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ABSTRACT:

Iconographic image collections are a cultural heritage that could reach a larger audience by proposing their immersive presentation
in a 3D web application. Proposing a historical street view application, based on these historical images, raises issues such as the
unavailability of historical 3D models of the scene and the heterogeneity and sparsity of these photographs. We propose to use the
3D city and terrain models of the current scene, as well as a 3D point cloud if available, to simultaneously reproject and blend many
historical images using an image-based rendering approach. Our contributions raise significantly the number of projective textures
blended per rendering pass (typically from 8 to 40) on triangular meshes (of the 3D city and terrain models) and on point clouds.
As a first step to tackle diachrony artifacts, we also propose a simple point cloud classification to filter in the shader the points
corresponding to building or terrain details from the points corresponding to transient objects.

Figure 1. Sample photographs/postcards from the image
collection ”Fonds Charles Gros”. ©Nicéphore Niépce Museum.

1. INTRODUCTION

1.1 Context

Galleries, Libraries, Archives, and Museums (GLAM) are col-
lecting massive image collections (Figure 1), which are reflec-
tions of the past that could benefit from an immersive present-
ation in a 3D virtual world. This study focuses on the case
of image collections that have already been georeferenced (i.e.
all camera parameters are known: position, orientation, focal
length...), but for which the photogrammetric derivation of a 3D
model of the scene is not tractable, because of image quality,
moving objects or image sparsity preventing multi-view recon-
struction. In other words, we would like to propose a street
view navigation through historical images from GLAM pro-
viders despite the absence of historical geometric models, by
leveraging the current geometry of 3D city models and point
clouds (Figure 2). This 3D immersive experience could help
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valorize the iconographic cultural heritage like photographic
collections to better understand and analyze the past, with ap-
plications in humanities and tourism for instance.

To maximize outreach and replicability, the proposed approach
should leverage web technologies, which means rendering us-
ing a WebGL framework to enable visualization in any recent
web browser and access to geospatial datasets using standard
OGC web services. If required, any joint analysis of the dif-
ferent datasets should occur on the client at rendering time,
rather than at preprocessing time, so that the image and geo-
spatial dataset providers may expose images, 3D city models
(terrain and buildings), and point cloud datasets through exist-
ing standard web services such as IIIF, WMTS, WFS, and 3D
tiles, with no application-dependent preprocessing and no coup-
ling between the different datasets.

1.2 Related Work

The georeferencing of such iconographic cultural heritage col-
lections is still an active topic of research, which may be ad-
dressed by an interactive process, using user selection of point
correspondences between the historic image and the current city
model, point cloud or images (Blettery et al., 2021).

Presentation of historic image collections has been addressed
in a 3D web context by providing interactive web geovisual-
ization applications (Bruschke et al., 2017, Paiz-Reyes et al.,
2021) that help the user understand the coverage of the dataset
and discover photographs of interest through interactive naviga-
tion. These are however only reprojecting a few image textures
at a time.

Due to the heterogeneity of the photographs in terms of color,
details, and time, the precomputation of a texture by merging all
photographs into a single texture (Waechter et al., 2014) used to
give a historical appearance to the current city model is likely
to give poor results. This context thus calls for an image-based
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rendering approach that can provide view-dependent texturing
by virtually replacing the cameras with projectors that project
their images back to the scene, with blending weights depend-
ing on the view camera parameters (Brédif, 2013).

Using densely sampled image collections and heavy joint pre-
computations on all images and the scene geometry, very high
quality and real-time immersive navigation is achievable (Hed-
man et al., 2016). However, even if such datasets were avail-
able, it would require some duplication of the scene geo-
metry for each texturing image and it would introduce coupling
between the scene geometry and the image datasets.

In contrast, we propose to render the geometry of the current
3D model without any pre-processing, by reprojecting all avail-
able images of the collection on the first surface of the current
3D model, using a multi-texturing shadow-mapping approach
(Brédif, 2013). This approach presents however bottlenecks
that limit the number of simultaneously projected image tex-
tures.

This paper identifies and proposes workarounds for the 3 main
bottlenecks of this approach that limit the maximum number of
projected image textures per rendering pass : i) the occupancy
of texture slots, ii) the occupancy of varyings when render-
ing point clouds and iii) the depth map updates for visibility
estimation from texturing cameras. We also propose a simple
estimation of the relevance of point clouds for texturing based
on their distance from the 3D city model, as a first attempt to
address diachrony artifacts.

