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ABSTRACT:

Roads found in informal settlements arise out of convenience, and are often not recorded or maintained by authorities. This
complicates service delivery, sustainable development and crisis mitigation, including management and tracking of COVID-19.
We, therefore, aim to extract informal roads in remote sensing images. Existing techniques aiming at the extraction of formal
roads are not suitable for the problem due to the complex physical and spectral properties of informal roads. The only existing
approaches for informal roads, namely (Nobrega et al., 2006, Thiede et al., 2020), do not consider neural networks as a solution.
Neural networks show promise in overcoming these complexities. However, they require a large amount of data to learn, which is
currently not available due to the expensive and time-consuming nature of collecting such data. This paper implements a neural
network to extract informal roads from a data set digitised by this research group. Data quality is assessed by calculating validity
completeness, homogeneity and the V-measure, a measure of consistency, in order to evaluate the overall usability of the dataset for
neural network informal road detection. We implement the GANs-UNet model that obtained the highest F1-score in a 2020 review
paper (Abdollahi et al., 2020) on the state-of-the-art deep learning models used to extract formal roads. The results indicate that the
model is able to extract informal roads successfully in the presence of appropriate training data.

1. INTRODUCTION

The COVID-19 pandemic forced the world to take keen interest
in high risk areas and how to prevent them from becoming hot
spots (Corburn et al., 2020). Informal settlements carry high
risk due to the close proximity of dwellings and overcrowding
caused by the lack of adequate and secure housing (Corburn et
al., 2020). Most residents have to travel out of the informal set-
tlement for school, work or health services (Iimi et al., 2016).
An estimated third of all city dwellers worldwide lived in in-
formal settlements in 2007, and these numbers have been rising
ever since due to rapid urbanisation (UN Habitat, 2006). Due
to their unplanned nature basic services and infrastructure are
often unavailable(UN Habitat, 2015). In order to ensure basic
human dignity and stimulate economic activity, governments
aim to upgrade and develop these areas. South Africa has sev-
eral such development plans in accordance with the United Na-
tions’ Sustainable Development Goal 9 on Innovation, Industry
and Infrastructure1, for instance project Tirane in Tshwane2.

Naturally, a need arises to expand and develop transportation in-
frastructure when there is an increase in population (Zhao et al.,
2016, Rui, 2013). Governments invest heavily in the develop-
ment and expansion of transportation infrastructure to prevent
∗ Corresponding author: inger.fabris-rotelli@up.ac.za
1 United Nations: https://unstats.un.org/sdgs/metadata/

?Text=&Goal=9&Target=9.1 Accessed 18 April 2021.
2 Democratic Alliance: DA-led Tshwane Selling Mayoral Man-

sion to Bring Better Services. Available online: https:

//www.da.org.za/2017/07/da-led-tshwane-selling-

mayoral-mansion-bring-better-services/ Accessed 18 April
2021.

traffic congestion, overcrowding and improve the ease of trans-
porting goods and services (Zhao et al., 2016). Informal set-
tlements also face the problem of congestion and overcrowding
when their population increases, forcing these settlements to
grow and develop new transportation networks. This means that
governments are not regularly investing into road networks for
informal settlements. The road network in informal settlements
are informal roads or a combination of formal and informal
roads. Informal roads are created without government approval
or knowledge and are not maintained by government, nor do
they appear in any official databases or maps. Residents create
these roads to accommodate their need for efficient transport by
walking, cycling or driving to points of interest. This presents a
problem for service delivery, medical services, criminal activity
prevention and environmental emergencies, since the relevant
teams will not know the most efficient route to the destination.
Information on road networks in informal settlements will also
make it easier to plan the best placement for emergency support
facilities in informal settlements. In the South African context
this is a great concern since the population in informal settle-
ments is growing at a faster pace than elsewhere (Runsten et al.,
2018). The pace of population growth also causes the informal
roads to change more rapidly. Therefore, real-time road data
is critical for service delivery, emergency responses and crisis
mitigation measures. An automatic road extraction model from
remote sensing imagery stands as a solution.

