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ABSTRACT:

The application of mixed reality visualisation in construction engineering requires accurate placement and retrieval of virtual models
within the real world, which depends on the localisation accuracy. However, it is hard to understand what this means practically
from localisation accuracy alone. For example, when we superimpose a Building Information Model (BIM) over the real building,
it is unclear how well does a BIM element fit the real one and how small a BIM element are we able to retrieve. In this paper, we
evaluate virtual element retrieval by designing an experiment where we attempt to retrieve a set of cubes of different sizes placed
in both the real and the virtual world. Furthermore, inspired by existing camera localisation methods for indoor MR being almost
exclusively image-based, we use a localisation approach based solely on 3D-3D model registration. The approach is based on the
automated registration of a low-density mesh model of the surroundings created by the MR device to the existing point cloud of an
indoor environment. We develop a prototype and perform experiments on real-world data which show high localisation accuracy,
with average translation and rotation errors of 1.4 cm and 0.24°, respectively. Finally, we show that the success rate of virtual

element retrieval is closely related to the localisation accuracy.

1. INTRODUCTION

One of the important applications of Building Information
Models (BIMs) is building life cycle management where a BIM
is used as a live digital database where all building informa-
tion can be stored. However, the interaction between the BIM
and the real world is not straightforward. The conventional ap-
proach is to inspect the building in the real world and record the
information in the BIM in a separate process which requires in-
ferring the correspondence between the virtual elements and the
real world. Mixed reality (MR) provides a means to do this in
one step and with inherent correspondence. In MR, virtual ob-
jects are not just overlaid on top of the real world but anchored
within it. This enables interaction between them, such as a vir-
tual object being occluded by a real-word object (Muthalif et
al., 2022), and allows us to interact with both the virtual BIM
and the real world simultaneously. However, the virtual content
must be placed precisely within the real world for their blending
to be smooth. (Coltekin et al., 2020) The pre-requisite for this is
accurate global localisation, however, the relationship between
the localisation accuracy and the success of virtual element (e.g.
BIM element) retrieval in MR is not well understood.

Camera localisation is one of the most researched topics in the
field of MR (Kim et al., 2018). Global camera localisation,
which is required for large-scale applications, is dominated by
vision-based methods (Marchand et al., 2016). However, be-
cause they rely on image features, vision-based methods are
susceptible to changes in light conditions, reflections, dynamic
objects and other scene changes (Melekhov et al., 2017; Par-
isotto et al., 2018). Furthermore, they require the building of
specific feature libraries which affects their performance as the
area covered increases in size. These drawbacks make vision-
based methods unsuitable for accurate large-scale indoor local-
isation. For example, Li et al. (2020a) report an average posi-
tional error for image-based pose regression localisation with
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PoseNet of 0.66 m for a roughly 10 m? office space, and a
0.35 m error for an ORB feature-based localisation. Moreover,
industry solutions such as Microsoft’s Azure Spatial Anchor!
feature-based localisation works only in a small local area, such
as a wall or a table. For large-scale applications, the documenta-
tion suggests creating individual anchors (and individual exper-
iences) for each specific local area where a virtual object is de-
sired and establishing their spatial relationship with the device’s
tracking system. Placing multiple anchors for different lighting
conditions is also suggested.

These conditions clearly inhibit the development of large-scale
MR applications. On the other hand, there have been significant
improvements in the field of automated coarse 3D-3D model
registration brought by learning-based solutions in the past few
years. Although these methods have been successfully applied
for the localisation of autonomous LiDAR-equipped (Light De-
tection and Ranging) vehicles, they have not been studied for
MR localisation.

Furthermore, certain MR applications require accurate place-
ment and retrieval of virtual models within the real world. In the
above example of a real-world BIM model, an accurate anchor-
ing of BIM elements is an obvious requirement. This becomes
even more important if the virtual information is invisible until
called for. For example, a BIM might be invisible in the case
where it covers real-world information, or an art piece might be
left unobscured by virtual data, and only after we interact with
the real-world object, i.e. by clicking on it, the expected virtual
information is retrieved and visualised. However, it is not well
understood how the retrieval success rate relates to localisation
accuracy.

