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ABSTRACT:

Timely and accurate socioeconomic indicators are the prerequisite for smart social governance. For example, the level of economic
development and the structure of population are important statistics for regional or national policy-making. However, the collection
of these characteristics usually depends on demographic and social surveys, which are time- and labor-intensive. To address
these issues, we propose a machine learning-based approach to estimate and map the economic development from multi-source
open available geospatial data, including remote sensing imagery and OpenStreetMap road networks. Specifically, we first extract
knowledge-based features from different data sources; then the multi-view graphs are constructed through different perspectives of
spatial adjacency and feature similarity; and a multi-view graph neural network (MVGNN) model is built on them and trained in a
self-supervised learning manner. Then, the handcrafted features and the learned graph representations are combined to estimate the
regional economic development indicators via random forest models. Taking China’s county-level gross domestic product (GDP) as
an example, extensive experiments have been conducted and the results demonstrate the effectiveness of the proposed method, and
the combination of the knowledge-based and learning-based features can significantly outperform baseline methods. Our proposed
approach can advance the goal of acquiring timely and accurate socioeconomic variables through widely accessible geospatial
data, which has the potential to extend to more social indicators and other geographic regions to support smart governance and
policy-making in the future.

1. INTRODUCTION

Monitoring national- or regional- economic development is an
essential task for the policy-making of the government and the
management of business (Jean et al., 2016). Traditional eco-
nomic development evaluation usually depends on yearly or
five-yearly economic statistics, which requires a large amount
of labor and time; therefore, the collection, processing and cor-
rection of the economic development data are usually time-
consuming and last for a long period of time. In addition, in
developing and less developed countries, the low proportion of
economic activities and weak infrastructure make it difficult to
compile timely and accurate economic data, thus leading to in-
correct estimation of economic development or even missing
such data (Yeh et al., 2020, Steele et al., 2017).

For this reason, some studies have tried to use easily accessible
remote sensing images to monitor the economic development.
For example, nighttime light (NTL) images are widely used for
estimating gross domestic product (GDP) as they are closely
correlated with various economic parameters such as urbaniza-
tion, population, and economic activities (Elvidge et al., 2021,
Huang et al., 2021). For developing or less developed regions
that lack reliable economic statistics, these NTL images are of
great value. However, NTL images also have insurmountable
limitations. For example, it is difficult to represent the eco-
nomic level of agriculture due to the presence of unlit areas
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such as rural areas; in addition, thermal power generation and
incineration generate strong lighting, which can lead to serious
overestimation of the economy (Elvidge et al., 2021).

Meanwhile, in order to predict the economic development more
accurately, some studies try to exploit emerging geospatial big
data. For example, points-of-interests (POI) data are recently
used because they can to some extent characterize the level
of infrastructure construction in the region and can also in-
directly reflect the economic development level (Chen et al.,
2020). However, these data sources are not very easily access-
ible in a complete manner, and suffer from high data bias and
uneven distribution. On the other hand, some recent studies
also leverage mobile phone-based positioning data to estimate
the economic activities due to the directly close relationship
between human activities and the regional economic develop-
ment (Huang et al., 2021). Although these novel geospatial
data provide alternative approaches to predicting the economic
development, these data sources are not easily accessible in the
real world scenarios, especially in a national or regional scale.

In this paper, we would like to focus on open available geospa-
tial data and explore two fundamental questions: 1) What kinds
of open geospatial data sources are effective for economic de-
velopment estimation, and how effective are they? 2) How to
make full use of the available open data to improve the predic-
tion accuracy?

To explore these questions, in this paper, we propose a machine
learning-based method to estimate and map economic devel-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2022-259-2022 | © Author(s) 2022. CC BY 4.0 License.

 
259



opment through both knowledge-based and learning-based fea-
tures extracted from multi-source open geospatial data, includ-
ing NTL imagery, multispectral remote sensing imagery (MSI),
and OpenStreetMap (OSM) road networks (RDN). Extensive
experiments have been conducted to estimate GDP in China at
county level, and the results demonstrate the effectiveness of
the proposed method and also confirm the contributions of these
open data in accurately estimating GDP values.

The rest of the paper is organized as follows. Section 2 reviews
the related works. Section 3 describes the study area and data.
Section 4 elaborates the proposed method. Section 5 presents
the experimental results and analysis. Finally, Section 6 con-
cludes the paper with discussion.

