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ABSTRACT:

Building modeling from remote sensing data is essential for creating accurate 3D and 4D digital twins, especially for temperature
modeling. In order to represent buildings as gap-free, visually appealing, and rich in details models, geo-typical prototypes should
be represented in the scene. The sensor data and freely available OSM data are supposed to provide guidelines for best-possible
matching. In this paper, the default similarity function based on intersection over union is extended by terms reflecting the similarity
of elevation values, orientation towards the road, and trees in the vicinity. The goodness of fit has been evaluated by architecture
experts as well as thermal simulations with a thermal image as ground truth and error measures based on mean average error, root
mean square and mutual information. It could be concluded that while intersection over union measure still seems to be most
preferred by architects, slightly better thermal simulation results are yielded by taking into account all similarity functions.

1. INTRODUCTION

1.1 Motivation

Buildings represent a crucial component of the urban scene, and
their accurate modeling from airborne 2D and 3D data has many
applications. For example, only a decade ago, creating visually
appealing models was considered the main aim for applications
in real estate management, augmented and virtual reality, and
training and education for quick response tasks (Bulatov et al.,
2014). Nowadays, the focus has changed into the direction of
Digital Twins, which means that accurate numerical output is
expected from the interaction process with these buildings and
surrounding terrain (Lu et al., 2020).

For example, in city planning, Urban Heat Islands (UHIs) be-
came an issue of concern. The goal is to construct and to design
buildings in a way to minimize the effects of trapping and ra-
diation and to ensure that the hot air enclosed between high
buildings and paved roads in urban street canyons can escape
and does not keep heating up the surface even during the night
(Voogt and Oke, 2003).

One may wonder whether the digital twin of the scene is neces-
sary for the identification and future mitigation of UHIs. One
may argue that direct temperature measurements in the vicinity
of the building in question and analysis of peak or average tem-
peratures should be sufficient. However, since the surroundings
of buildings differ, we cannot scale up the strategy of the dir-
ect measurements without simultaneously increasing the costs
for data acquisition and processing. Even if we were interested
in one specific building, we could hardly predict the develop-
ment of temperatures in the course of the years. Just imagine
that a tree on the same roadside of the building has grown and
now provides more shadow while the tree across the road has
faded and lost its leaves. On a more ample scale, what if the
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dominant direction of winds has altered due to global climate
change, which can either exacerbate or mitigate the local mi-
croclimate concerning UHIs? Digital twins of urban scenes are
increasingly able not only to assess existing or not yet existing
designs, such as sustainable roofing materials in development,
but also to simulate their developments according to different
scenarios affecting local micro-climate. Because of this tem-
poral dimension and, since the temperature is always a function
of its previous state, we refer to the 4D digital twin of the scene.

1.2 Related works

The simulation of surface temperatures is based on the heat
balance equation with terms reflecting convection, radiation,
and conduction (Kottler et al., 2019). The 3D digital twin res-
ults from the semantic model instantiation of combined optical
(images) and distance (LiDAR) airborne measurements. The
reason is that the airborne sensor data represent the most com-
mon way to model three-dimensional scenes of large extensions
while the state-of-the-art simulators (Kottler et al., 2019, Guo et
al., 2018) are able to compute temperatures efficiently. While
the ground (Elmqvist et al., 2001, Mousa et al., 2017) and the
trees (Dai et al., 2018, Koch et al., 2014) can be modeled at a
sufficient detail level, accurate modeling of buildings is tricky
because of their varying appearances. The number of related
approaches is vast (Bulatov et al., 2014, Meidow et al., 2016,
Xiong et al., 2014, Xiong et al., 2015, Verdie et al., 2015, Verma
et al., 2006, Lafarge et al., 2010, Sohn et al., 2012, Hu et al.,
2018, Shajahan et al., 2019, Yu et al., 2021). This by no means
exhaustive list of related works may serve as a hint that the re-
search in this field is not yet completed. A scrutinized glance
into the appropriate methods reveals that they either have very
special requirements on the underlying sensor data (such as an
airborne laser scan cloud of a high point density), or they are
limited to rather simple building types. In contrast, for the
highly detailed buildings with complex roof forms, the quality
of the reconstruction results is not sufficiently high for thermal
simulation. The reason is that the models should be gap-free
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since otherwise, the heat will escape from inside the building to
the environment leading to the implausible heat exchange.