2. METHODOLOGY

2.1 Texture 2D arrays

The trivial implementation in WebGL of projective multi-
texturing with shadow mapping uses two texture slots per pro-
jective texture: one slot for the color texture and one for the
floating-point depth texture. However, there is a hardware
limit on the maximum number of usable texture slots in ver-
tex and fragment shaders. We propose here to lift this linear
requirement in the number of texture slots by using only two
texture2DArrays. A texture2DArray is a texture type that
groups in a single texture slot many textures as 2D slices of a
3D texture. As in all shadow mapping approaches, whenever
the geometry of the scene changes, the depth map of the scene
maintained for each texture must be updated by rendering the
scene from the perspective of the texturing camera and saving
the depth to a depth map (the color is discarded). A nice fea-
ture is that texture2DArray slices may be defined as render
targets so that the implementation of the render to texture of
the depth map for texturing cameras only requires to target a
texture2DArray slice rather than a texture2D target.

The main induced constraint is that all slices must have the
same width and height. This is the case when images have been
scanned with homogeneous settings from similar physical pho-
tographs. Thus, a texture array with maximal width and height
may be allocated to store all images in its slices, either using
limited upscaling or padding. Note that, if padding is used, the
projection matrix should be updated to account for the padded
image. Furthermore, if texturing images have heterogeneous
dimensions, then texture virtualization could be used to split
images in chunks of equal sizes (Mittring and Crytek, 2008).
An alternative solution would have been to pack the textures in

a texture atlas by juxtaposing them in a very large 2D texture.
Indeed these approaches may be combined by using an array of
texture atlases or using a texture2DArray for storing the vir-
tual texture tiles on the GPU. This virtual texturing approach is
left for future work.

In practice, the proposed approach takes advantage of the pos-
sibility to have depth texture dimensions that do not match the
dimensions (or even aspect ratios!) of the projected image, so
that all depth maps have the same resolution and, thus, can be
all stacked together in a single depth texture2DArray. The
shared resolution of the depth map slices is a trade-off para-
meter between i) GPU memory usage and depth rendering time
and ii) accuracy of the visibility estimate to project the image
only on the first surface as seen by the texturing camera.

The use of only two texture2DArrays, one for images
and one for all depth maps limits the use of texture slots
to a constant number, instead of 2 per projective tex-
tures. This removes an upper bound on projective textures :
⌊MAX TEXTURE IMAGE UNITS/2⌋ (typically: ⌊16/2⌋ = 8 sim-
ultaneous textures).

2.2 Progressive Depth Map Updates

Even when the scene is static, the massive data volumes of the
scene geometry (terrain, buildings, point clouds) call for level
of detail approaches that only stream to the client the part of
the dataset that is currently visible. Therefore, the rendered 3D
scene is continuously updated as different levels of detail are
selected or deselected for rendering. Thus, the depth map ap-
proach, used for projecting images only on the first scene sur-
face as seen from the texturing camera, requires the depth map
of the scene from a texturing camera to be updated whenever
any visible part of the scene is loaded or unloaded. This work-
load is linear in the number of projective textures, thus, when
this becomes the limiting factor, these depth map updates dir-
ectly limit the rendering frame rate.

Following a progressive approach similar to (Schütz et al.,
2020), we propose to limit the number Dmax of depth map up-
dates to a fixed budget per frame, while prioritizing the depth
map updates of textures that have the most impact on the cur-
rent view. The determination of the update priority is for now
simplistically the distance between the camera centers. This up-
date is progressive in the sense that if a scene with T projective
textures is not changing, then all depth maps will be updated
after T

Dmax
frames. This number Dmax may be dynamically

tuned to raise the frame rate (at the cost of a convergence after
more frames) or instead lower the frame rate (to accelerate the
convergence, measured in frames).

2.3 Point cloud rendering

Trivial projective texturing of point clouds uses the same tex-
ture coordinates for all pixels corresponding to a 3D point.
Whenever the screen size of a point is larger than 1 pixel, this
produces a constant color region. This aliasing may be removed
by considering the local tangent plane of the point when com-
puting the texture coordinates.

Let us consider the view camera, and the texture camera i,
of respective projection equations p = M(P − C) and pi =
Mi(P − Ci), where p is the pixel coordinate in screen space,
pi is the corresponding point in texture space, P is the 3D point
of the scene to be textured, C is the viewer position, Ci are
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Figure 2. Current 3D city and terrain model and mobile mapping point cloud textured on the fly in real-time using historical images.

