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ABSTRACT: 

 

Remote sensing satellites allow users to acquire detailed information about the Earth's surface on a temporal basis. Widen time-

series analysis at a large geographical scale involves a huge amount  (in Terabytes) of satellite data downloading and processing 

operations. Such processes need good computational power, large storage, and sophisticated tools. Maintaining such infrastructure 

can cost heavily to the research/commercial enterprises. To overcome such issues, Amazon Web Service (AWS) offers a 

sophisticated cloud computing environment. We developed an in-house automated satellite data downloading and processing 

(ADDPro) pipeline on the AWS platform. The ADDPro pipeline employed Sentinel-2 satellite data to offer current and relative 

vegetation health information of the agriculture region on a temporal basis at the pan-India scale. Image compositing and multi-

sensor data fusion technique have been incorporated into the ADDPro pipeline to produce cloud-free raster (GeoTIFF) outputs. 

ADDPro pipeline also facilitates lossless raster data compression, which reduces AWS data transfer costs between regions. Data 

compression also aids in reducing raster publishing time on GeoServer. Operationally, AWS allows users to download only the 

bands required to generate a certain index (e.g. NDVI) rather than the entire Sentinel-2 data package. The entire ADDPro pipeline 

is extremely cost -effective, efficient, and scalable. 

 

                                                             

*Corresponding author 

1. INTRO DUCTIO N 

Remote sensing has significantly contributed by providing 

consistent multi-sensor and multi-temporal data of larger 

regions with a good frequency of revisits and spatial resolution. 

In the past few years, the volume of remote sensing imagery 

has increased significantly. Nowadays, there is a huge demand 

for generating insights from the time-series remote sensing 

data across a wide range of industries such as urban planning 

and development, agriculture, insurance, climate change, etc. 

Our team at Tata Consultancy Services (TCS) Limited's Digital 

Farming Initiative (DFI) group (TCS, 2020) has extensively 

employed remote sensing datasets for performing client -

oriented research and providing solutions for various 

agricultural applications. The major application involves the 

generation of time-series spatially distributed current 

vegetation health (CVH) and relative vegetation health (RVH) 

maps. The CVH is derived from the normalized difference 

vegetation index (NDVI) (Myneni et al., 1995) of the current 

year (e.g. NDVI2022) whereas RVH is generated by subtracting 

the mean of the previous three years’ NDVI [e.g. 

mean(NDVI2021, 2020, 2019)] from the current year NDVI (e.g. 

NDVI2022), respectively. The NDVI is derived from the red and 

near-infrared reflectance ratio [NDVI = (NIR-RED)/ 

(NIR+RED), where NIR and RED are the amounts of near-

infrared and red light, respectively]. The other applications 

involve soil moisture estimation, crop yield estimation, crop 

variety classification, etc. Most of the agricultural parameters 

can be derived from the indices such as NDVI, normalized 

difference water index (NDWI), soil-adjusted Vegetation Index 

(SAVI), and others. These indices can be generated using the 

band combination of satellite datasets obtained from Sentinel-

2/Landsat. For index generation, band operations need to be 

performed manually in dedicated software platforms such as 

ArcGIS or QGIS. This is a conventional method of processing 

satellite datasets, and it  is appropriate only for regions where 

there are very few satellite datasets available. For larger 

geography such as a state or a country, deriving several indices 

has been a challenging task. This is mainly because of the huge 

amount of satellite data that must be downloaded and 

processed. This process may take weeks and several human 

resources if a conventional approach is adopted. Eventually, a 

typical approach is unsuitable, particularly in commercial 

enterprises where clients demand faster and more precise 

results at the state or country scale. 

 

The limitations in the way of processing satellite data can be 

addressed by developing an automated satellite data 

downloading and processing pipeline (Pandit et al., 2020). The 

objective of such a pipeline is to download satellite datasets 

(e.g. Sentinel-1/2, Landsat) as per the requirement (i.e. dates, 

geography, processing level, etc.) and perform operations such 

as generation of NDVI, normalized difference water index 

(NDWI), soil-adjusted vegetation index (SAVI), and other 

indices. These indices can then be used in sophisticated models 

to derive insight ful information related to agricultural use 

cases. The development of such a pipeline for executing 

processes across a greater geographic area necessitates enough 
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computing infrastructure, including storage capacity and 

processing power. Managing such infrastructure is expensive 

for businesses, especially small and mid-sized. So, alternatively, 

rather than purchasing and setting-up expensive infrastructure 

for big geo-spatial data operations, the costs can be reduced by 

using the resources provided by cloud computing services. 