One very well-known concept to measure the granularity of
building models is level of details (LOD, (Albert et al., 2003)),
which is being continuously refined and improved (Biljecki
et al., 2016). For example, LOD 1 denotes prismatic mod-
els with flat, non-necessarily horizontal roofs while LOD 3
already possesses roof forms, including roof overhangs and
façade elements (Verdie et al., 2015). The work of (Tang et al.,
2020), where among other, windows and doors are neglected for
shadow model computation, is a good example of application-
based handling the LOD concept. Another taxonomy, men-
tioned in (McAlinden et al., 2015, Bulatov et al., 2020) and
adopted for this paper as well, is to differentiate between geo-
typical and geo-specific buildings. The appearance of a geo-
specific building model reflects that of the prototypes. It can
be reconstructed in an automatic way by one of the methods
mentioned above, corrected interactively (Xiong et al., 2014),
or even modeled manually to a significant part (Döllner et al.,
2005, Bulatov et al., 2021). A set of reconstructed buildings is
referred to as a library. The geo-typical modeling means to find
for every building in the dataset the most similar library entry
whereby the degree of resemblance is quantified using some
similarity function and is based on 2D and 3D sensor data. By
reusing the reconstruction, the building in the dataset will look
almost the same way as a building appearing somewhere else;
however, it will slightly differ in its real appearance.

1.3 Contribution

The idea of modeling whole cities using building libraries is not
new. For example, (Döllner et al., 2005) define a top-down hier-
archy of parameters for procedural modeling buildings. Those
buildings mostly have rectangular footprints and simple roof
structures. In (Tang et al., 2020), on the contrary, the meshes
could be adjusted for specific simulations, such as shadow com-
putation; however only computing time was assessed, but not
the correctness of the simulation. The first contribution of our
work is to fit challenging from the architectural point of view
building models into the already existing scene. The scene
is derived from the sensor data, and taking this same sensor
data into account for building assessing results in a uniform,
gap-free model. The second contribution is to simulate tem-
peratures of large scenes, together with environmental data and
physical properties of the underlying materials. Using thermal
airborne imagery, we provide the numerical output of the 4D
digital thermal twin with geo-typical building models. It will
become clear that the proposed method possesses the necessary
trade-off between accuracy, i.e. ability to simulate buildings in
a realistic way, and efficiency, that is, keeping the model com-
plexity low in order for the simulation to run fast and for the
urban planner to play with numerous scenarios for scene design.

1.4 Organization

The next section 2 starts at providing the necessary overview
of the available data and the intermediate results, which are rel-
evant for geo-typical building modeling and simulation as well
as the problem statement. Then, we provide solutions for geo-
typical building modeling. The functionality of our simulator
and the modeling results are described in Section 3. Conclu-
sions and ideas for future research are given in Section 4.

2. METHODOLOGY

2.1 Overview of available sensor data and intermediate
results

We are given an aerial image with five channels (red, green,
blue, red-edge, and near-infrared) and DSM (Digital Sur-
face Model), from which the ground model (or Digital Ter-
rain Model, DTM), height over ground (Normalized DSM or
NDSM), land cover classification map, as well as materials and
colors of building roofs can be retrieved (Ilehag et al., 2018,
Bulatov et al., 2020). The GSD (Ground Sampling Distance)
of 0.5m means that the buildings are clearly distinguishable.
While the 3D planar segments corresponding to larger roof
details can be determined with a procedure called J-Linkage
(Toldo and Fusiello, 2008), this is not the case for the smal-
ler ones. Those are recognizable in 2D using the nadir high-
resolution images. Their GSD is below 0.1, and they can be
automatically geo-referenced into the coordinate system of the
DSM and aerial image; however, there is no 3D data of such
a fine GSD. The building outlines are available from a Geo-
graphic Information System cadastral map. There is also a sim-
ilar vector data for main roads, stored in an OpenStreetMap
(OSM) shapefile. Finally, 20 typical buildings in the area of
interest were selected and interactively reconstructed to form
our library of 20 building models for the upcoming geo-typical
modeling. To create visually appealing building models, the
2D high-resolution image cropped around the building together
with the information on the outlines from the GIS data and on
dominant planes drawn in are processed by the Revit software.
Then it is saved into the readable file as a triangle mesh with
five classes: Floor, roof, wall, window, and door. These models
make up our library for the upcoming geo-typical modeling.