Neural networks show promise for application to informal road
detection. Not only have neural networks been proved to be the
most accurate method of road detection to date (Cheng et al.,
2017, Kirthika and Mookambiga, 2011, Mendes et al., 2016),
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but since formal and informal roads are both linear objects with
shape-defining boundaries, the same method of object classific-
ation using neural networks can be used for informal road de-
tection (Thiede et al., 2020). Object classification is a method
of segmenting an input image and determining detailed features
such as shape, context and spectral characteristics in order to
assign a more informed classification, and it has already been
documented to result in more accurate informal road detection
than previous methods of per-pixel classification (Nobrega et
al., 2006). Informal roads often contain contaminants such as
littering, vegetative debris and construction waste that per-pixel
classification can easily misclassify, due to both boundary and
texture inconsistency. This results in the training dataset incor-
rectly teaching the neural network what should be labelled as
a road (Nobrega et al., 2006). This effect is exacerbated by
the presence of vegetation, shadows and bare soil. Bare soil
and vegetation encroaching on road boundaries can reasonably
be expected near informal roads that lack official maintenance.
Bare soil of an unpaved informal road is difficult to distinguish
from the bare soil of the adjacent plots of land. Object clas-
sification performs better with these complications since addi-
tional geometric, spectral and topological parameters help put
road heterogeneity into context and reduce misclassifications
(Nobrega et al., 2006). This mitigation of heterogeneity further
justifies the use of neural networks as a solution for informal
road detection.

This paper contributes the first digitised informal road remote
sensing data set, as well as a trained neural network for road
extraction, specifically improving informal road extraction. A
dataset is created that consists of manually labelled aerial pho-
tographs in which informal roads are digitised and labelled us-
ing GIS software3.

2. LITERATURE REVIEW

With the advancement of technology and specifically the in-
crease of Volunteered Geographic Information (Goodchild, 2007),
the need for quality-controlled data has become increasingly
important. Open-source software like OpenStreetMap (Girres
and Touya, 2010) allows anyone to create datasets relevant to
previously overlooked problems like informal road detection.
The volume of newly available data, however, makes diligent
supervision and necessary data quality assessment difficult. In
order to ensure standardisation and accuracy, crowd-sourced
geographical data requires additional modelling and capture agree-
ments (Goodchild, 2007) such as a “three recordings rule” which
requires tracking data to first be provided by three independent
sources before it is integrated into the dataset. Similar meas-
ures could be applied to manually digitalised datasets, but these
datasets are still affected by the heterogeneity of geographical
data as well as margins of error associated with human input
(Goodchild, 2007). Informal road detection requires due dili-
gence in both the data capturing and the data analysis stages.
This is because very little ground truth data is available on in-
formal road networks. Therefore, the accuracy of the dataset
relies entirely on its adherence to strict standards of data qual-
ity.

Currently the mapping of informal roads is an expensive, time
consuming manual process. Informal settlements and their as-
sociated informal road network can form very rapidly (UN Hab-
itat, 2006). Google relies on official maps obtained from a
variety of sources, such as governments and institutions which

3 The research was approved by under ethics number NAS200/2021.

are then combined with satellite imagery. Some of these im-
ages have spatial information such as roads already overlaid,
for example those obtained from the TIGER geodatabase 4 pro-
duced by the USA’s Census Bureau. TIGER files’ spatial data
is mapped manually. Google employs hundreds of map tech-
nicians to ensure location accuracy, add in missing roads on
the images, extract additional information from Google street
view images (obtained by driving cars equipped with cameras
out to the actual location) and improve on inaccuracies reported
by users. Much of the information obtained from Google street
view is processed by image recognition algorithms and added to
the map, but are still reviewed by humans and improved by user
feedback. Some use is also made of anonymised movement
data from Android device users to validate roads and traffic
movement. Users can add in missing information or make cor-
rections directly in Google mapmaker, but the developers ex-
plain that this must also be validated by a Google technician
before it is published. In other words, even for a large com-
pany in the business of creating software and maps, there is still
heavy reliance on manual labour in order to produce a finished
product.