Nowadays, several cloud computing services are available such 

as Google Cloud, Amazon Web Services (AWS), Microsoft 

Azure, Oracle, IBM, and a few others. Cloud computing is the 

on-demand delivery of information technology resources over 

the Internet. It  works on the pay-as-you-go model under which 

instead of buying, owning, and maintaining physical data 

centers and servers, users can access technology services, such 

as storage, computing power, and databases, on an as-needed 

basis from cloud providers. Cloud service offers data 

security/protection at the highest level which makes 

organizations comfortable in running the business. 

Furthermore, cloud computing allows users to be more flexible 

by facilitating them to access data from anywhere using web-

enabled devices such as laptops, notebooks, etc. As per the 

usage, cloud service platforms permit the user to rent extra 

processing power without having to use million-dollar 

machines as servers. Nowadays, many organizations are 

exhibiting interest in moving their applications to cloud 

environments instead of spending a lot of money on the 

hardware, software, licensing, and renewal fees.  

 

Nowadays, many cloud-based platforms (mentioned 

previously) are offering services to use terabytes (TBs) to 

petabytes (PBs) of time-series data acquired by the selected 

satellites.  One such cloud computing platform for earth 

observation data processing is offered by the Google Earth 

Engine (GEE), which was launched in 2010 by Google and is a 

proprietary system. GEE is conceptualized and designed to 

store and process huge satellite imagery and geospatial datasets 

at a multi-petabyte-scale (Gorelick et al., 2017). On a global 

scale, such datasets have been widely used by scientists, 

researchers, and developers in various applications e.g. land 

use/land cover (Saah et al., 2019), forest mapping (B. Chen et 

al., 2017), crop yield estimation (Chen et al., 2019), flood 

(Uddin et al., 2019), drought monitoring (Rembold et al., 

2019), natural hazard management (Quintero et al., 2019), 

etc. The GEE library has over 800 functions for handling huge 

geospatial data sets. The services provided by GEE are 

completely free-of-cost for academic, research, and non-profit  

purposes, which bring a broad and growing userbase to the GEE 

platform. It  can also be used for evaluation in a commercial or 

operational environment, but it  can't  be utilized in sustained 

production without a commercial license. Similar to GEE, the 

Sentinel-hub is another platform developed by Sinergise 

(Sinergise, 2020). Sentinel-hub is another service-oriented 

satellite imagery infrastructure, taking care of downloading, 

managing archives, and processing petabytes of satellite 

imagery, and making them available to end-users via simple-

to-integrate web services. Its focus is on Sentinel satellites, 

however, additional support for Landsat and Planet is also 

provided by this platform. This service is also free-of-cost for 

non-commercial use, however, for commercial purposes, it  

charges as per their pricing plans. Paid service is having more 

features as compared to the free-of-cost service. Apart from 

these two satellite data processing platforms, some other 

platforms such as Open Data Cube (ODC) (Killough, 2018), 

System for Earth Observation Data Access, Processing and 

Analysis for Land Monitoring (SEPAL) (FAO, 2020), 

OpenEO (Pebesma et al., 2017), JEODPP (Soille et al., 2018), 

and pipsCloud (Wang et al., 2018) are also available for the 

same purpose but use different storage systems, access 

interfaces and abstractions for satellite data sets. 

 

In the present study, we have developed an automated data 

downloading and processing (ADDPro) pipeline, which has 

been used to deliver pan-India scale taluka (a subdivision of a 

district) level cloud-free CVH and RVH rasters along with the 

taluka-wise zonal statistics. The pan-India scale temporal 

outputs have been derived using the Sentinel-2 satellite data.  

