoRelation. The FindGeo function searches for
object that is spatially related to the inputted one. The
GeoRelation function takes two geometries as input, then returns
the spatial relationship in between. In both functions,
representations are specified through 4 factors: name, scale, road
direction, and lane direction. Among them, the name and scale
are mandatary, while the direction properties are only appliable
to Transportations that have multiple representations. During one
query process, only representations connected to the same Layer
Node would be considered, since comparing representations at
different resolutions is meaningless.

Spatial relationship types available in FindGeo include Intersects,
WithinDistance, Contains, and Within. The first two queries are
deployed with Neo4j Spatial, while the others are from Turf.js.
The Intersects query finds representations that share any part of
the inputted one, as displayed in Figure 11. WithinDistance
searches for spatial objects that are within a certain radius from
the given spot, which is appliable to point objects only. Unlike
text results provided by other spatial queries, the calculated
distance would also be displayed, see Figure 12. The Contains
tells whether the second object is completely in the first one,
while the Within shows the opposite results (Figure 13).

Figure 11. Results of geometries intersecting with CenterStreet

at 1:50k.

Figure 12. Result of finding objects that are within 0.5km from
Building1. Since LuluIsland contains Building1, the distance in

between is 0.

When having information of two representations yet their
relationship is missing, users may consider performing several
possible spatial queries. However, in the proposed interface, the
GeoRelation is designed to address this problem in a
straightforward way. In GeoRelation, the system would
determine whether the inputted representations are Intersect,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-4-2022-173-2022 | © Author(s) 2022. CC BY 4.0 License.

178

Contains, or Within, and displays the text result through boolean
value, as illustrated in Figure 14. Queries in GeoRelation are
supported by the boolean function within Turf.js. Note that point-
point queries would be automatically detected and paused by the
system since they are meaningless.
Both FindGeo and GeoRelation aggerates multiple spatial
processes into one function, which reduces the time of jumping
between different panels. Functionalities within FindGeo and
GeoRelation may seem to be duplicated since they are both
spatial queries. However, information held by users could be
more limited than we expected, therefore approaches for
accessing the database are always diverse.

(a)

(b)

Figure 13. (a)Results of finding geometries that are contained
by Blatchford Runway. (b) Result of find geometries that Grass

Land is within.

Figure 14. Spatial relationship between LuluIsland and George

Massey Tunnel. Since they only intersect with each other,
Contains and Within are displayed as “False”.

4.5 Free Search

Functionalities in the sections above reduce the effort of learning
and typing complicated queries. However, for undeployed
queries, and for advanced users who prefer the original Cypher
language, Free Search, a function that takes pure Cypher queries
as input is developed. As its name, Free Search holds no
limitation on the inputted queries, which means expressions here
are unpredictable. Since properties that return from Neo4j must
be claimed in queries before rendering onto the result area,
results of Free Search would be illustrated as untranslated results,
and visualization for geometries is unavailable, see Figure 15.
Free Search is a function that not only designed out of frames,
but also for gathering user-demanded processes in the upcoming
development. It also provides a window for users to understand
the transmission between Neo4j and the proposed interface.

Figure 15. Result of Free Search

4.6 Error Proofing

Although processes deployed within the proposed interface is
highly intuitive and accessible, error proofing methods are still
needed to prevent users from performing meaningless queries
and receiving confusing results. Methods deployed here are to
initiative detect possible errors in the backend, and if
misoperation is confirmed, the system would pause the
undergoing session and warn the users with alerts. In the
proposed system, we insert checkpoints for 1) invalid input. If
the user submits the queries before providing enough information,
the system will pop up an alert at the top of the website, which
displays information accordingly. For example, “Please Input
Value Before Submit!” goes for empty queries, while “Please
Input Scale and Name Before Zoom In or Out” is for missing
scale value only in Zoom. 2) No match for input. When
submitting full information while input geometry(s) does not
exist, the system would show “No match!” with some additional
hint. 3) End of the result list. When clicking the toggle button
and the display reaches the bottom of the result list, the system
would popup with “End of Result! ” to remind users. 4)
Meaningless queries. WithinDistance function is designed for
point only. When performing with other types of geometries, the
system would inform users with “Please Input Point Feature”. In
addition, when performing spatial queries at different resolutions,
the system would alert “Different Scale! Meaningless Spatial
Query!”. With a well-designed error proofing strategy, for now,
the system thoroughly prevents users from retrieving
meaningless query results, which increases the accuracy of the
proposed functionalities. Meanwhile, hints and guidance
provided through alerts not only pause current sections, but also
help prevent misoperations in further processes. From this aspect,
error proofing approaches could be considered as a tool that
enhances system robustness.