Localisation accuracy is usually reported as an average dis-
tance between the estimated 3D camera position and the ground

1 Azure Spatial Anchors documentation: https://docs.microsoft.
com/en-us/azure/spatial-anchors/ (accessed 11 Jan. 2022).
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Figure 1. The registration of the real world frame (yellow)
represented by the polygonal mesh model captured by the MR
device (location 1 of the testing site) to the virtual world frame

(green) represented by the reference point cloud.

truth 3D camera position. However, this ignores the rotation er-
ror which is equally important in evaluating the accuracy with
which the virtual object is placed, i.e. anchored within the real
world. Furthermore, it is unclear what is the size of the object
one can reliably retrieve with the MR device from localisation
error only. For example, does a localisation error of 35 cm guar-
antee that a 35 cm virtual object can be retrieved with a 100%
success rate?

The main aim of this paper is to answer these questions by
empirically testing the relationship between the localisation ac-
curacy and the size of a virtual element one can retrieve. To
this end, we use an MR localisation method based purely on
learning-based 3D-3D model registration. The method per-
forms global localisation by registering the low-density untex-
tured 3D model of the surroundings, created by the MR device,
to the existing reference 3D model. The prototype of the pro-
posed localisation method, built with Unity and deployed on
the Microsoft HoloLens (1** gen), is used to assess and com-
pare the localisation and the retrieval success rate. The retrieval
is empirically evaluated by attempting to retrieve invisible vir-
tual element cubes of different sizes (60, 30, 15, 8,4, 3,2 and 1
cm) after localisation and compared to the localisation accuracy
achieved at the same testing site.

2. RELATED WORK

Previous research on virtual object retrieval in mixed reality
mainly focuses on camera localisation. Estimating the pose
of the camera within a reference coordinate system, i.e. cam-
era localisation, can be local or global. To be able to place
virtual objects in desired predefined places within a known
model of the environment, global or absolute localisation is
needed. Having a pre-existing 3D model of the environment
facilitates the development of large-scale indoor MR applica-
tions, such as museum exhibitions or real-world BIMs, as it
enables two important functions. First, it enables the place-
ment of virtual objects precisely where they are desired to be
in the real world, for example, a painting can be placed on
the wall, a BIM window can be aligned with the real window,
or a virtual guide can have its pathfinding rules set. Second,

a pre-existing 3D model enables global camera localisation
within it, which also anchors the virtual objects in their pre-
defined places. Global localisation approaches without ex-
ternal sensors, i.e. infrastructure-independent approaches, can
be image-based (also called vision- or camera-based) or based
on registration in 3D space.

Image-based methods are by far the most commonly used ones
(Marchand et al., 2016) and they can be split into feature-based,
model-based, image retrieval and image-based pose regression.
Feature-based approaches localise the query image by first es-
tablishing correspondences between the extracted 2D features
and their 3D coordinates in the reference 3D scene reconstruc-
tion, which has been previously generated from images. A wide
variety of local feature descriptors have been proposed, such as
ORB (Rublee et al., 2011). Matching keypoints are then used
to estimate the camera pose with perspective from points meth-
ods (PnP) (Quan and Lan, 1999). For example, Li et al. (2020a)
build a 3D feature database of the environment from image and
depth data where each 3D point is tied with its ORB descriptor.
Global localisation is achieved by extracting ORB features from
the query image and matching them with the database. They
achieve 35 cm localisation accuracy for an independent image
with varying light conditions. In general, the reliance on image-
based point features introduces limitations such as robustness
to reflections and other changes in lighting, large variations in
viewpoints, lack of texture, repetitive structures and dynamic
objects, or, in other words, the robustness to changes in the
scene.

Model-based approaches use lines or other types of shapes
present in a CAD or a BIM model and minimise the distance
between their projection and their matched detected contour
points. For example, Acharya et al. (2019b) achieve a 10-
centimetre accuracy of localisation by rendering the visible
edges from a BIM model, sampling their points and projecting
them to the image plane, where correspondences with structural
edges detected in a query image are found. Similarly, Petit et al.
(2012) find and use correspondences between image edges and
3D model edges after rendering for frame-by-frame tracking.
However, these approaches assume a known initial pose which
may be complex. A good overview of BIM-based AR and MR
methods is given in (Sidani et al., 2021), where it is noted that
there is no general system architecture for localisation within a
BIM but a wide variety of different approaches.