 

2. MATERIALS 

The overall ADDPro pipeline was developed and deployed on 

the AWS cloud computing environment using Python scripting 

language. The processing pipeline involves Sentinel-2 satellite 

data. The detail about each component involved in the 

pipeline is given in this section.   

 

2.1 AWS Cloud Infrastructure  

AWS brings in continuous integration and continuous 

delivery/deployment framework to accelerate product 

development and release cycles. In ADDPro pipeline 

development, we have mainly used two components of AWS- 

1. Amazon Simple Cloud Storage Service (S3) and 2. Amazon 

Elastic Compute Cloud (EC2) instance.  

 

Amazon S3 is a secure, durable, and scalable object storage 

infrastructure that  allows users to store their huge amount of 

standard files in a bucket. It  is built  to automatically provide a 

high level of scalability and elasticity. Amazon S3 only charges 

for what we are currently using and there is no minimum fee. It  

has three pricing components: storage (per GB per month), 

data transfer in or out (per GB per month), and requests (per n 

thousand requests per month). We have mainly employed 

Amazon S3 for storing GBs of raster outputs, which have been 

obtained temporally by satellite data processing. The raster 

outputs have been uploaded and stored on Amazon S3 in two 

different locations. The first  location is primarily used to store 

taluka-wise CVH raster data generated by the ADDPro 

pipeline. Rasters have been fetched and hosted on the 

GeoServer (an open-source server for sharing geospatial data) 

(Iacovella 2017) for visualization purposes from this location. 

The second location has been used for keeping tile-level 

current year and previous year(s) raster backups for future 

usage if any. The availability of tile-level outputs in the second 

location eliminates the need to download and reprocess 

massive Sentinel-2 data, saving time and computing resources.  

 

Amazon EC2 instance is for running applications on the AWS 

infrastructure. Instance types are different combinations of 

CPU, memory, storage, and networking capabilities that allow 

users to choose the best resource combination for particular 

applications. AWS offers more than 60 On-Demand EC2 

instances (AWS EC2 pricing). We have employed 

ml.c5.4xlarge notebook instance having a volume size of 4TB, 

16 virtual central processing units, and 32 GB memory. The 

per-hour running cost of this instance is $0.816. 
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Table 1. List of major Python packages 

 

2.2 Satellite  Data/Product 

The Sentinel-2 (A and B) missions were launched by the 

European Space Agency under the Copernicus program. This 

mission provides multi-spectral data with 13 bands in the 

visible, near-infrared, and short wave infrared part of the 

spectrum, with 10 to 60 m spatial resolution. Sentinel-2 covers 

global landmasses once every 12 days (one satellite).  The 

Copernicus Open Access Hub (ESA, 2022) provides complete, 

free and open access to Sentinel-2 products. On AWS, 

Sentinel-2 (Level 1C and Level 2A) scenes and metadata are 

available through the Requester Pays S3 bucket. Here, recently 

acquired Sentinel data are added frequently, within a few hours 

after they are available on Copernicus OpenHub. The major 

advantage of using the AWS S3 service is the possibility to 

download just selected bands of interest, for example, Band 4 

and Band 8 for NDVI estimation, instead of the entire 

Sentinel-2 product. This facility greatly reduces the amount of 

data to be downloaded for a particular application. So, t his 

allows us to download only selected bands (i.e., about a few 

MB) rather than downloading full data of about  600-800 MB. 

Apart from Sentinel-2 data, Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Van Leeuwen et al., 1999) 

Vegetation Index Products produced at 16-day intervals have 

been used for image fusion. The Global Food Security-support 

Analysis Data (GFSAD) (Gumma et al., 2017) has been 

employed to extract agricultural regions from the respective 

tiles belongs the particular geometry.  

2.3 Scripting environment and list of packages used 

The pipeline was developed in the Python scripting language 

version 3.6. The AWS Software Development Kit (SDK) for 

Python (Boto3) enables developers to use Python code to 

interact with AWS services. The list  of packages used in the 

development of python-based ADDPro pipelines is mentioned 

in Table 1. 

 

3. STUDY SITE 

 

The pipeline has been employed and tested explicitly over the 

agricultural region of the pan-India geography. Figure 1 

represents the Indian geography with states and their 

corresponding talukas.   