2. RELATED WORK

2.1 Socioeconomic Attributes Estimation

Smart governance and business intelligence have strong de-
mand for up-to-date socioeconomic information (e.g. inform-
ation of population and economic development) to support
timely, accurate, and customized location-based services and
policy-making (Dong et al., 2019, Tomor et al., 2019). How-
ever, these kinds of information are conventionally acquired
through labor-intensive surveys, which have disadvantages of
long-time intervals, coarse spatial granularity, and limited pop-
ulation coverage. Therefore, the traditional survey data are in-
sufficient to meet the urgent needs.

To deal with the situation, studies try to leverage wide cov-
ering remote sensing imagery, such as nighttime light (NTL)
and multispectral imagery (MSI), to map economic develop-
ment indicators since they can either directly or implicitly re-
flect socioeconomic status and thus can serve as data sources
to infer socioeconomic attributes (Abitbol and Karsai, 2020,
Chen et al., 2020, Jean et al., 2016, Yeh et al., 2020). Al-
ternatively, benefiting from the development of information and
communication technologies (ICT), emerging geospatial big
data, such as mobile phone data, vehicle trajectories, points-
of-interest (POI), street view images, etc., have also been ex-
ploited to estimate socioeconomic attributes. They are usually
by-products of daily socioeconomic activities and thus can be
collected timely and economically (Cao et al., 2021, Dong et
al., 2019, Gebru et al., 2017, Liu et al., 2015, Tu et al., 2018, Tu
et al., 2020).

Both remote sensing images and geospatial big data have in-
evitable limitations; the former can only reflect limited human
activities-related information, while the latter usually suffer
from severe data sparsity and privacy issues. Therefore, there
is a recent trend in combining them to complement each other
to enhance the prediction performance of socioeconomic attrib-
utes (Cao et al., 2018, Cao et al., 2020, Chen et al., 2022, Steele
et al., 2017). However, there are still major challenges in fusing
these data for socioeconomic attributes estimation due to their
inherent heterogeneity and different spatial forms. Besides, the
effectiveness of different data sources has seldom examined. It
is of great value to make full use of the available data sources
and understand how they contribute to the estimation tasks.

2.2 Graph Representation Learning

Representation learning, a.k.a. feature learning, is a method
of learning features from data that facilitates classification and

prediction without the need for handcrafted features (Bengio et
al., 2013). Currently, with the development of machine learn-
ing, especially the breakthrough of deep learning in various
fields, representation learning based on neural networks has be-
come an effective data-driven feature extraction approach and
is widely used in various fields (LeCun et al., 2015).

Graph representation learning is an important direction of rep-
resentation learning, which learns the features (usually called
embeddings) from graph-based data (Zhang et al., 2020). The
learned embeddings can then be further used for various down-
stream classification and prediction tasks. Due to the capacity
for non-Euclidean structural data modelling and feature learn-
ing, the graph neural network (GNN) models have attracted in-
creasing attentions and have been developed rapidly in recent
years, especially for graph convolutional neural networks, such
as GCN (Kipf and Welling, 2017), GraphSAGE (Hamilton et
al., 2017), and GAT (Velickovic et al., 2018), which have been
demonstrated to be effective on graph-based data.

With the powerful ability in graph data modeling, there is great
potential in exploiting GNN models to model the correlations
between different geographic regions, which will be beneficial
for economic development estimation, since socioeconomic
activities and attributes usually present noticeable dependence
between different geographic regions, as implied by the First
Law of Geography.

3. STUDY AREA AND DATA

The mainland China is selected as our study area, as indicated
by the light blue areas in Figure 1. Multi-source open available
geospatial data, including nighttime light (NTL), multispectral
imagery (MSI), and road networks are leveraged at the admin-
istrative level to estimate its GDP.

Figure 1. Study area of the mainland China.

GDP Data. The GDP data are collected and organized from
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the China Statistical Yearbook and the local Bureau of Statist-
ics, which provide county-level GDP data in 2018. It should
be noted that Hong Kong, Macau, and Taiwan have different
economic statistic systems, thus only the GDP data from the
mainland China are used. Besides, the Sansha City, the south-
ernmost and least populated prefecture in China, with the smal-
lest land area but the largest maritime territory, is also excluded
from the study due to its special spatial form of multiple small
islands. In total, there are 2,852 county-level administrative re-
gions used in the experiments. Due to data availability issues,
among them, 2,673 counties are with GDP values.