Image retrieval approaches compare the query image to a data-
base of geo-tagged images to estimate its location. The database
consists of either previously captured images or those generated
from a digital model. In a two-step process, the image fea-
tures of both the query and database images are described, fol-
lowed by a similarity association across the description vectors
(Piasco et al., 2018). For example, Baek et al. (2019) propose an
augmented reality (AR) facility management system that over-
lays BIM elements on top of the real world. The localisation is
performed by comparing the query image to the database of im-
ages generated from the BIM model, but these are created only
in the expected case study area and from the expected angles.
This susceptibility to viewpoint changes is one of the down-
sides of image retrieval approaches, along with the requirement
to build a large dataset of geo-tagged images (Acharya et al.,
2019a).

Image-based pose regression approaches directly regress from
query image to its corresponding pose (Piasco et al., 2018) and
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Figure 2. Anchoring of virtual objects, outlined in orange within the reference point cloud to the left, within the real world. Any
number of virtual objects can be placed anywhere within the reference point cloud and they are anchored with high accuracy and
without stuttering. The occlusion of objects needed for MR applications can be seen on the armchair and the lamp.

are dominated by Convolutional Neural Network (CNN) ap-
proaches that learn the mapping from images to their global
poses (Herbers and Konig, 2019). Kendall et al. (2015) pro-
pose a CNN regressor PoseNet made by fine-tuning a network
(originally trained for classification of images) on samples with
poses obtained with Structure from Motion (SfM) algorithms.
Many proposed approaches build upon PoseNet. For example,
Acharya et al. (2019a) fine-tune PoseNet and train it on a syn-
thetic dataset of computer-generated images of an indoor BIM
model, to avoid the requirement of an SfM reconstruction of the
scene which they see as a major limitation. However, although
image-based pose regression approaches have good tolerance
towards changes in the scene geometry (Piasco et al., 2018),
their main downside is the localisation accuracy which is gen-
erally in the range from 0.5 to 3 m for indoor scenes (Walch et
al., 2017).

Although not used as commonly as image-based methods,
global camera localisation can be solved by registering the local
3D model captured by the MR device (most commonly by a
depth camera) to an existing global or reference model. As re-
gistering the local model, i.e. the current frame to the global
model, is equivalent to finding the six degrees of freedom (DoF)
camera pose relative to it (Marchand et al., 2016), in a sense,
the challenge of global MR localisation shares similarities with
the 3D model registration challenge (Herbers and Konig, 2019).
3D-3D model rigid registration is divided into coarse registra-
tion (initial rough alignment) and fine registration (subsequent
refinement and optimisation of coarse registration). The field of
automated fine registration is dominated by the well-established
Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992)
and its efficient variants (Rusinkiewicz and Levoy, 2001). On
the contrary, automated coarse registration is still an open chal-
lenge (Bueno et al., 2018).

Coarse 3D model registration is based on 3D-3D correspond-
ences between points, and central to finding these correspond-
ences are 3D local feature descriptors. Recently, research-
ers have focused on the development of descriptors in a data-
driven manner, especially over the past five years, as these have
been shown to outperform hand-crafted descriptors (Li et al.,
2020b; Guo et al., 2020; Choy et al., 2019; Zeng et al., 2017,
Poiesi and Boscaini, 2021). Networks for learning local 3D
descriptors can be split into patch-based or local and fully con-
volutional or global networks. Patch-based networks process
a patch of a point cloud. For example, 3DMatch proposed by
Zeng et al. (2017) uses a 3D CNN to map to a feature vec-
tor from a local volumetric 3D voxel grid, while the rotation-
invariant local deep descriptor (DIP) proposed by Poiesi and

Boscaini (2021) canonicalises patches through their local refer-
ence frame. On the other hand, fully convolutional networks
process the whole point cloud. Choy et al. (2019) propose
FCGF, the first fully-convolutional single-pass network which
uses convolution on sparse tensors to create rotation-invariant
dense descriptors. Another example is D3Feat proposed by
Bai et al. (2020), a fully convolutional network that jointly
learns 3D feature descriptors and detectors to be able to find
well-localised points. Repeatable keypoints are obtained with
a density-invariant keypoint selection strategy and a detector
score for each point of the cloud. In general, deep learning
on point clouds is still in its infancy (Guo et al., 2020) and
new methods are constantly being proposed. However, we are

Figure 3. Models of the testing site. Top: a polygonal mesh
model created with the Microsoft HoloLens (1% gen) with
testing locations marked. Bottom: a LiDAR point cloud with the
cubes used for retrieval success rate evaluation.
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Figure 4. Cubes used for the empirical evaluation of retrieval success rate in (a) the virtual world, (b) the real world and (c) in mixed
reality with the worlds aligned.

witnessing a successful application of the recent advances in
learning-based 3D-3D model registration to the localisation of
self-driving vehicles, for example in (Zhang et al., 2021). But,
these are always combined with other external sensors such as
global navigation systems which are not available indoors. To
the best of our knowledge, there have been no attempts at global
MR camera localisation systems based solely on coarse-to-fine
3D-3D model registration.