 
Figure 1. Map of India with talukas. 

 

4. DEVELO PMENT O F AUTO MATED DATA 

DO WNLO ADING AND PRO C ESSING PIPELINE  

The top-level architecture of the ADDPro pipeline is shown in 

Figure 2. The overall AWS framework has three main 

components 1. Amazon Elastic Compute Cloud (EC2) 

instance, 2. Amazon Elastic Block Store (EBS), and 3. 

Amazon requester pay Simple Storage Service (S3) bucket . 

Amazon EC2 is a virtual server for running applications on the 

AWS infrastructure. EBS is a block-level storage volume 

attached to the EC2 instances. The collection of Sentinel-2 

and other satellite imagery is located on the Amazon S3 

bucket.  

 
Figure 2. Top-level architecture of ADDPro pipeline 

 

4.1 ADDPro pipeline for the regional-scale  use  case  

The detailed flow chart of the ADDPro pipeline for generating 

CVH and RVH outputs at the pan-India scale is shown in Figure 

3. It  is important to highlight that we have estimated the pan-

India scale NDVI index only, other indices (such as NDWI, 

SAVI, and others) can be calculated as per the requirement. 

The following steps are involved in the ADDPro pipeline- 

Package 

Name 

Version Purpose  

glob 0.6 Use to capture patterns and 

supports recursive wildcards 

numpy 1.17.4 Package used for array computing 

with Python 

rasterio 1.1.0 Used for reading and writing 

geospatial raster data. 

geopandas 0.6.1 Used for geospatial data operations 

zipfile36 0.1.3 Used for reading and writing zip 

files. 

pathlib 1.0.1 It  offers a set of classes to handle 

file system paths. 

shutil 3.5.2 offers several high-level operations 

on files and collections of files 

json 3.1.1 Used for reading .json file 

logging 0.4.9.6 Used for standard error logging 

pyshp 2.1.3 Used for reading and writing ESRI 

shapefiles 

sentinelsat  0.13 Used to search, download and 

retrieve the metadata for Sentinel 

products. 

datetime 2.8.0 Used to work with the date as well 

as time 

rasterstats 0.16.0 Module is used for summarizing 

raster product based on vector 

geometries. Also, it  is used 

for zonal statistics and 

interpolated point queries. 

Pyproj 3.3.0 Used for cartographic projections 
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1. To begin the procedure, the pipeline application must be 

supplied with the needed parameters listed in Table 2. The 

first five parameters in Table 2 are required for searching 

available Sentinel-2 data products from the Copernicus 

Open Access Hub for a specific geometry (nth
 geometry 

resides in a given shapefile). Depending upon the shape and 

size of the geometry, the date range, and other search 

parameters, two scenarios may arise- (a) multiple Sentinel-

2 products can be available for the particular geometry or 

(b) a single product  can accommodate multiple geometries 

residing in a given shapefile. For the illustration purpose, 

the arrangement of geometry and its corresponding tiles is 

shown in Figure 4.  

2. Once the list  of products (1 to m) for nth 
geometry is 

available, a distinct string was constructed for each product  

(e.g. m
th 

product), which was used to send a download 

request to the Amazon S3 bucket for the selected band. 

The bands have been downloaded according to the index 

that needs to be calculated. For example- Band 4 and Band 

8 have been downloaded for NDVI calculation. Similarly, 

respective bands can be downloaded for other indices such 

as NDWI, SAVI, etc, if they need to be calculated. For all 

the indices, a cloud probability band has also been 

downloaded along with the respective bands for masking 

cloudy regions. In case, if no data product  is available in 

the list , the application moves to the next geometry 

available in the shapefile and repeat step 1 and 2. 

3. Then, based on the request, bands of m
th

 data have been 

downloaded from the Amazon S3 bucket  to Amazon EBS 

attached with the instance, if not already available. It  is 

also possible that the index from the product(s) belonging 

to a particular geometry has previously been generated. In 

that case, if the corresponding product  is already processed 

and available in Amazon EBS, then the application directly 

subset the geometry region from that generated NDVI tile 

(Step 8). If the product is not processed, the process will 

move to Step 4. 