Nighttime Light Imagery (NTL). We use the VIIRS Night-
time Light (VNL) V2 products of year 2018 provided by EOG
(Elvidge et al., 2021) as the source for nighttime light im-
agery. The products are annual global nighttime lights time
series that are consistently processed. They are produced from
monthly cloud-free radiance averages which are made from
low light imaging day/night band (DNB) data collected by the
NASA/NOAA VIIRS nighttime light imagery. Specifically, 9
statistics (including count, area, min, max, range, mean, stand-
ard deviation, sum, and median) are calculated and exploited as
the spatial attributes for each county-level region. In total, there
are 9-dimensional NTL features.

Multispectral Remote Sensing Imagery (MSI). The Landsat-
8 multispectral imagery is used to characterize the physical fea-
tures of the landscape. Specifically, we use the Google Earth
Engine (GEE) cloud computing platform (Gorelick et al., 2017)
to access the level-2 Landsat-8 images and choose the surface
reflection product with cloud coverage less than 10% within
2018, which contains 7 bands (i.e., ultra blue, blue, green, red,
near infrared, shortwave infrared 1 and shortwave infrared 2)
with 30-meter spatial resolution. For each band, we use GEE
to calculate the zonal statistics of the counties, including min,
max, median, mean, variance, and standard deviation of each
county. Therefore, in total, there are 42-dimensional features
for MSI.

OSM Road Networks (RDN). The road network data are col-
lected from the OSM crowdsourcing platform in 2019. The
OSM roads can be categorized into different types according to
their importance, which are indicated by the attribute of high-
way 1, including motoway, trunk, primary, secondary, tertiary,
etc. Considering that different types of roads will reflect differ-
ent economic activities and intensities within an area, we extract
the length of roads of different types, and also include the total
length of all the roads. In total, we derive 26-dimensional RDN
features.

4. METHODOLOGY

4.1 Preliminaries and Overview

To facilitate the description of the method, several definitions
have been defined as follows.

Definition 1. Region: A region refers to a geographic area
divided either by administrative boundaries or regular grids
without overlapping. The regions of study area can be repres-
ented as R = {r1, r2, ..., rn}.

Definition 2. Graph: A graph is an abstract mathematical
model that can be defined as G = (V,E), where V is the node

1 https://wiki.openstreetmap.org/wiki/Key:highway
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Figure 2. Overview of the workflow for economic development
estimation from multi-source open geospatial data: (1)

intra-region feature extraction, (2) inter-region correlation
modeling via multi-view graphs, (3) region embeddings learning

from MVGNN, (4) economic indicator regression.

set and E is the edge set. The geographic regions with the con-
nections among them can be represented as the graphs, where
the nodes are represented by the inner attributes of the regions
and the edges are the connection between the regions such as
spatial adjacency and attribute similarity.

Definition 3. Region Embedding: A region embedding is
the distributed numerical vector used as the representation for
a region. The region embeddings can be denoted as H =
{h1, h2, ..., hn} corresponding to regions R.

To effectively integrate the multi-source heterogeneous geospa-
tial data for economic development estimation, we propose a
machine learning-based solution to fully exploit both the intra-
region attributes and inter-region correlations. The overview of
the proposed method is presented in Figure 2.

As can be seen, the proposed method mainly consists of four
steps. Firstly, handcrafted features of intra-region attributes
are extracted from multi-source geospatial data, including NTL,
MSI, and RDN. Secondly, inter-region correlations are modeled
as multi-view graphs based on the spatial relationship and ex-
tracted intra-region features. Thirdly, the acquired features and
built graphs are taken as inputs to the proposed multi-view
graph neural network (MVGNN) to learn region embeddings,
which include the implicit correlations between regions. Fi-
nally, the handcrafted features and learned region embeddings
are combined as final region representations, together with
corresponding economic development indicators such as GDP,
they can be leveraged to train regression models to make the
prediction. The details of the method will be elaborated in the
following subsections.

4.2 Intra-region Feature Extraction from Multi-source
Geospatial Data

For the multi-source geospatial data, knowledge-based hand-
crafted features can firstly be extracted. Specifically, for remote
sensing imagery, the zonal statistics (such as min, max, mean,
variance, etc.) of different bands within the regions can be ex-
tracted as corresponding features. For road networks, the stat-
istics of road length of different road types within regions can
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be leveraged as features. Details of the specific feature extrac-
tion can be found in Section 3.