5. CONCLUSION AND FUTURE WORK

In this paper, the graph-based system consists of two parts: an
intuitive and understandable database structure, as well as a
concise and accessible interface. With explicitly defined
relationships between representations and layers at adjacent
resolutions, direct navigation between them could be performed
in a straightforward and easy-operation way. By sharing

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-4-2022-173-2022 | © Author(s) 2022. CC BY 4.0 License.

179

information between nodes, we also achieve one-step data
retrieving in both representation and layer levels. Benefited from
the high tolerance of Neo4j, various geometry types and diverse
spatial operations are now available by deploying multiple plug-
ins. Cooperate with Neo4j Bolt Driver for JavaScript, more
simplified functionalities and interactive geometry visualization
are provided, which benefits both novice and advanced users, as
well as the upcoming development. With the error proofing
strategy, we secure the reliability of the proposed system. Overall,
this paper demonstrates the potential of developing a
comprehensive, efficient, and robust system for multi-resolution
representation through Neo4j.

As for future work,1) More functionalities. For now,
functionalities within are still basic. 2) Operations on historical
queries. The proposed interface processes queries through
individual sessions, which would be closed after displaying
results. With operation for historical queries available, traversal
between more resolutions will be possible. 3) Larger dataset and
more users. Neo4j used in this paper is deployed in low
computing power pc, which limits the number of users and the
size of the dataset. Therefore, performance comparation with
other approaches, e.g., relational database, are expected.4) Batch
import. During our research, data importing process is
accomplished step by step since the batch import is partially
available in both original Neo4j and Neo4j Spatial.

REFERENCES

Alsadi, I.S. and Abuhamoud, N., 2018. Study to use neo4j to
analysis and detection sim-box fraud. Journal of Pure & Applied
Sciences, 17(4), 31-35.

ArcGIS Desktop, 2017, Geodatabase system tables,
desktop.arcgis.com/en/arcmap/10.3/manage-
data/geodatabases/what-is-a-geodatabase.htm(21 June 2021).

Drakopoulos, G., Kanavos, A., Mylonas, P. and Sioutas, S., 2017.
Defining and evaluating Twitter influence metrics: a higher-
order approach in Neo4j. Social Network Analysis and
Mining, 7(1), 1-14. doi: 10.1007/s13278-017-0467-9

Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T.,
Marsault, V., Plantikow, S., Rydberg, M., Selmer, P. and Taylor,
A., 2018. Cypher: An evolving query language for property
graphs. In Proceedings of the 2018 International Conference on
Management of Data,1433-1445.doi: 10.1145/3183713.3190657

Gong, F., Ma, Y., Gong, W., Li, X., Li, C., & Yuan, X.,2018.
Neo4j graph database realizes efficient storage performance of
oilfield ontology. PloS one, 13(11),e0207595.doi:
10.1371/journal.pone.0207595

Guttman, A., 1984. R-trees: A dynamic index structure for
spatial searching. In Proceedings of the 1984 ACM SIGMOD
international conference on Management of data, 47-57. doi:
10.1145/602259.602266

Hampe, M., Sester, M., & Harrie, L., 2004. Generating and using
a multi-representation data-base (mrdb) for mobile applications.
In ICA Workshop on Generalisation and Multiple
Representation, August, 20-21.