Data quality can broadly be defined as fitness for use (Wang and
Strong, 1996). When data quality is assessed, we are therefore
measuring whether the dataset is reliable enough to be of use in
accordance with the criteria of a particular use case. A number
of methods to measure accuracy are available. Completeness is
a popular measure of data quality for road detection algorithms
(Heipke et al., 1997) due to its ease of calculation. This measure
was used by (Nobrega et al., 2006, Thiede et al., 2020, Thiede,
2019, Li et al., 2016). Other common performance metrics are
F1-score, recall, precision, overall accuracy, correctness, Inter-
section over Union (IoU) and the kappa coefficient (Abdollahi
et al., 2020). The V-measure, adapted by Nowosad and Ste-
pinski (Nowosad and Stepinski, 2018) from the information-
theoretical application, is a very useful method of comparing
two categorical maps. The output is a single, easily comparable
and interpretable value, which incorporates completeness and
homogeneity of the categorical regions.

Previous methods on the extraction of informal roads (Nobrega
et al., 2006, Thiede et al., 2020) have not used neural networks.
This is the only literature available on informal road extrac-
tion. The biggest difficulty in using neural networks is the
large amount of labelled data required for training. High res-
olution satellite images are very expensive potentially making
deep learning methods impractical for developing countries that
do not have their own satellites. Unmanned aerial vehicles
(UAVs) have become more popular in image classification like
forest mapping (Ruwaimana et al., 2018) and tomato detec-
tion (Senthilnath et al., 2016) since they are cheaper altern-
atives to high resolution satellite imagery. Drone images are
cheaper over long-term use and work very well in humid cli-
mates (Ruwaimana et al., 2018). Satellites are dependent on
external software when accumulating images, where UAVs use
an embedded camera and a map of the environment making it
a better solution when GPS fails (Mantelli et al., 2019). Aerial
photography was made use of in our research.

Neural networks aim to simulate the visual capabilities humans
have and teaching an algorithm to have these same capabilit-
ies. (Wang et al., 2016) reviewed 30 years’ worth of road ex-
traction methods. These methods were classified into mathem-
atical morphology, active contour models, dynamic program-
ming, classification-based methods and knowledge-based meth-
ods. The classification-based methods are further sub-divided
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into supervised and unsupervised learning, where neural net-
works (NNs) form part of the former. Previous works such as
(Wang et al., 2015, Zhang et al., 2018, Xu et al., 2018) show
that convolutional NNs (CNNs) (Buslaev et al., 2018, Wei et
al., 2017) and generative adversarial networks (GANs) (Zhang
et al., 2019) are popular methods for road extraction. (Abdol-
lahi et al., 2020) systematically reviewed the four main groups
of deep learning methods that are currently used most often for
road extraction. These groups are GANs models, fully connec-
ted convolutional NNs, deconvolutional NNs like DenseNets,
and patch-based convolutional NNs. The authors conclude that
deep learning methods are the most effective in road extraction
compared to regular approaches. Also, due to robust pre- and
post-processing techniques these methods can be used on all
types of roads, not just main and feeder roads.

The literature presented thus far only applies deep learning road
extraction methods to formal roads, but none on informal roads.
This paper presents a trained GANs-UNet model on a subset
of a new manually digitised data set digitised by this research
group. Both the model trained on our data set and the pre-
trained model presented in (Isola et al., 2017) are then tested
on unseen data from our data set to see how a model designed
and trained on formal road data sets performs on an informal
road data set.

3. METHODOLOGY

3.1 The Data

Figure 1 shows a snapshot of an area near the Khayelitsha town-
ship in the Western Cape province in South Africa. Khayelitsha
presents a useful area to train a neural network due to its wide
variety of complex roads. The differences can clearly be seen
between the urban roads on the left hand side, and informal
roads on the right hand side of the image. The challenges in-
formal roads pose to road extraction methods are listed and
highlighted in the figure from A to D. A showcases how in-
formal roads vary in length and width, B how informal roads
do not appear in regular patterns, C shows how the colouring
of informal roads are the same as the area around them and D
shows how the colouring of informal roads is not constant.

Figure 1. Aerial imagery of Khayelitsha Township in Western
Cape, South Africa, obtained through a WMS service published

by the City of Cape Town

Aerial images of informal roads that were manually digitised
in ArcGIS by four digitisers to provide a training data set for
the neural network, are of the informal settlement Khayelitsha
in South Africa. This high resolution imagery is available from
the City of Cape Town4.
4 Imagery was obtained from the following website, https:

Figure 2. Aerial imagery indicating the region areas digitised in
Khayelitsha, South Africa. (Polygon 11 shown in red.)