4.3 Inter-region Correlation Modeling via Multi-view
Graphs

Based on different perspectives from different data, multi-
view graphs G are constructed to capture the correlations
across regions, including region adjacency graph Gadj and
region similarity graphs {Gsim

i }ni=1. For each data source,
there is a region similarity graph constructed, thus G =
{Gadj , Gsim

ntl , G
sim
msi, G

sim
rdn} here.

4.3.1 Spatial-aware Region Adjacency Graph To model
the spatial dependence of the regions, we propose to con-
struct a spatial adjacency graph Gadj = (V,Eadj) based on
region adjacency, where V = {vi}ni=1 is the node set and
Eadj = {ei,j}ni,j=1 is the edge set. In the graph, each node
vi denotes a region and each edge ei,j represents the adjacency
between node vi and vj . The adjacency matrix Aadj can be
used to indicate the topological adjacency between the regions,
where Aadj ∈ Rn×n, with the entry values Aadj

i,j ∈ {0, 1}, and
1 indicates direct adjacency.

4.3.2 Attribute-aware Region Similarity Graph Other
than spatial adjacency, some regions share similar attributes
which make them closer. To capture this kind of relation-
ship, we propose to construct region similarity graph Gsim =
(V,Esim) based on regional feature similarity. Similarly, V =
{vi}ni=1 is the node set and Esim = {ei,j}ni,j=1 is the edge set.
In the graph, each node vi denotes a region and each edge ei,j
represents the connection between node vi and vj , which is de-
termined by the similarity between their representative features.
Specifically, the cosine similarity is used in our settings.

4.4 Context-aware Region Embedding Learning via Self-
supervised MVGNN

To obtain the features of inter-region correlations, we propose a
self-supervised multi-view GNN model to learn region embed-
dings which can explicitly model the inter-region relationships
based on the built multi-view graphs. Specifically, the node
feature matrix X , together with the corresponding multi-view
graph structures G, can be leveraged to learn the region embed-
dings H to represent regions R, where H = {hv ∈ R

d, ∀v ∈
G}.

4.4.1 Model Architecture The architecture of the proposed
MVGNN is shown in Figure 3. The input intra-region features
are fed into the multi-view graph neural networks respectively
to produce view-specific embeddings, which are further fused
via the multi-view fusion module. The MVGNN is trained by
the learning objectives, including spatial adjacency and attrib-
ute similarity reconstruction losses.

Figure 3. Multi-view graph neural network (MVGNN).

Base GNN Module: After the construction of multi-view
graphs G = {Gadj , Gsim

ntl , G
sim
msi, G

sim
rdn}, a three-layer GAT

(Velickovic et al., 2018) module is used as our backbone model
to explicitly model the inter-node correlations as built in G, and
further learn the representations of graph nodes, i.e. region em-
beddings. The GAT layers can aggregate the embeddings of
neighbor nodes by weighted average with weights learned by
attention mechanism, and then apply non-linear transformation
(ReLU is used here).

Multi-view Fusion Module: To fuse the embeddings from the
different views, adapted weighted multi-view fusion module is
proposed. For each view, the fusion weights are learned from
the embeddings themselves via a single layer multi-layer per-
ceptron (MLP).

4.4.2 Learning Objectives To acquire effective region em-
beddings, self-supervised losses are designed as learning ob-
jectives to train the proposed MVGNN model. The overall loss
function to train the model can be formulated as follows:

L = Ladj + λLsim (1)

where Ladj and Lsim are the spatial adjacency reconstruction
loss and the attribute similarity reconstruction loss, respect-
ively. λ is the weight to control the importance between the two
losses. Specifically, Lsim can be further formulated as follows:

Lsim = Lntl + αLmsi + βLrdn (2)

where Lntl,Lmsi,Lrdn are the attribute similarity reconstruc-
tion losses from nighttime light, multispectral imagery, and
road networks, respectively. α, β are the weights to control the
importance between the losses.