Jones, C.B., 1991. Database architecture for multi-scale GIS.
In AUTOCARTO-CONFERENCE- (Vol. 6, pp. 1-1). ASPRS
AMERICAN SOCIETY FOR PHOTOGRAMMETRY AND
REMOTE SENSING.

Jones, C.B., Abdelmoty, A.I., Lonergan, M.E., van der Poorten,
P. and Zhou, S.,2000.Multi-scale spatial database design for
online generalisation.In 9th international symposium on spatial
data handling, 34-44.

MicroImages, 2012. Google Maps Structure.
www.microimages.com/documentation/TechGuides/78google
MapsStruc.pdf (1 June. 2021).

Miller, J.J., 2013, March. Graph database applications and
concepts with Neo4j. In Proceedings of the southern association
for information systems conference, Atlanta, GA, USA (Vol.
2324, No. 36).

Natural Resources Canada, 2019. Topographic Data of Canada -
CanVec Series-Open Government Portal.
open.canada.ca/data/en/dataset/8ba2aa2a-7bb9-4448-b4d7-
f164409fe056 (21 June 2021).

Neo4j,Inc, 2021, Neo4j Browser, neo4j.com/docs/browser-
manual/current/(21 June 2021).

Neo4j Spatial, 2010, Neo4j Spatial, Version 0.26-neo4j-3.5,
github.com/neo4j-contrib/spatial/tree/0.26-neo4j-3.5 (21 June
2021).

QGIS, 2021, QGIS, www.qgis.org/en/site/(21 June 2021).

Sarjakoski, L. T. 2007. Conceptual models of generalisation and
multiple representation. Generalisation of Geographic
Information,11-35.doi.org/10.1016/B978-008045374-3/50004-1

Skeen P,2021, QGIS3-getWKT,github.com/skeenp/QGIS3-
getWKT, (21 June 2021)

Spaccapietra, S., Parent, C. and Vangenot, C., 2000, GIS
databases: From multiscale to multirepresentation.
In International Symposium on Abstraction, Reformulation, and
Approximation, 57-70. Springer, Berlin, Heidelberg. doi:
10.1007/3-540-44914-0_4

Stark, B., Knahl, C., Aydin, M., Samarah, M. and Elish, K.O.,
2017, September.Betterchoice:A migraine drug recommendation
system based on neo4j.In 2017 2Nd IEEE international
conference on computational intelligence and
applications(ICCIA),382-
386.doi:10.1109/CIAPP.2017.8167244

Stothers, Jessica A. M. and Andrew V. Nguyen., 2020, “Can
Neo4j Replace PostgreSQL in Healthcare?”AMIA Joint Summits
on Translational Science proceedings.AMIA Joint Summits on
Translational Science 2020, 646-653.

Terraformer, 2020. Terraformer. terraformer-js.github.io/ (21
June 2021).

Timpf, S., 1998. Map Cube Model-a model for multi-scale data.
In 8th International Symposium on Spatial Data Handling
(SDH'98). Technical University of Vienna, Department for
Geoinformation. doi: 10.3929/ethz-a-004364982

Turfjs, 2021, Turfjs/turf, github.com/Turfjs/turf/, (20 June 2021)

Van Bruggen, R., 2014: Learning Neo4j. Packt Publishing Ltd.

Vladimir, A., 2019, Leaflet, leafletjs.com/ (21 June 2021)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-V-4-2022-173-2022 | © Author(s) 2022. CC BY 4.0 License.

180

https://www.qgis.org/en/site/
https://github.com/Turfjs/turf/
https://leafletjs.com/

	1. Introduction
	2. RELATED WORKS
	2.1 Approaches for Storing, Querying and Managing Spatial Data
	2.2 Neo4j

	3. Methodology
	3.1 Data and Resources
	3.2 System Structure

	4. Functionalities within the proposed database
	4.1 Data Management
	4.2 Global Search Function
	4.3 Zoom Function
	4.4 Spatial Query
	4.5 Free Search
	4.6 Error Proofing

	5. Conclusion and Future Work
	References