3.2 Digitisation

The project demarcated the area into 23 regions of 30cm res-
olution at a 1:500m scale representing informal roads of the
area. These areas are shown in Figure 2. The digitising was
done by four digitisers who digitised each of the polygons in-
dividually. The digitisers worked independently but collabor-
ated throughout the project on any digitisation challenges and
recommendations for improvement. Roads were digitised as
polygons rather than road center lines to compensate for the ir-
regularity of informal roads’ width and shape. Three type of in-
formal roads were defined, namely footpaths, vehicle roads and
throughways. Footpaths are those that are used by pedestrians
that are not broad enough for vehicles, but have the possibility
to be broadened. Vehicle roads are broad enough for a vehicle
to use and a throughway are those routes in-between houses that
are too narrow to be used by a vehicle. In this paper all three
attribute types were combined to test the improvement in road
extraction of the neural network.

Logical rules and definitions were defined for the digitisers to
reduce the variation between their data sets. The rules were
specified as follows:

• Digitise up to the edges of where sandy soil is visible due
to the movement of people and vehicles.

• Ignore footpaths or vehicle paths that are faint and not vis-
ibly used.

• Roads should be connected in some way to at least one
other road.

• Vegetation and shadows are included in the road polygon
if it is clear that the road continues underneath it.

• Digitise the 23 polygons in the same order: Polygon 11
was digitised first as a pilot digitising and the remaining
22 polygons are then digitised from 1 to 23. This allowed

//citymaps.capetown.gov.za/agsext1/rest/services/

Aerial_Photography_Cached/AP_2018_Feb/MapServer
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Figure 3. Bar charts of V-measures for each area polygon, for every possible data set pair. V-measures are the same for data set
combinations.

Figure 4. A circular bar chart of ordered V-measures for every
unique data set combination, not including self-comparisons.

any necessary developments and rule amendments to be
introduced in such a way that all still digitise according to
the same standards.

3.3 Accuracy Metric

When doing pairwise map comparisons, accuracy can be eas-
ily summarised into a singe useful score, called the V-measure
(Goodchild, 2007). The V-measure, proposed by (Nowosad and
Stepinski, 2018) can be used when comparing the categorical
regions of two maps of the same location. It is the optionally
weighted harmonic mean of the completeness (c) and homo-
geneity (h) scores of the two maps,

Vβ =
(1 + β)hc

βh+ c
. (1)

Two maps are placed on top of one another and the regions
resulting from the intersections are then used to calculate the

homogeneity and completeness, by their cluster theory defini-
tions. The homogeneity is a function of how well the regions in
the second map fit into those of the first, and the completeness
is a function of the reverse. The V-measure can be calculated
using the R-project5 package sabre6.

3.4 The GANs-UNet model

We implement one of the three models in (Abdollahi et al.,
2020) to demonstrate the training using our data set. We im-
plement the GANs-UNet model since it achieved the highest
F1-score in (Abdollahi et al., 2020).

GANs models (Goodfellow et al., 2014) consist of two frame-
works, namely the generator, G, and discriminator, D, net-
works. These two networks compete against each other where
G learns how to generate data so that D will not be able to dis-
tinguish between the generated data and the actual data, while
D learns how to identify data generated by G and the actual
data (Goodfellow et al., 2014, Varia et al., 2018). The train-
ing of these two frameworks happens simultaneously where G
tries to minimise the objective function while D tries to maxim-
ise the objective function (Goodfellow et al., 2014, Isola et al.,
2017). Equation (2) shows the objective function LGAN (G,D)
being minimised and maximised, where G(z; θg) is a differ-
entiable function represented as a multi-layer perceptron with
parameters θg and represents the mapping from a random noise
vector z to an output image y.

min
G

max
D

LGAN (G,D) = Ex∼pdata(x)[log(D(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(2)

The function D(x; θd) is also a multi-layer perceptron that has
a single scalar value as its output and D(x) is the probability
that x is from the data and not pg . Note that pz(z) represents

5 R Core Team (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/

6 SABRE: Spatial Association Between REgionalizations. https://

nowosad.github.io/sabre/articles/sabre.html Accessed 26
October 2021.
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a prior defined so that the distribution of G, pg , over data x
can be learnt and pdata(x) is the distribution of the data itself
(Goodfellow et al., 2014).