Figure 3. (a) The photograph is texturing the fully built tower, although the building was still in construction when the photograph was
taken. (b) On the left, the bright area corresponds to sky pixels texturing a building that was not built yet when the photograph was

taken.

the texture camera center points and M , Mi are 3x3 projective
matrices. If the surface normal is known at P , then (P,N) de-
notes its tangent plane, which induces a homography transform
Hi from the screen p to each texture coordinates pi (Hartley and
Zisserman, 2004):

Hi = Mi

(
I +

(C − Ci)N
T

NT (P − C)

)
M−1 (1)

=

(
Mi +

EiN
T

NT (P − C)

)
M−1 (2)

where Ei = Mi(C − Ci) are known as the epipoles in the tex-
ture cameras, considering each stereo pair (view camera, texture
camera i). If the point normal is unknown, then the front-facing
guess (P − C) is used to estimate a best-effort homography in
the neighborhood of p.

Considering a 3D point cloud with normals, each point defines
a tangent plane on which reprojection homographies Hi may
be computed. (Devaux and Brédif, 2016) proposed to factor
the computation of Hi in the vertex shader and pass it to the
fragment shader as a varying mat3. This enables very efficient
computation of the texture coordinates as pi = Hip in the frag-
ment shader for each fragment and each texture. This however
uses 3x3=9 varying components per texture, which effectively
limits the number of texture reprojections per rendering pass,
as there is a system-dependent maximum number of varying

(Devaux and Brédif, 2016) (Proposed)
JS M−1,C,Ei,Mi M−1,C,Ei,H

′
i=MiM

−1

VS Hi=

(
Mi+

EiN
T

NT (P−C)

)
M−1 N′= M−T N

NT (P−C)

FS pi=Hip pi=H′
ip+(N′·p)Ei

varying Hi: 9 floats per texture N ′: 3 floats in total

Table 1. Computation of the reprojection pi in texture i of the
screen-space point p provided by FragCoord. The first line (JS)
contains the uniforms computed on the CPU in javascript, (VS)

shows the varyings evaluated in the vertex shader, and (FS)
provides the evaluation of the texture coordinate pi in the

fragment shader. P and N are the position and normal point
attributes, N defaulting to (P − C) if unavailable.

components. Assuming no other varyings, the limit on the
number of textures is then : ⌊MAX VARYING COMPONENTS/9⌋, a
typical value being ⌊124/9⌋ = 12.

Instead of exhausting the available varying components by
computing all Hi homographies in the vertex shader, we pro-
pose to compute a single vec3 N ′ = M−TN

NT (P−C)
in the vertex

shader, at the cost of a slight increase in computation in the
fragment shader (Table 1). This effectively lifts the bottleneck
on the number of varying components.
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Figure 4. Point Filtering: (top left) On the front, the point cloud contains tree samples which are textured by the historical photograph,
while it causes on the back shadows (untextured regions) on the buildings. (top right) Points away from the terrain and buildings

remain black (they could also be discarded), while points next to buildings are textured, increasing their geometric details. (bottom)
Other views showing that the online point cloud classification prevents shadowing artifacts on the buildings and texturing of the trees

with building pixels.

2.4 Texture Visibility Estimate

The proposed approach does not require any joint preprocessing
of the various datasets (3D city models, terrain, point clouds,
images...). This prevents the computation costs of prepro-
cessing and ensures flexibility. However, there might be incon-
sistencies due to diachrony and semantics across datasets. For
instance, a building may be non-existent, or even in construc-
tion, on a photograph while its current geometry is present in
the 3D city model (Figure 3). Also, a mobile mapping point
cloud samples points on the ground and on buildings, but also
on transient objects like vehicles, pedestrians, and trees.

If a semantic classification of the point cloud is available, we
propose to only consider non-transient classes for texturing and
depth map estimation. This will prevent respectively texturing
a transient object with photographs (which are very unlikely
to contain the color of a coherent transient object at the same
location), and casting a shadow on further non-transient objects.

If points have no explicit classification providing readily a seg-
mentation between transient and non-transient points, then we
propose to only keep 3D points that have a depth within a given
distance ϵ of the 3D city buildings and terrain models, consid-
ering that, in this case, these points correspond to geometric
details on the 3D model. This can be easily implemented in the
shadow testing for visibility estimation in texture space. First,
the depth maps in texture space are calculated only considering
the 3D model (buildings, terrain...) but not the 3D point cloud.
Second, instead of keeping all the 3D points whose depth in
texture camera space is lower than the texture depth map (cor-
responding to the 3D city model), we only keep points whose
depth is within a distance ϵ of the texture depth map (Figure 4).