Figure 3. Detailed process flow diagram of ADDPro pipeline
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Table 2: List of parameters required for process initiation  

 
Figure 4. Geometry and its corresponding Sentinel-2 tiles 

 

4. Next, the required bands have been loaded by the 

application for the generation of index (i.e. NDVI) raster. 

The NDVI raster has been named as *_NDVI.tif, where * 

represents [MissionIdentifer_TileId_YYYYMMDD] (for 

example- S2A_T46RBQ_20211222_NDVI.tif). Similar 

nomenclature has been followed at the successive stages of 

the pipeline for a particular index. Importantly, generated 

raster outputs (*_NDVI.tif) have been scaled to a range of 

0 to 100 (from 0 to 1), resulting in small size output files 

(data format: int8) that are easy to publish and visualize on 

the GeoServer. Such lossless raster data compression also 

reduces AWS data transfer costs between regions. 

5. A cloud probability band resampled to 10 m was then 

applied to the NDVI tile (*_NDVI.tif) to produce an NDVI 

raster tile without cloudy pixels (*_NDVI_CLDMSK.tif). 

Cloudy regions have been replaced with the NoData value 

in this case. 

6. Further, the cloudy region (or pixels) in 

*_NDVI_CLDMSK.tif raster have been replaced by 

Sentinel-2 composite NDVI tile pixels, resulting in a 

composite raster output (i.e. 

*_NDVI_CLDMSK_COMP.tif) with very few cloudy 

pixels as compared to the prior raster (i.e. 

*_NDVI_CLDMSK.tif).  

7. Next, the remaining cloudy pixels have been replaced with 

the 10 m resampled composite MODIS NDVI product 

(LPDAAC 2022). The generated product has been named 

as *_NDVI_CLDMSK_COMP_MODIS.tif. Later on, the 

only agricultural area has been extracted from the tile 

(*_NDVI_CLDMSK_COMP_MODIS.tif) using the GFSAD 

mask. So the final tile is the GFSAD masked raster i.e.  

*_NDVI_CLDMSK_COMP_MODIS_GFSAD.tif.   

8. After the particular tile has been completely processed, the 

geometric region (full or partial) has been extracted from 

that tile and saved in the respective directory 

(./PATH/[Geometry_ID]/*_NDVI_CLDMSK_COMP_MO

DIS_GFSAD_SUBSET.tif).  

9. It  has been already discussed that particular geometry can 

be covered in multiple tiles (as depicted in Figure 4), 

therefore, the process will repeat Steps 2 to 8 for the next 

Sentinel-2 data (i.e. t ile) belonging to that specific 

geometry. Here, all the tiles have been processed and saved 

inside the centralized repository, whereas, a subsetted part 

of geometry from the corresponding tiles has been saved in 

the separate directory that belongs to that particular 

geometry.  

Parameter / {Description} Sample Input 

S2_PROCESSING_LEVEL /  

{Level-1C- Top of the 

atmosphere, Level-2A- Bottom 

of the atmosphere} 

[Level-2A/1C]  

S2_FROM_DATE (Format: 

MMDD) / {Provide process start 

date} 

‘1201’ 

S2_TO_DATE (Format: 

MMDD) / {Provide process end 

date} 

‘1210’ 

S2_CLOUD_MAX_PER /  

{Provide maximum percentage 

of cloud cover allowed in 

Sentinel-2 data} 

100 

SHP_PATH / {Provide path of a 

shapefile consist of different 

geometries} 

[‘./PAN_India/India.shp’] 

S2_LIST_INDEX / {Provide list  

of indexes need to generate} 

[‘NDVI’] 

SESSION_ID /  

{Provide ID for particular crop 

season} 

‘RABI_2021’ 

S2_YEAR_TO_PROCESS_LIST 

(Format: YYYY) /  

{Provide list  of years to process} 

[‘2021’, ‘2020’, ‘2019’, 

‘2018’] 

S2_REQUIRED_PROC /  

{1= Download and process data 

0= Only download the data} 

1 

RVH_YEARS_LIST  

(Format: YYYY) / {Provide list  

of years for RVH calculation} 

[‘2021’, ‘2020’, ‘2019’, 

‘2018’] 