The GANs-UNet model also learns a generative model like a
normal GAN, but in a conditional way (Isola et al., 2017). The
conditional GANs or cGANs learns a structured loss that only
penalises “the joint configuration of the output”, and learns to
map an observed image x and a random noise vector z to y, G :
x, z → y. The expression of the objective function of a cGAN
model is given by Equation (3). The goal of G is to minimise
the objective function against D, while D tries to maximise the
objective, which is shown in Equation (4) (Isola et al., 2017).

LcGAN (G,D) = Ex,y[log(D(x, y))]

+ Ex,z(log(1−D(x,G(x, z)))] (3)
G∗ = argmin

G
max
D

LcGAN (G,D) (4)

The generator network follows a U-Net based architecture (Ron-
neberger et al., 2015) that consists of a contracting and a sym-
metric expanding path. The contracting path captures the con-
text and the expanding path “enables precise localisation” (Ron-
neberger et al., 2015). A U-Net type of architecture network
passes the input through layers that down sample until a bottle-
neck layer is encountered and the following layers up sample
(Ronneberger et al., 2015, Isola et al., 2017). (Isola et al., 2017)
point out that in most image translation problems, a lot of low-
level information that is shared between input and output is de-
sired to be directly fed across the network. Their example is
that of an image colourisation task where the input and output
shares the positions of the most notable edges.

Figure 5. GANs-UNet generator function’s architecture from
(Isola et al., 2017).

Skip connections provide the solution of this problem as they
feed low-level information directly to the decoder part of the
network. Therefore skip connections were included between
each layer i and layer n − i with n being the total number of
layers in the model. Every skip connection concatenates the
channels that are at layer i with the channels that are at layer
n − i. When (Varia et al., 2018) implement the model they
repeat a down-sampling stack of two convolutional layers that
uses filters of size 3× 3, a ReLU layer and a maximum pooling
layer that uses a stride of 2 before the bottleneck layer. The
function for the ReLU function is given by ReLU : f(x) =
max(0, x).

Figure 5 shows the architecture of the generator function pro-
posed by (Isola et al., 2017) that (Varia et al., 2018) implemen-
ted on formal road data and we apply to informal road data.

The discriminator network utilises a PatchGAN to distinguish
between a real and a fake image that was generated by the gen-
erator network that the research team of (Isola et al., 2017) de-

Figure 6. GANs-UNet discriminator function’s architecture from
(Ao et al., 2018).

signed. This architecture only focuses on the design of local im-
age patches so that it penalises the structures at the scale of the
patches. The discriminator’s goal is to decide if each patch in an
image is from the input data or from the generator. The output
of the discriminator is the average of all of the responses after
the discriminator is convolutionally run across the image. Fig-
ure 6 shows the discriminator function’s architecture that (Isola
et al., 2017) proposed and implemented by (Varia et al., 2018)
to extract formal roads.

4. IMPLEMENTATION

4.1 Dataset

The data set used in this paper is the merger of the four digitised
data sets of Polygon 11, considering human error by excluding
digitised regions without significant consensus. This data inter-
section is combined with the City of Cape Town’s official road
center lines dataset, buffered according to the width attribute
when available, otherwise a 5m buffering7. Polygon 11 has a
3.71 km2 coverage at a resolution of 30cm.

4.2 Training and testing

The high-resolution aerial imagery was split into 64 tiles of
600 × 600 pixels and their corresponding digitised segmenta-
tion masks. We further split the tiles by randomly assigning
the tiles and their digitised maps into the following sets: 70%
training, 15% validation and 15% testing. To overcome the is-
sue of a limited data set and to reduce overfitting, we artifi-
cially enlarge the data set using label-preserving transforma-
tions. This is done by generating extra training data from the
available tiles, through image flipping, cropping, rotations, and
translations. The result is a total training set of 206 images.
We employed a Linode cloud GPU using an NVIDIA Quadro
RTX 6000 GPU (Graphics Processing Unit) to train our model.
We use a batch size of 64 and a starting learning rate of 0.02
which is reduced with a factor of 0.01 when the loss continues
to increase for more than 10 epochs up to a minimum of 0.0001
during training. The trained model and the pre-trained model
were tested on 13 images. The GANs-UNet code that was used
to train and to get a pre-trained model is available at https://
github.com/junyanz/pytorch-CycleGAN-and-pix2pix as
the pix2pix model.