3. RESULTS

The proposed approach has been implemented using iTowns,
a Three.js-based framework written in Javascript/WebGL for
visualizing 3D geospatial data. The geospatial datasets are ac-
cessed using standard web services. The application connects
to a WMTS server to retrieve elevation and orthophotographic
tiles for the terrain. The LOD 1 buildings are accessed by WFS
tiles of 2DZ polygons (and extruded in 3D in the web client)
and the point clouds are served a 3DTiles dataset. For now, the
image files are served over HTTP as the resolution is moderate,
but any image server could be implemented (IIIF, IIP...). Image
parameters are available as a WFS service where the feature is
the 3D point location of the image center and the other extrinsic
and intrinsic parameters are available as feature properties.

Figure 5 shows some example views where the viewer is placed
at the location where a photograph was taken. This enables a
view that focuses on a given photograph but that benefits from
the context of the current, possibly textured, datasets (city, ter-
rain, and point cloud). This mode of visualization enables one
to look at an image while keeping the 3D immersion provided
by the embedding 3D scene. Figure 6 presents screenshots of
the application as the user navigates in the scene. The frame
rate was capped at 60 frames per second on a laptop with a Ge-
Force GTX 980 GPU, using 5 depth map updates per frame and
40 projective textures. Thus the rendering is converging after
40/5=8 frames or 8/60=0.13s after the last scene visibility up-
date.

A strength of this image-based rendering approach is that it can
cope well with imprecise geometries of the scene or inaccurate
georeferencing of the photographs. These imprecisions only
introduce slight misalignment artifacts at the silhouettes of ob-
jects (figure 2). These misalignments are even not visible any-
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more when the camera is placed at the position of the texture
(figure 5), as the texture reprojection homography is no longer
dependent on the scene for colocated view and texturing cam-
eras.

Figure 5. Focus and context configuration: In these 4 cases, the
camera of the synthesized view is set to a zoomed-out version of

one of the cameras that acquired a photograph of the dataset.
Thus, this photograph is shown at the center of the view, with

some context around it and in front of it (where the point cloud
and the terrain are occluding the photograph).

4. CONCLUSION

The proposed approach significantly raises the maximum num-
ber of projective textures that may be applied at interactive
frame rates in a single rendering pass, by addressing the 3 most
limiting factors: the occupancy of texture slots, the occupancy
of varyings for point cloud rendering, and the required depth
map updates for visibility estimation from texturing cameras.
Precisely, this raises from 8 to 40 the number of simultaneous
projective textures that may be blended in a single rendering
pass.

Figure 6. Snapshots of an animation: the user is moving and
turning to its right, showcasing how the reprojected photographs
are blended together to give some feeling of immersion in a 3D

virtual world.
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To go further on the same approach, the next limiting factors
are (i) the occupancy of uniforms, which may be addressed by
packing them into textures, at the cost of more texture sampling
operations, and (ii) the absence of culling on the GPU. Better
culling could be implemented on the CPU by testing the bound-
ing boxes of scene geometries against the frustums of texturing
cameras, similar to (Hedman et al., 2016) by leveraging the ex-
isting bounding volume hierarchies of geospatial data access
services (e.g. quad-trees or octrees). This culling at the object
level on the CPU could then be refined at the fragment level
on the GPU using an acceleration structure that would prevent
from iterating over all the textures selected by the CPU, but
only to those who have the 3D position of the current fragment
in their frustum.

The handling of diachrony between datasets definitely deserves
further research. An interesting approach is the modeling of
spatio-temporal city models (Schindler and Dellaert, 2012),
which models not only a temporal snapshot of the city but
which compactly encodes and is able to deliver the geometry
of the city at any date. Using such a 4D city model in our con-
text is a subject for future work. Likewise, if all pixels of im-
ages and all points of point clouds were classified as transient
or non-transient as a preprocess, the rendering artifacts could be
reduced by leveraging this classification. Even further, if each
and every pixel and point had a time interval of validity, sim-
ilar to the lifespan of objects in a spatio-temporal city model,
the rendering could make more informed decisions before tex-
turing a city object or a point cloud with a pixel by comparing
their valid time intervals.
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