2.2 Principles of geo-typical modeling

We denote by L the set of library elements and B is the set
of buildings in the dataset. We need to find for each B ∈ B
a L ∈ L with the highest similarity. The similarity meas-
ure should keep in mind the main application, that is, simu-
lation and is, therefore, induced from the previously described
sensor data. For example, Intersection over Union (IoU) over
the ground planes of B and L is one of the simplest similarity
measures since it ignores the elevation values and roof forms.
The following approach has been implemented: First, the out-
line of every building (in B and in L) is rotated in the way that
the longest side corresponds to the y axis and then cropped.
Doing so in the case of matching piece-wise rectangular build-
ings means fixing the orientation and thus, reducing the number
of degrees of freedom. The resulting binary mask with values
0 and 1 for pixels outside and inside of the polygon is called
bitplane o, and the transformation described by a 3 × 3 homo-
graphy matrix into the original coordinate system is denoted as
h, that is, hB and hL. For comparing two bitplanes oL and oB ,
they must have the same size, requiring a scaling (in x and y
directions) transformation hs of L. We augment the number of
models in the library by rotating the bitplanes by multiples of
90◦ and flipping them around the x-axis, resulting in transform-
ations hr and hf , respectively, as well as the composed index
L̃ = {L, r, f} ∈ L̃ denoting augmentation of L. For every
parameter set, the comparison using IoU

IoU(L̃, B) =
|oL̃ ∩ oB |
|oL̃ ∪ oB |

(1)
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is carried out and the parameters yielding the highest score

L̃∗ = argmax
L̃

IoU(L̃, B) (2)

are stored. Now, the 2D transformation of the library building
is given by:

h = hB · hf∗ · hs∗ · hr∗ · h−1
L∗ (3)

and in the direction of z axis, the base position g and elevation
e of both buildings can be retrieved either from the sensor data
or from the shapefile and used to compute the offset and scale
in the direction of z-axis:

zB = sz (zL − gL) + gB ,where sz = eB/eL. (4)

In the case of a high deviation between s∗ and sz , which can
potentially lead to implausible sizes of doors and windows, our
application outputs a warning.

In the example presented in Figure 1, we can see that the roof
structure of two buildings in (a) and (b), or, equivalently (f) and
(g) are quite similar, however, not that much as the very high
score, exceeding 0.96, may suggest. This is not surprising be-
cause only the 2D bitplanes are compared. In the next sections,
we present and assess further ways to assess similarity.

2.3 Generalized similarity function for geo-typical model-
ing

In the previous section, geo-typical modeling could be ac-
complished without sensor data, strictly speaking, because the
building footprints, its base level and elevation can be retrieved
from the shapefile. The aim of this section is to extend the
similarity function from (1) to be able to take into account the
sensor data since the building orientation towards the road and
the trees too close to the outlines may provide important clues
for exchangeability of B and L.

Once again, the best match L∗ is defined by

L∗ = argmax
L∈L

M(L,B), (5)

whereby this time, we generalize L∗ omitting augmentation
parameters f and r from (2). Furthermore,

M(L,B) = IoU(L,B) + αzMz(L,B)
+αRMR(L,B) + αTMT (L,B),

(6)

whereby Mz measures similarities with respect to the height
information whileMR andMT denote similarity terms induced
by the road class and tree class, respectively. The corresponding
weights αz , αR, and αT can be determined by experts, see
next section. For example, in order to penalize collisions with
surrounding trees that may negatively affect the simulation, αT
must be chosen very high. Note that setting one or more weight
to infinity would simply mean to ignore the IoU based term.