Spatial Adjacency Reconstruction Loss: To reserve the prop-
erties of spatial adjacency between regions after region rep-
resentation learning, the learned region embeddings should be
able to reconstruct the spatial adjacency relationships. Specific-
ally, the reconstruction loss Ladj is designed to force the model
to learn embeddings that can reconstruct the spatial adjacency
matrix from the dot product of learned region embeddings by
mean square error:

Ladj =
1

n2

n∑

i=1

n∑

j=1

(Aadj
i,j − hadj

i

T
hadj
j )

2

(3)

where hadj
i is the embedding vector of region ri, which can

be learned from the combination of the NTL, MSI, and RDN
features.

Attribute Similarity Reconstruction Loss: To capture the in-
ner connections of feature similarity across regions, the learned
region embeddings are expected to reserve the ability to recon-
struct the degree of similarity between different regions. Spe-
cifically, the similarity reconstruction losses Lsim are proposed
to enable the model to learn embeddings that can reconstruct
the pairwise similarity matrix from the dot product of learned
region embeddings by mean square error:

Lsim(m) =
1

n2

n∑

i=1

n∑

j=1

(Asim
i,j (m)− hsim

i (m)
T
hsim
j (m))

2

(4)
where hsim

i (m) is the embedding vector of region ri for data
type m, where m ∈ {NTL,MSI,RDN}.
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4.5 Regression-based Economic Indicator Estimation

The learned region embeddings H can be further used to map
to the economic development indicator y, the key is to find the
mapping freg : H → y, where freg is the regression model to
learn from labelled data. In our experiments, Random Forest
regression model is used. It should be noted that arbitrary re-
gressors can be used to build the relation between region em-
beddings and corresponding economic indicators, such as lin-
ear regression (LR), support vector machine (SVR), multi-layer
perceptron (MLP), etc.

5. EXPERIMENTS AND ANALYSIS

5.1 Experimental Setup

5.1.1 Evaluation Metrics The root mean square error
(RMSE), mean absolute error (MAE), and mean absolute per-
centage error (MAPE) are used to evaluate the prediction er-
rors. In addition, the coefficient of determination (R2) is used
to measure the goodness-of-fit of the regression models:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(5)

where ȳ = 1
n

∑n
i=1 yi. n is the sample number for evaluation,

yi is the ground truth GDP value for region ri, while ŷi is the
estimated value. The best possible R2 value is 1 and the larger
values indicate better fit of the models. In our experiments, 5-
fold cross-validation is used to evaluate the results.

5.1.2 Model Training Settings PyTorch (Paszke et al.,
2019) and DGL (Wang et al., 2020) are used to implement the
proposed graph neural networks. Adam is used as the optim-
izer with learning rate of 0.0001. The training epochs are em-
pirically set to be 50. λ, α, β are set to be 1. The embedding
size of the MVGNN is set to be 64. Scikit-learn (Pedregosa et
al., 2011) is used to implement the regression models, includ-
ing random forest, linear regression, SVR, and MLP. For tar-
geted labels, log transformation is applied to GDP values to re-
duce the variance and further improve estimation performance
as per normal preprocessing of economic variables (Lütkepohl
and Xu, 2012).

5.2 Overall Results

The overall results with different input features are presented
in Table 1. It can be seen that, in general, all the data sources,
including the features from NTL, MSI, RDN, and the learned
embeddings from the proposed MVGNN model, can signific-
antly contribute to the estimation of GDP in our experiments,
with almost each source over 60% goodness-of-fit in terms of
R2 measure. Besides, the results of all the errors (i.e., RMSE,
MAE, and MAPE) are consistent, and are correlated with R2

negatively.

Despite with the smallest feature dimensions (only 9-d) among
the three sources of data, NTL features achieve the lowest er-
rors in terms of both RMSE, MAE, and MAPE, while with the
highest R2 of more than 72%, significantly outperform that of
MSI and RDN. These results are consistent with previous re-
search of NTL-based GDP estimation (Chen et al., 2020, Huang
et al., 2021) and further demonstrate the effectiveness of NTL
data in reflecting the patterns of socioeconomic activities. RDN
features have significantly higher R2 and lower errors than MSI,

Table 1. Results of different input features using RF regressor.
(ALL=NTL+MSI+RDN, MVGNN refers to the embeddings

learned from the MVGNN model with input features of ALL)