S2_ROOT_PROCESS_DIRECT

ORY / {Provide path of root 

directory} 

‘./Sentinel-2’ 

MODIS_TILE_LIST /  

{Provide list  of tiles covering 

particular geography. Here, 

mentioned list  is for Indian 

geography} 

[‘h23v05’, ‘h24v05’, 

‘h24v06’, ‘h25v06’, 

‘h26v06’, ‘h24v07’, 

‘h25v07’, ‘h26v07’, 

‘h25v08’] 

MODIS_PROD_ID /  

{Provide ID of  MODIS product} 

[‘MOD13Q1.061’] 

S3_PREPROD_DIRECTORY / 

{Provide directory name of 

AWS S3 bucket for production 

purpose} 

‘pilot.sky.preprod’ 

S3_BACKUP_DIRECTORY / 

{Provide directory name of 

AWS S3 bucket for data backup 

purpose} 

‘pilot.sky.backup’ 

CLOSE_INSTANCE_AFTER_P

ROC / {0 means do not close the 

instance and 1 means close the 

instance after processing}   

[1] 

CREATE_MOSAICED_PRODU

CT / {0 means perform 

mosaicing operation and 1 

means do not perform mosaicing 

operation}  

[1] 
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10. Once all geometries have been processed (that is, regions 

within the geometry have been retrieved from various 

tiles), the mosaicing operation has begun, in which 

subsetted tiles of each geometry have been mosaiced to 

generate a complete raster for that geometry. 

11. After that, zonal statistics for all geometries (i.e. taluka) 

were generated and exported in a comma-separated values 

(.csv) file. 

12. All rasters along with the zonal statistics have been 

migrated from Amazon EBS to the project-specific S3 

bucket and then rasters have been published to the 

GeoServer. The output  rasters and zonal statistics have 

been used for monitoring the vegetation growth/health, 

business, and policy decisions.   

At the pan-India scale, each iteration of the ADDPro pipeline 

has been executed for ten days (e.g. 01-10 January 2022; 11-

20 January 2022; 21-31 January 2022) so that the entire 

Indian geography can be covered. However, depending on the 

size of the target geography, the execution period (i.e. start  

and end date) may vary, for example- small geographies such 

as Goa and Kerala (states of India) can be covered in five days. 

Each iteration run generates a distinct log file that records 

information on each step (steps 1 to 12) of the processing 

pipeline. Logging aids in application troubleshooting and gives 

us insights into how our apps are doing on each of the many 

processing components.  

  

5. RESULTS 

Figure 5 represents the various intermediate rasters generated 

by the ADDPro pipeline for each tile that belongs to a specific 

geometry. Here, the initial t ile-level output represents raw 

NDVI (i.e. with clouds), whereas the final tile-level output 

denotes an 8-bit compressed cloud-free NDVI raster with a 

GFSAD mask. Similarly, cloud-free NDVI rasters have also 

been generated for various tiles belonging to the same or 

different geometries. 

 
Figure 5. Illustration of raster tiles generated in multiple steps 

of ADDPro pipeline. NDVI with GFSAD mask is the final tile-

level output  

 

One of the generated cloud-free NDVI tiles encompassing 

several geometries of the given input shapefile is shown in 

Figure 6. Other tiles can also cover numerous geometries of 

the input shapefile depending on the shape and size of the 

geometry. Figure 7 represents the mosaiced raster of a 

particular geometry (i.e. taluka) generated by combining 

subsetted rasters extracted from the multiple processed tiles 

belonging to that particular geometry. Likewise, raster output 

has been generated for other geometries.  

 

At the pan-India scale, the ADDPro pipeline has been 

executed three times in a month, every ten days (e.g. from 01-

10 December, 11-20, and 21-30 December 2021). Figure 8 

represents the pan-India scale spatial distribution of cloud-free 

CVH produced by publishing all taluka-level rasters together on 

GeoServer. Similarly, Figure 9 represents RVH for the same 

iterations.  