The termMz extends the similarity function from (1) by the 3rd
dimension. Since we scale with respect to z in (4), Mz must
be invariant with respect to multiplication of NDSM values of
the overlapping masks by a constant. Thus, let ZB : R2 →
R the function that assigns the NDSM value to each point for
building B and ZB{oL ∩ oB} the restriction to the overlapping

part between oL and oB , then

Mz(L,B) = 1− ‖NZ,B(ZB)−NZ,B(ZL)‖, (7)

where

NZ,B(ZB) =
ZB{oL ∩ oB}

maxoL∩oB ZB · |oL ∩ oB |

1/2

. (8)

The reason to prefer the L2 norm is that we want to consider
the whole roof structure and not only single characteristics of
its distribution.

The measure MR considers the orientation of the building to-
wards the road. For this purpose, we calculate the Euclidean
distance transformationR (road distance map) of the road class,
which indicates the distance from each point to the nearest
road. Hereby the road class is the rasterized by means of the
Bresenham algorithm shapefile from the freely available OSM
data. The alternative, namely to take the binary image induced
from the land cover classification result, appeared less prom-
ising since the algorithm outputs general asphalt surface and
not the main roads. Then RB is the cutout of the building B in
the road class map. The distance data is truncated and concat-
enated into a vector, which is then normalized to have the unit
norm. To find out which building in the library has a similar
street orientation, the cosine metric induced by the L2 norm is
used:

MR = v(RB)
T v(RL), ‖RB‖ = ‖RL‖ = 1. (9)

The last similarity measure indicates whether the geo-typical
building has a collision with a tree in the vicinity. The tree class
T is identified from the classification result and adjusted with
morphological operators to cut off overhanging tree tops. Let
TB,L be cutout of the buildingB in the tree class map joint with
oL. The result is a function TB,L : oB ∪ oL → {0, 1}, which
assigns to each point whether there is a tree (1) or not (0). Then,
MT is defined as the proportion of tree area in the joint area of
oL and oB , thus

MT =
|T−1

B,L(0)|
|oL ∪ oB |

. (10)

3. RESULTS

We used the Melville dataset from the eponymous district of
Perth, Australia, which was captured within a measurement
campaign in 2016. The data and the pre-processing steps are
described in Section 2.1. We replaced 72 buildings to the north
of a park with the geo-typical models resulting from four sets
of parameters αz , αR, and αT from (2):

1. αz = αR = αT = 0 (the default IoU configuration)

2. αz =∞ (only uniformity of elevations matter)

3. αz = αT = 1 and αR = 0 (roads omitted)

4. αz = αR = αT = 1 (everything weighted equally).

A thermal infrared image, needed to evaluate the temperatures,
was acquired with the sensor FLIR A615 during two nights.
The weather server provided the weather data for the day of the
measurement campaign.
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Figure 1. Illustration of geo-typical building modeling. Image (a): A building in the multi-spectral image outlined by white polygon
stemming from the GIS data, (b) shows a library building having the highest similarity. Its blue outline polygon is projected into (a)
using homography h, yielding the dashed blue polygon. Image (c) shows the superposition of bitplanes yielding the highest score.

Here, yellow means the intersection of two rasterized images while red and green denote parts of the library building not present in the
source building and, respectively, vice-versa. Image (d) shows the superposition of bitplanes induced by a different homography and
yielding a considerably lower score. Image (e) shows the 3D model of the library building to be reproduced. Images (f) and (g) are

cutouts from the high-resolution images around buildings in (a) and (b), respectively.

3.1 Interactive assessment of geo-typical modeling

In the section, we asked two independent experts with the ar-
chitectural background to assess the aforementioned configur-
ations. Both experts were given high-resolution images with
cutouts around buildings B ∈ B with 3D polygons driven in
four semi-transparent colors for four configurations. The ex-
perts were shown one configuration for one building after an-
other and asked how expensive they would consider replacing
the building B by L regarding the similarity of the outline and
the roof. Moreover, the same question was asked about the out-
lines only. The results are recorded in Table 1, and it is im-
portant to note that both experts had different criteria in mind
resulting in a non-uniform scale of entries, which were later
converted in percents. Both experts clearly preferred configur-
ations 1 and 3 over 2 and 4, while they seem to disagree upon
the worst choice of parameters. Overall, it can be concluded
that considering intersection over union only yields the most
stable results.

In Figure 2, we illustrate some qualitative results. In the top
row, we display two examples in which we are able to recog-
nize the important patterns in outlines and roof structures. The
bottom row shows another two examples of buildings, for which
the scarcity of the library leads to suboptimal results since none
of the proposed configurations can even fill out the footprint
properly. The observation of experts that well-matching out-
lines are necessary but not sufficient condition for overall good
matching seems to be confirmed.