RMSE ↓ MAE ↓ MAPE ↓ R2 ↑
NTL 0.2679 0.2070 3.3799 0.7240
MSI 0.3250 0.2513 4.1025 0.5937
RDN 0.2971 0.2299 3.7686 0.6604
ALL 0.2211 0.1653 2.6951 0.8120
MVGNN 0.2445 0.1859 3.0449 0.7700
MVGNN+ALL 0.2121 0.1593 2.5982 0.8269

which shows the effectiveness of road networks in economic de-
velopment estimation and is quite reasonable since the lengths
of road networks can well indicate the infrastructure construc-
tion situations within an area. For MSI, though it obtains sig-
nificantly worse results than the other two sources, it can still
achieve a reasonable prediction with R2 slightly lower than
60%, which is inspiring since Landsat MSI data are widely
available with high spatial and temporal coverage.

Furthermore, the combination of all the three data sources can
achieve dramatically higher performance than single sources,
with R2 of over 81%. This shows the complementary of dif-
ferent data sources. Besides, the fusion of both the three data
sources and the MVGNN embeddings can further boost the
prediction results with an increase of about 1.5% in R2 value,
achieving 82.69%. The scatter plot of the predicted and true val-
ues of the log of GDP taking MVGNN+ALL as input is shown
in Figure 4. The results show the effectiveness of including
the inter-region correlations of different counties, and demon-
strate the feasibility of using graphs to model inter-region cor-
relations.

4 5 6 7 8
Predicted

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Tr
ue

Figure 4. Scatter plot of the estimated and true log10(GDP )
values taken MVGNN+ALL as input features. (The GDP unit is

104 RMB)

The spatial distribution of the predicted GDP values are shown
in Figure 5, which are the average of all the predictions made
by the trained models of five folds. As can be seen, the
GDP values are unevenly distributed in space, with signific-
antly higher GDP to the east, and along the coastlines. City
clusters such as Yangtze River Delta Megalopolis, Guangdong-
Hong Kong-Macau Greater Bay Area, Jing-Jin-Ji Megalopolis,
Yangtze River Midstream Megalopolis, Chengyu Megalopolis,
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etc. can be noticeably recognized from the clustered high GDP
distributions. In general, the spatial patterns of the predictions
are consistent with the real situations in China, which further
demonstrates the effectiveness of the proposed method in GDP
estimation and mapping.

Figure 5. Spatial distribution of the predicted GDP values.

5.3 Analysis of Feature Importance

When using the random forest regressor, the importance of dif-
ferent features can be calculated, i.e., the impurity-based feature
importances. The higher the score, the more important the fea-
ture. Specifically, the importance of a specific feature is com-
puted as the total reduction of the selected criterion (Gini index
here) contributed by that feature. The importance scores of the
top 10 features, taken ALL and MVGNN+ALL as input features,
are shown in Figure 6.

When taking ALL as the input features, the top 3 important fea-
tures are both from NTL (sum, mean, and standard deviation),
with the importance scores of 2.79, 0.59, and 0.07, respectively.
The top 2 features contribute significantly higher than other fea-
tures. The features of the lengths of the primary and footway
roads are ranked within top 10. The statistics (including vari-
ance, standard deviation, median, and mean) of the red band of
MSI are also ranked within top 10.

When taking MVGNN+ALL as the input features, the situation
is similar for NTL, it can be seen that the features of the sum and
mean of NTL remain to contribute to the most to the prediction,
with the top-1 importance score over 2.5, which is dramatically
higher than any other features. The top-1 feature (sum of NTL)
is almost 7 times the second-important feature (about 0.37), i.e.,
mean of NTL. The third-important feature of NTL is the stand-
ard deviation of NTL (0.049). The other features are all from
the learned embeddings of MVGNN.
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Figure 6. Bar chart of the importance scores of the top 10
contributing features with different input features. Left: ALL,

Right: MVGNN+ALL.

5.4 Evaluation of Regression Models

To further test the effects of using different regressors, the res-
ults of using popular regression machine learning models are
presented in Table 2. It can be seen that the RF model outper-
forms the other regressors by a large margin. While SVR and
MLP show similar performance, which however significantly
better than LR model.

Table 2. Results of using different regression models with input
of ALL features.