3. LOCALISATION METHOD

The MR system combines the real and the virtual world. The
main idea of the proposed localisation method is to register
and align the 3D model representing the real world and the 3D
model representing the virtual world. An example is given in
Fig. 1, where a low-density polygonal mesh of the surround-
ings created in real-time by the MR device (which represents
the real world) is registered to an existing point cloud model of
the same environment imported into a game engine (which rep-
resents the virtual world). Aligning the real and virtual frames
performs localisation and anchors all the virtual objects as a res-
ult. One of the advantages of this approach is that there is no
limit to the number of virtual objects that can be placed within
the virtual world. The existing point cloud of the environment
is used to place virtual objects in desired locations and a single
registration anchors all of them, and their relative spatial rela-
tionships are accurate, as shown in Fig. 2. Virtual objects can
be static, such as the objects shown in the figure, or dynamic,
such as virtual guides with predefined movement rules. Main-
taining this alignment requires continuous tracking of the pose
of the MR device with respect to the real world, which can be
performed accurately by most existing devices.

The proposed localisation method can be split into four main
stages: (1) mapping of the environment, (2) map cropping, (3)
3D-3D model registration, and (4) world transformation. The
first stage begins after the MR device is turned on when it starts
to map the environment within reach of its sensors. With the
origin of the virtual world as an anchor, the device creates a 3D
map of the surroundings in the form of a mesh surface model,
with the specific mapping method depending on the device
used. The device used for the prototype, Microsoft HoloLens
(1** gen), uses RGB-D Simultaneous Localisation and Mapping
(SLAM) method based on four tracking cameras and a time-
of-flight depth camera (Khoshelham et al., 2019; Hiibner et al.,
2020).

The second stage begins after a user initialises the localisation.

First, the map of the surroundings is cropped so only the faces
within an axis-aligned device-centred box 6x6x6 m in size re-
main. The size is determined by the range of the depth cam-
era on the HoloLens device used for the prototype, which is
around 3.5 m (Hiibner et al., 2020). The mesh is converted into
a point cloud of the surroundings by random sampling over the
mesh surface. In the third stage, described in Section 3.1, this
point cloud representing the real world is registered to the ref-
erence point cloud representing the virtual world. Due to the
computing limits of MR devices, 3D-3D model registration is
performed on a server. In the final stage, the resulting trans-
formation matrix is applied to the mesh of the surroundings and
the underlying virtual camera anchor to align the two worlds.

This initial localisation is maintained with continuous tracking
which can be performed accurately by modern devices. How-
ever, the alignment will deteriorate with the accumulation of
tracking errors as the device moves further away from the place
of localisation. The misalignment can be fixed by subsequent
re-localisation using the same method.

3.1 Coarse and fine 3D-3D model registration

The point cloud of the surroundings is registered to the refer-
ence point cloud by performing a coarse registration followed
by a fine registration. The coarse registration is based on the
extraction of 3D keypoints from the models by a deep neural
network, and their matching with Random sample consensus
(RANSAC).

As a backbone for keypoint detection and description we use
D3Feat by Bai et al. (2020). The network is pretrained on
3DMatch (Zeng et al., 2017) dataset fragments with overlap
higher than 30% and a grid size of 3 cm, momentum optimiser
with a base learning rate of 0.1, 0.98 momentum with exponen-
tial decay in each epoch and other parameters as described in
(Bai et al., 2020). We make several modifications to increase
generalisation and adapt the network to large point clouds with
inherent differences, as they are captured with different sensors
and there may be geometric differences between the real world
and the virtual world, i.e. the reference model. First, prior to
feature extraction, the models are downsampled with voxel grid
subsampling with a grid size of 10 cm, which forces the net-
work to work with larger rather than smaller objects to reduce
the susceptibility to changes in the scene geometry. Further-
more, the receptive field of the descriptor and the scale of ker-
nel points are modified accordingly, so that they cover the same
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Figure 5. Localisation simulation accuracy.

size of the local patch. Finally, to secure a uniform distribu-
tion of keypoints and avoid their clustering, a hard selection of
keypoints is used (Bai et al., 2020).