C1 C2 C3 C4

Expert 1 75.7/100 70.0/93.1 78.6/100 70.0 / 82.4
Expert 2 77.1/95.6 41.7/45.8 66.7/91.7 56.3/62.5

Table 1. Evaluation of configurations (C) by experts. The
numbers refer to scores converted into percents. The first

number always indicates the overall fitting score and second
number evaluation of the outline.

3.2 Assessment of geo-typical modeling based on thermal
simulation

The thermal simulation was carried out based on the work-
flow of (Kottler et al., 2019) for our four 3D digital twins. In
this workflow, the scene is subdivided into triangle mesh, after
which the temperature calculation for each triangle and discrete
time step takes place by solving the heat balance equation with
terms for thermal radiation, convection and conduction. Start-
ing at an initial value, a differential equation is solved using
Euler forward integration method. An excerpt of the results of
the 4D digital twins is shown in Figure 3. For each configur-
ation, the same viewpoint is displayed to highlight the differ-
ences in geo-typical modeling. The temperature ranges comply
with each other. However, differences in surface temperatures
are more profound on roofs, where deviations in structure oc-
cur, and on the ground, where building outlines change between
configurations.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2022-251-2022 | © Author(s) 2022. CC BY 4.0 License.

 
254



Figure 2. Examples of successful (top row, 2D and 3D views) and not successful (bottom row) results of geo-typical modeling.

Figure 3. 4D Digital Twins of configurations 1 to 4. The displayed temperatures correspond to 2pm on a typical, i.e. hot and dry
summer day in the City of Melville.

For a quantitative evaluation, the orthographic thermal image
of the area in consideration was used. In order to compare the
simulation results with this image, an orthogonal projection of
the three-dimensional results was performed, yielding the sim-
ulated orthophoto. Since all given data is geo-referenced, the
measured thermal image could easily be cropped to the area in
consideration. Figure 4 shows the cropped measured thermal
image together with the simulated orthophoto for each of the
four building configurations.

Measured and simulated thermal orthophotos were compared
pixel-wise based on the following indicators: mean temperat-
ure difference, i.e., Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and Mutual Information (MI). The latter
is a similarity metric arising from information theory, quanti-
fying the statistical correlation of two datasets by the two mar-
ginal and the joint image probability function. A high MI value
indicates a high similarity between temperature distributions.

Table 2. Thermal simulation results for each configuration.

Configuration MAE RMSE MI

1 -0.220 3.013 0.687
2 -0.216 3.033 0.675
3 -0.261 3.008 0.689
4 -0.197 3.002 0.697

As Table 2 shows, the configurations give an average MAE of
−0.224, however, a mean RMSE of 3.006, indicating an unbal-
anced distribution of temperature differences in measurement
and simulation. This is caused by deviations in building out-
lines, misclassified pixels, geo-referencing errors, or deviations
in tree shapes, which aligns with our expectations. The res-
ults further indicate that configuration 4, in which building out-
line, roof elevation, orientation towards road, and tree overlay
are equally weighted, yields slightly better agreement with the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2022-251-2022 | © Author(s) 2022. CC BY 4.0 License.

 
255



Figure 4. Measured thermal image (a) and simulated thermal
images for configuration 1 (b), configuration 2 (c), configuration

3 (d) and configuration 4 (e), showing the full modelled area
(left) and zoomed in (right). Color representation is white-hot.

measures temperatures both considering MAE and RMSE as
well as general similarity quantified by MI.