4.3 Model evaluation

The process of training a GAN model involves training two
models concurrently namely; the generator and discriminator.

7 https://odp/capetown.gov.za/datasets/tct-road-

centerlines/explore
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We therefore can not objectively assess the image quality or
diversity produced by the generator exclusively from the loss
function. Furthermore, it would be very time consuming to
manually inspect all generated images to assess model perform-
ance. Fortunately there are a number of plausible quantitative
and qualitative evaluation metrics used to assess GANs in lit-
erature. One such widely accepted metric which provides a
robust assessment of GANs is the Fréchet Inception Distance
(FID) score proposed by (Heusel et al., 2017).

The FID score gives the distance between the probability of ob-
serving real world data pw(.) ∼ Gaussian with mean (m,C)
and the the probability of generating model data p(.) ∼ Gaus-
sian with mean (mw, Cw). This is given by:

d2((m,C), (mw, Cw)) = ∥m−mw∥22+Tr(C+Cw−2(CCw)
1/2).

(5)

A high FID score indicates low-quality predicted image; while,
a lower score indicates a high-quality image prediction. We
measured FID on all resulting generated images as opposed to
during training.

Figure 7. Model Evaluation: FID score

As can be seen in Figure 7, the model trained on the more accur-
ately digitised images does a better job at generating informal
roads images than the pre-trained model.

5. RESULTS

The 4 digitisations were analysed for accuracy using the V-
measure. By definition, the V-measure is symmetrical. This
means that it does not matter which map is used as first or
second in the comparison. This is clearly seen in Figure 3,
where the V-measures for the area polygons are plotted for every
possible permutation of the four digitisations. Only the unique
combinations (not including self-comparisons) need then be used
when searching for area polygons that are consistently scoring
low or high V-measures. These area polygons are easily spot-
ted in Figure 4, a circular graph of the area polygon V-measures
for the unique combinations. The area polygons are ordered ac-
cording to V-measure size. Since the only possible range for
the V-measure is zero to one, the three value markers on the
plot serve as quartiles.

The hypothesis was that the polygons digitised last would prove
more similar, have higher V-measures, than the polygons di-
gitised first. The polygons were digitised in numerical order.
However, this is clearly not the case. They seem to be scattered
randomly among the ordered V-measures. Studying the lowest

Figure 8. Results obtained from using the pre-trained maps2sat
model (model 1) vs our trained model (model 2).

and highest scoring polygons give insight into the difficulties
experienced by the digitisers and the reasons why data sets con-
verged or diverged.

The highest scoring polygons are numbers 13 and 9. These
were both small area polygons consisting of mostly informal
housing and informal roads. The smaller size of the polygons
makes it easier not to miss a road whilst digitising, and the
homogeneous area type makes road classification less challen-
ging. Road edges were easy to identify here, since buildings
helped define them. Quite a number of area polygons have con-
sistently low V-measures. These are numbers 1, 2, 4, 5, 10, 11,
19, 20, 21, all with poorly identifiable road edges, faded roads
in rural areas, and a mixture of road and area types causing con-
fusion about how roads should be digitised or classified.

Figure 8 shows the results obtained from the pre-trained model
(model 1) proposed by (Isola et al., 2017) and the same model
trained on our data set (model 2). In Figure 8, the fist column
shows the predictions produced by the pre-trained model, the
second column the predictions produced by the model trained
on our data and the third and fourth columns show the features
and labels respectively. Figure 9 illustrates a complex area with
example. The model still experiences difficulties. Figure 10
shows the loss function produced when training the model on
our data set.

Figure 9. The GANs-UNet model for a very complex area.