RMSE ↓ MAE ↓ MAPE ↓ R2 ↑
LR 0.2763 0.2070 3.3877 0.7064
SVR 0.2455 0.1850 3.0405 0.7681
RF 0.2211 0.1653 2.6951 0.8120
MLP 0.2482 0.1837 3.0176 0.7630

5.5 Evaluation of GNN Backbones

To further examine the effects of different GNN backbones, we
compare the results of GAT (Velickovic et al., 2018) with other
popular graph convolutional neural networks, including GCN
(Kipf and Welling, 2017) and GraphSAGE (Hamilton et al.,
2017), and the results are presented in Table 3. The results show
that the GAT backbone slightly outperforms GCN and Graph-
SAGE backbones in our experiments, and all the results im-
prove the performance compared with not using any GNN em-
bedding features. These results imply that even simpler GNN
models can still learn useful inter-region correlation features
and add value to the GDP prediction task, which further high-
lights the importance of utilizing inter-region correlations.

Table 3. Results of using different GNN backbones.

RMSE ↓ MAE ↓ MAPE ↓ R2 ↑
GCN 0.2139 0.1606 2.6184 0.8240
GraphSAGE 0.2171 0.1632 2.6631 0.8187
GAT 0.2121 0.1593 2.5982 0.8269

5.6 Evaluation of Training Epochs

To evaluate the impacts of training MVGNN with different
epochs, we present the experiment results in Table 4. As can
be seen, the MVGNN features achieve the best performance
when trained with 50 epochs. However, more training epochs
do not always bring improvement, the results get worse when
training too many epochs. Besides, it is surprising that the fea-
tures extracted from MVGNN without any training can still be
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effective, and even lead to better results than models trained
with hundreds of epochs. This phenomenon suggests that the
graph neural network (based on built multi-view graphs) with
randomized model weights can already embed the inter-region
relationships into the learned embeddings, and thus add extra
useful information for GDP estimation.

Table 4. Results of using region embeddings learned from
MVGNN of different training epochs.

Epoch RMSE ↓ MAE ↓ MAPE ↓ R2 ↑
0 0.2142 0.1616 2.6358 0.8235
1 0.2141 0.1616 2.6348 0.8236
10 0.2147 0.1618 2.6383 0.8227
50 0.2121 0.1593 2.5982 0.8269

100 0.2132 0.1615 2.6346 0.8251
200 0.2158 0.1622 2.6453 0.8208
500 0.2159 0.1624 2.6508 0.8207

6. DISCUSSION AND CONCLUSIONS

In this paper, we propose a machine learning-based method to
estimate the economic development using multi-source open
geospatial data, including nighttime light, multispectral remote
sensing imagery, and OSM road networks. We firstly extract
knowledge-based handcrafted features from the open data to
characterize regions. Then, to take advantages of the inter-
region correlations, we propose a multi-view graph neural net-
work model, which is built on the spatial adjacency graph and
attribute similarity graphs. The MVGNN model is trained in a
self-supervised fashion so that it can effectively learn from dif-
ferent sources of data and further fuse them to derive region em-
beddings. After that, random forest regression models are lever-
aged to estimate economic development from the combination
of handcrafted features and these learned embeddings. Extens-
ive experiments have been conducted in estimating the GDP
of the mainland China, and the results demonstrate the effect-
iveness of the proposed method which achieves an overall R2

of 82.69% in cross-validation from the open-source geospatial
data. We also analyze the importance of different features, and
show the dominant contribution of NTL, and also confirm the
indispensable contributions from RDN and MSI. The proposed
method advances the goal of acquiring timely and accurate so-
cioeconomic variables through open accessible geospatial data,
and is promising to extend to more variables and other geo-
graphic regions to support smart governance.

The proposed method has both merits and demerits. For the
merits, 1) the research is totally based on open available geo-
spatial data, which ensures the generalization ability of the
solution for economic development evaluation; 2) the proposed
MVGNN model is trained in a self-supervised manner which al-
leviates the need for extra labeled data, and it can make full use
of the inner relations between regions and their corresponding
features to boost the results of using only intra-region features.
For the demerits, 1) it is difficult to interpret the learned embed-
dings, so that it counters the demand from socioeconomic ana-
lysis, which usually require high interpretability of models and
results; 2) the design of the MVGNN model architecture and
learning objectives are crucial for effective region embedding
learning, but also dependent on specific applications and data.
In summary, though with some challenges, the proposed ma-
chine learning-based economic development estimation method
shows a great potential for real-world applications and the re-
mained issues deserve further studies.
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