 
Figure 6. Processed cloud-free NDVI tile covering some of 

the geometries (i.e. taluka) of given input shapefile for 21-31 

December 2021 iteration 

Figure 7. Mosaiced raster for a specific geometry (i.e. taluka) 

of given input shapefile for 21-31 December 2021 

 

A useful collection of graphs/data visualization can be 

constructed based on the spatial distribution of CVH and RVH, 

which can aid in essential decision-making. For example- For 

five distinct talukas, Figure 10 quickly provides knowledge on 

how much acreage falls inside each of the NDVI ranges 

between two given dates (e.g. 11-20 December 2021).  Similar 

information can also be obtained for other talukas and/or 

districts as per the requirement . At the pan-India scale, the 

overall processing takes around seventeen hours for a single 

iteration (e.g. 11-20 December 2021) to complete major 

operations of the complete data processing pipeline such as 

data downloading, index generation, and subsetting as per 

geometry, mosaicing, zonal statistics calculation, and 

uploading data to a predefined location on AWS S3 bucket. 
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6. DISCUSSIO NS 

At present, the ADDPro pipeline is commercially operational 

on the AWS platform for monitoring CVH and RVH during the 

Kharif as well as Rabi seasons across India. The problem of 

cloud cover especially during Kharif season is also managed by 

incorporating image compositing and multi-sensor data fusion 

technique in the ADDPro pipeline. For some of the most 

essential use-cases in the agriculture area, this in-house product 

eliminates the dependency on third-party applications such as 

GEE or Sentinel hub. The ADDPro pipeline can efficiently 

handle TBs of satellite data and provides a systematic way of 

managing enormous geospatial raster outputs. Thanks to the 

AWS cloud platform, which provides all of the resources 

required to develop and deploy the ADDPro pipeline. Handling 

big geospatial data is a critical element of the ADDPro 

pipeline in the current context when geospatial data is rising 

by the day (in TBs). Geometry-level rasters derived through 

the ADDPro pipeline can be used in a variety of applications 

and machine learning models that require the volume of time-

series data. Segregation of large geographical data is 

accomplished efficiently in the overall ADDPro pipeline 

architecture so that users can extract data at  any stage and use 

it  meaningfully. Importantly, in this study, we have 

demonstrated how the ADDPro pipeline can perform 

operations over the larger Indian geography (about 3.2 million 

km
2
). A country with a smaller geographical area than India 

can be undoubtedly monitored for temporal vegetation health. 

Even for a very large geographical area, t ime of processing and 

storage will be the only constraint.   

 

7. CO NCLUSIO N 

For monitoring current and relative vegetation health on a 

temporal basis across pan-India, the ADDPro pipeline has been 

successfully implemented with the AWS cloud computing 

environment. The raster outputs have been made available for 

display and interpretation via the GeoServer. Furthermore, the 

zonal statistics created using output rasters are extremely 

useful for monitoring changes in vegetation distribution, 

productivity, and dynamics at the taluka-level. The cost of 

maintaining local infrastructure is eliminated by migrating the 

entire ADDPro pipeline to AWS, which is one of the major 

characteristics of cloud infrastructure. This pipeline is easy-to-

scale-up and easy-to-deploy for any geographies across the 

globe, however, it  requires standardization of input data. Using 

the ADDPro pipeline, TBs of satellite data for any given 

geography can now be downloaded and processed efficiently 

and effectively. Furthermore, once the pipeline is started, it  

does not require any manual user intervention. The pipeline 

can run 24 hours a day, seven days a week, during the day and 

at night, making temporal data processing for bigger 

geographies possible in a reasonable length of time. 
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Figure 8. Pan-India scale spatial distribution of current vegetation health (CVH) produced by publishing taluka-level rasters on 

GeoServer a. 01-10, b. 11-20, c. 21-31 December 2021 

 
Figure 9. Pan-India scale spatial distribution of relative vegetation health (RVH) produced by publishing taluka-level rasters on 

GeoServer a. 01-10, b. 11-20, c. 21-31 December 2021 
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Figure 10. Illustration of taluka-wise percentage area falls under the different NDVI ranges. Graphs are generated from the zonal 

statistics (.csv) file obtained for the 11-20 December 2021 iteration 
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