After the keypoint extraction comes keypoint matching with
RANSAC (Fischler and Bolles, 1981) based on feature match-
ing with the distance threshold of 5 cm, no change in scale and
a maximum number of iterations of 40 million. A large number
of iterations is required to identify and eliminate the outliers,
which are inevitable due to the difference in the size of mod-
els being registered, the difference in scene geometry between
them, and the fact that they are created with different sensors.

The resulting registration can be considered coarse as the ro-
tation errors were experimentally found to be between 0.6 to
1.4°, which can result in an increasing misalignment between
the real and the virtual world as the distance from the point of
localisation increases. For this reason, RANSAC registration
is refined by subsequent fine registration with ICP (Besl and
McKay, 1992). The distance threshold is set to 5 cm with 30
maximum iterations.

4. EXPERIMENTS AND RESULTS

We developed a prototype to perform testing and analysis of the
proposed method. The prototype has a client side and a server
side. The client side is developed in Unity 2020.4 and uses a
Mixed Reality Toolkit (MRTK), an open-source toolkit for the
development of MR applications on a wide range of devices.
The server side requires a device with a CUDA enabled GPU
and a Tensorflow framework in a Linux environment. For ex-
periments, we deploy the prototype on a Microsoft HoloLens
(1** gen) and use a Linux laptop with a 6-core Intel Core i9-
8950HK CPU, 16GB NVIDIA Quadro P5200 GPU and 64GB
of memory.

To determine the relationship between the localisation accur-
acy and the size of the virtual model that can be retrieved, we

first evaluate the localisation accuracy in Section 4.1. Then,
in Section 4.2, we first calculate the expected success rate, i.e.
the theoretical retrieval success rate based on the achieved loc-
alisation accuracy, followed by the evaluation of the empirical
retrieval success rate with a field experiment.

4.1 Localisation accuracy

As the localisation is based solely on 3D-3D model registra-
tion, its accuracy can be assessed through the accuracy of re-
gistration. In turn, the accuracy of registration can be evalu-
ated by calculating the translation and rotation errors from the
differences between the true and the estimated transformation
matrices. To avoid a poorly conditioned solution, before estim-
ating the transformation the point coordinates are normalised
and then the final translation and rotation parameters are ob-
tained from the estimated transformation using the following
equation (Khoshelham, 2016):

ti;=t—p’ +Ri_;p’, (D

where p' and p’ represent means of the source and destination
models i and j, and R;; is the rotation matrix.

Then, the translation error ¢; is defined as the absolute differ-
ence between the lengths of the true and estimated translation
vectors:

t e
ee = ||t = lIt5-ll |- @

Similarly, the rotation error is defined as the absolute difference
between the true and the estimated rotation matrices, R = Ri,j‘ .
R;.i°. The rotation angles can be converted into one Euler angle
for simplicity (Khoshelham, 2016):

eg = cos™ " ( (r1i1 4722 + 733 — 1) /2)7 (3)

where 71, 22 and r33 are diagonal elements of R composed of
camera rotation angles in camera pose estimation (yaw, pitch
and roll angles).

As described in Section 3, the localisation is performed by re-
gistering a 6x6x6 metre box part of the mesh model of the sur-
roundings created by the device to the existing point cloud of
the environment. Thus, we evaluate the localisation accuracy
by performing 100 such registrations and calculating the trans-
lation and rotation errors. We perform these simulated localisa-
tions on a testing site, which is a fully furnished 50 m? apart-
ment. Within the site, 10 locations are evenly distributed and
on each of them 10 registrations are performed. Fig. 3 shows
the testing site and the models used. On top is the untextured
polygonal mesh model created with a Microsoft HoloLens (1%
gen) by making several closed loops and on the bottom is a ref-
erence point cloud surveyed with a Leica BLK360 terrestrial
Light Detection and Ranging (LiDAR) device. The 10 testing
locations are marked in the mesh.