Since our geo-typical modeling is focused on buildings and
roofs, respectively, we attempted to evaluate the thermal sim-
ulation results by focusing on roof structures as well. Figure
5 displays the temperature distribution of a single geo-typical
building that has been selected differently by the four similarity
functions. Only configurations 2 to 4 can approximate the tem-
perature profile. For quantification, a straight-forward method
like binary masks creation for buildings in the orthophotos is
not appropriate since this method would penalize in an unjusti-
fiably hard way the building outlines. Therefore, we indirectly
measure the effect of our geo-typical modeling method by eval-
uating the overall temperature gradients. As a result, the MAEs
yield a value of −0.001 with no significant difference between
the configurations. The RMSE varies between 0.590 and 0.596,
with the highest, i.e., worst value for configuration 4. However,
as before, a high RMSE is attributed to deviations in building
outlines. Considering the MI, configuration 4 yields the best
(highest) MI value of 0.0706, directly followed by configura-
tion 1 with 0.0699. Based on these findings, we observe a tend-
ency that the inclusion of building elevation, orientation, and
trees does not have a significant impact on the realism of the
4D digital twin. However, a crucial parameter is the quality of
the measured thermal image. With 0.5m per pixel of resolu-
tion, averaging of temperature values between two subsequent
nights, and interpolation artifacts, such as blending of temperat-

ures, leading to the absence of clear edges, this baseline for the
evaluation should be considered with care. Consistently, an in-
depth validation based on higher resolution data will be needed
in the future.

4. CONCLUSIONS

In this work, a generalized similarity function has been presen-
ted for a better specification of rich-in-details building pro-
totypes, allowing the efficient representation of hundreds and
thousands of buildings of a dataset. The previously applied IoU
similarity function is very convenient because the building ca-
dastre shapefile alone is sufficient: Only the polygonal foot-
prints are needed to create a binary mask, while it is possible to
extend the mask-based transformation to 3D using the shapefile
attributes base level and height. However, we hoped for a more
accurate matching with the additional information contained in
sensor data, such as relative elevation and land cover classifica-
tion map. Using the former one, we assessed to what extent the
elevations in the overlapping parts are mutually proportional,
while for the second one, we assessed the building’s orienta-
tion towards the road as well as the presence of trees within the
building outline.

Two strategies have been pursued to evaluate the success of four
very distinct configurations of proposed measures. On the one
hand, experts have evaluated the four configurations and con-
cluded that the IoU is the most suitable for identifying similar-
ities. On the other hand, the experiments with thermal simula-
tions have shown that a slight improvement of simulated tem-
perature distributions is given by an equally weighted inclusion
of measures based on the IoU, elevation similarity, building ori-
entation towards the road, and tree collision.

Despite encouraging findings, we must cover two main issues
reflecting the shortcomings of our results pending work in the
presented research direction. First of all, the database of exist-
ing building models is yet very scarce. With 20 models, four
rotations, and an optional flipping, there are merely 160 config-
urations in total, and this is not much. Since the time needed for
interactive modeling can reach up to 30 minutes, either much
additional human workforce or advanced generative techniques
allowing stretch and forge, add and remove building parts are
necessary for data augmentation. Once library size is boosted
up by several orders of magnitude, intelligent search algorithms
must be identified since an exhaustive trial (and error) of can-
didates would cause unbearable computing times. Secondly,
only four sets of buildings were evaluated in the Results sec-
tion. However, the number of choices should ideally be expo-
nential in that of the free parameters, so that with four terms
needed to form the similarity function and three free paramet-
ers in (2), we would need at least a dozen of configurations. We
focused on the proof of principle in the current work, but with
a larger database, at least for the interactive assessment, a dif-
ferent, better concept shall be developed. In the long term, our
purpose is to assess the temperatures of many digital twins and
to provide the architects, city planners, and local councils help-
ful guidelines about efficient designs of building roofs in terms
of UHIs.
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Figure 5. Temperature distribution in the (a) thermal image around a single building: Images (b) to (e) show the corresponding
distributions resulting from configurations 1 to 4, respectively. Image (f) shows the corresponding temperature profiles along the line

connecting the left upper and right lower corner of the building in the measured thermal image and the four configurations,
respectively. The building itself (configuration 1, at 2 pm and 8 pm) is depicted in images (g) and (h). Note that the output for

configurations 3 and 4 results in the same building structure.
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Döllner, J., Buchholz, H., Brodersen, F., Glander, T., Jütter-
schenke, S., Klimetschek, A., 2005. Smart Buildings – A
concept for ad-hoc creation and refinement of 3D building mod-
els. Proceedings of the 1st International Workshop on Next
Generation 3D City Models, 1number 3.3.

Elmqvist, M., Jungert, E., Lantz, F., Persson, A., Söderman, U.,
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