As true transformation is required to calculate the translation
and rotation errors, the mesh model and the reference point
cloud model are aligned with the combination of a manual
coarse alignment and a fine alignment with ICP. The localisa-
tion is simulated by cropping the mesh model with the 6x6x6
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Figure 6. The empirical distribution of translation errors.

metre box centred on a location, applying a random transforma-
tion to this cropped part, and attempting an automated registra-
tion back to the reference model. The random transformation
gives us the true transformation, i.e. the ground truth, which
makes it possible to assess the registration accuracy from the
differences between the ground truth and estimated registra-
tions.

All 100 attempts at registration were successful and they took
on average 24 seconds. The results, i.e. the calculated transla-
tion and rotation errors of localisation simulations, are shown
in Fig. 5. It can be noticed that both translation and rotation er-
rors are very consistent on each individual location with rather
small spreads. However, the translation errors are less consist-
ent between different locations, with locations 6, 8, 9 and 10
having noticeably smaller errors than the rest. This may be ex-
plained by the differences between the scene and the reference
model. More precisely, roughly 6 months had passed from the
capturing of the reference model, resulting in countless changes
in the environment. All of the smaller furniture, such as chairs,
dining table, coffee table and armchair, changed their location
to some extent. Furthermore, other small- to large-sized ob-
jects, such as cushions, plants, PC screens or music instruments,
may be in completely different locations or present in the ref-
erence model but absent from the scene model and vice versa.
The differences in the number and the extent of these changes
throughout the apartment may explain the observed difference
in translation errors. Locations 6, 8, 9 and 10 are within or
close to the simply furnished bedroom where the differences
between the scene and reference model are less pronounced.
Furthermore, the translation and rotation errors at no location
exceed 3 cm and 0.5°and their averages are 1.4 cm and 0.24°,
respectively. Based on these indicators, we can conclude that
the overall accuracy of localisation is high.

4.2 Retrieval success rate

We assess the retrieval success rate through the probability of
correct retrieval of invisible virtual elements of different sizes.
We construct eight cubes with edge lengths of 60, 30, 15, 8, 4,
3, 2 and 1 cm, and mark their centre point, as shown in Fig.
4. We ensure the cubes are in the same spot in the real and in
the virtual world by aligning them with a closet present in both,
which provides one corner, three edges, and three sides that can
be used for anchoring. In the virtual world, Fig. 4 (a), the cubes
are modelled and aligned with the point cloud of the closet with
a combination of manual coarse registration and ICP. In the real
world, Fig. 4 (b), the cubes are constructed along the edges
using the corner as an anchor and drawn on the surface of the
closet.

After localisation and the alignment of the real and the virtual
world, and in the absence of errors, the cubes should be per-
fectly aligned. Fig. 4 (c) shows this overlay of virtual cubes
on top of the real cubes after localisation, although it should be
noted that for evaluation the cubes are not rendered visible. To
test if the cubes are where we expect them to be, after local-
isation we attempt to retrieve them by aiming at the centre of
their real-world representations. To independently perform this
test the virtual cubes must be invisible, as if visible they may
obstruct the real world and influence the tester. In other words,
there is little point in testing the retrieval of a visible virtual
object as one can just point the cursor towards it and retrieve
it, even if the localisation is poor and the object is at a certain
distance from its desired predefined location.

4.2.1 Theoretical evaluation The expected retrieval prob-
ability of cubes of different sizes can be estimated from the
achieved localisation accuracy, i.e. from the translation and ro-
tation errors (Section 4.1). As the retrieval is performed a short
distance from the point of localisation (within 2 m), the effect
of the rotation error is expected to be minor. Hence, we use the
100 translation errors and their empirical distribution, shown in
Fig. 6, to calculate the percentile of translation errors. The first,
second and third quartile percentiles, as well as percentiles for
the cube sizes of 1, 2 and 3 cm, are listed in Table 1. Cube sizes
larger than 3 cm are not included as the 3 cm error is at the 100™
percentile, which means all errors are below 3 cm.

Percentile e; [cm]
25™ percentile 0.5
40™ percentile 1.0
50® percentile 1.7
63" percentile 2.0
75™ percentile 2.1

100%™ percentile 3.0

Table 1. Percentiles of localisation translation errors according
to the empirical distribution.

The percentile of localisation translation errors in Table 1 are
indicative, but not equivalent to the expected retrieval probabil-
ity of cubes of different sizes because the retrieval is influenced
by other errors, such as the rotation error or the calibration error
of the HoloLens’s projector and cameras. However, we hypo-
thesise that the translation error is dominant amongst these so
we use the calculated percentiles as an approximate indicator
for the expected probability of retrieval.

4.2.2 Empirical evaluation To evaluate the empirical re-
trieval probability, we perform a localisation with the developed
prototype followed by an attempt at the retrieval of an invis-
ible virtual cube by aiming at the centre of that cube in the real
world. The centre is clearly marked in the real world, aimed at
with a virtual crosshair and retrieved with a gesture (so-called
air tap gesture). The localisation and the retrieval are performed
at a distance of 1.5-2 m from the cubes. The cubes are roughly
at the same height as the user and the user looks directly at one
of the cubes’ vertical edges (at roughly 45° angle to 2 vertical
faces). We repeat this process 10 times for each of the 8 cubes,
resulting in 80 localisations and 80 retrieval attempts.

The results of this experiment are shown in Fig. 7. The first
thing to notice is the consistency of results, with a steady 100%
retrieval success rate for cube sizes from 60 down to 4 cm fol-
lowed by a consistent drop in the success rate for 3, 2 and 1
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Figure 7. The empirical element retrieval success rate for
elements of different sizes.

cm cube sizes. The second thing to notice is that the empir-
ical probabilities of correct retrieval for 3, 2 and 1 cm cubes
are lower than the expected probabilities (Section 4.2.1). The
empirical retrieval success rate for the 3 cm cube was 70% as
compared to the expected 100%, for the 2 cm cube the empirical
success rate was 50% as compared to the expected 63%, while
for the 1 cm cube there were no successful retrievals whereas a
success rate of 40% was expected. As the theoretical values are
derived solely from localisation translation errors, the discrep-
ancy between the theoretical and the empirical values is likely
caused by one or several of the additional influencing factors:

1. Localisation rotation error.

2. Aiming error, i.e. imperfect alignment of the crosshair
with the middle of cubes upon retrieval.

3. Positional offset between the real and the virtual object,
i.e. imperfect alignment of real and virtual cubes with the
closet before localisation.

4. Calibration error of the cameras and the projector of the
device.

5. The angle at which the user aims at the virtual object, i.e.
the 2D projection of the virtual cube will have different
offsets from its 3D centre depending on the centre of pro-
jection.

Based on these results we can conclude that the retrieval success
rate closely follows the localisation accuracy (and the corres-
ponding confidence interval) which means that other sources of
error are rather negligible. Furthermore, we can conclude that
the localisation method enables accurate anchoring and reliable
retrieval of elements of 4 cm in size and larger. Furthermore,
it enables a somewhat reliable retrieval of 3 cm large elements,
with the retrieval of elements smaller than that becoming unre-
liable.

5. CONCLUSION AND FUTURE WORK

In this paper, we investigated the relationship between the local-
isation accuracy and the size of a virtual object one can retrieve
after localisation. Furthermore, we presented a global MR loc-
alisation approach based only on 3D-3D model registration. By
relying on 3D geometry, the proposed approach offers certain
advantages over image-based localisation methods, most im-
portantly the high resilience to scene changes such as lighting
conditions or the movement of objects, as illustrated by a 100%

localisation success rate in an apartment six months after the
mapping of the reference model. Furthermore, it relies on a
low-density untextured mesh model of the surroundings which
means that there is no need to build specific maps or databases
and there are no privacy issues.

The results of the localisation accuracy evaluation showed an
average translation and rotation errors of 1.4 cm and 0.24°, re-
spectively. We empirically tested the retrieval success rate and
showed that one can, by aiming at a real-world object, retrieve
the invisible underlying virtual element, such as a BIM element,
with a 100% reliability if the object is 4 cm in size or larger.
The success rate drops to 70, 50 and 0% for objects of 3, 2 and
1 cm, respectively, which is in line with expected retrieval rates
influenced mainly by the translation error, but also by other in-
fluences listed in Section 4.2.

Overall, the results of our experiments suggest that MR local-
isation based on 3D-3D registration offers considerable poten-
tial and high accuracy. The results on the current 50 m? test-
ing site indicate that the method performs well in a medium-
scale environment, but larger environments should be tested in
future research. Other future work directions include testing
different networks, investigating a reduction of the complex-
ity of the RANSAC search space by assuming gravity up, and
adding an outlier rejection step between the feature extraction
and RANSAC steps. Finally, the retrieval success rate of ob-
jects of different shapes and in different locations within the
testing site should be explored.
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