6. DISCUSSION

If we compare the labels and features columns in Figure 8 to
both prediction columns, it is strikingly clear how well the model
performs in extracting informal roads when it is trained on in-
formal roads in comparison to the pre-trained model which did
not have exposure to informal roads during training. The pre-
trained model successfully extracted every paved road in the
images, but struggled with any road that was not paved. Fig-
ure 8 also shows that model 2 can still improve extraction of
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the finer informal roads. Figure 9 shows that there is still room
for improvement in the model since it misses the complex in-
formal roads, specifically the numerous small roads in between
informal, haphazard houses. This is due to difficulty digitising
these areas. Even in high resolution imagery it is difficult for the
human eye to decide which paths are viable. Additional man-
power is needed to digitise such areas. However, the trained
neural network shows significant improvement over (Thiede,
2019, Thiede et al., 2020).

Figure 10 shows how the generator and discriminator losses (G-
GAN) relate to the adversarial training of the auto-encoder por-
tion of the network while the generator loss (G-L1) relates to the
quality of the generated image. The L1 loss tends to improve
as the number of training epochs increase. With more training
samples and a longer training time, this could possibly be fur-
ther improved. The discriminator losses also converge around
[0, 1].

Although the digitisation accuracy indicates that improvement
can be made, the trained neural network indicates significant
results for informal road extraction none-the-less. Future re-
search aims to manually recheck the digitisation and make im-
provements, incorporate the attribute types and the ability of a
neural network to predict attribute type investigated. The need
for a training data set of informal roads and pathways is import-
ant in order to progress towards informative extraction. This
research is the first approach to training a road detection model
using the concept of an informal road. The societal benefits ex-
tend into more rural areas across Africa as well, and can provide
knowledge of a country’s growth and needs. The full data set
will be made freely available, in order to benefit other research-
ers and stakeholders.

7. CONCLUSION

In conclusion, the GANs-UNet model that was designed to ex-
tract formal roads also successfully extracts informal roads when
trained on a data set that consists of informal and formal road
labels. The informal roads training data developed here is the
first available. Future work will extend this research by train-
ing and testing the other two strong deep learning models in
(Abdollahi et al., 2020) on our data set, and will consider ad-
aptations where needed as well as investigate transferability. In
addition, the full data set will be available and consist of the 22
other polygons. Further research is underway on the best mech-
anisms to merge the digitisers’ data sets towards achieving the
best ground truth. In addition, the extraction of each type of
road will be investigated as they serve different purposes and
result in different stakeholder interventions.

ACKNOWLEDGEMENTS

The project has been funded by Data Science Africa. http://
www.datascienceafrica.org/dsa-research-awards-2020/

REFERENCES

Abdollahi, A., Pradhan, B., Shukla, N., Chakraborty, S.,
Alamri, A., 2020. Deep learning approaches applied to remote
sensing datasets for road extraction: A state-of-the-art review.
Remote Sensing, 12(9).

Ao, D., Dumitru, C., Schwarz, G., Datcu, M., 2018. Dia-
lectical GAN for SAR image translation: From Sentinel-1 to
TerraSAR-X. Remote Sensing, 10(10), 1597.

Buslaev, A., Seferbekov, S., Iglovikov, V., Shvets, A., 2018.
Fully convolutional network for automatic road extraction from
satellite imagery. Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, 207–210.

Cheng, G., Wang, Y., Xu, S., Wang, H., Xiang, S., , Pan,
C., 2017. Automatic road detection and centerline extrac-
tion via cascaded end-to-end convolutional neural network.
IEEE Transactions on Geoscience and Remote Sensing, 55(6),
3322–3337.

Corburn, J., Vlahov, D., Mberu, B., Riley, L., Caiaffa, W.,
Rashid, S., Ko, A., Patel, S., Jukur, S., Martı́nez-Herrera, E.,
2020. Slum health: arresting COVID-19 and improving well-
being in urban informal settlements. Journal of Urban Health,
97(3), 348–357.

Girres, J.-F., Touya, G., 2010. Quality assessment of the French
OpenStreetMap dataset. Transactions in GIS, 14(4), 435–459.

Goodchild, M., 2007. Citizen as voluntary sensors: Spatial data
infrastructure in the world of web 2.0. International Journal of
Spatial Data Infrastructures Research, 2(1), 24–32.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generat-
ive adversarial nets. Stat, 1050, 10.

Heipke, C., Mayer, H., Wiedemann, C., Jamet, O., 1997. Eval-
uation of automatic road extraction. International Archives of
Photogrammetry and Remote Sensing, 32(3 SECT 4W2), 151-
160.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Ho-
chreiter, S., 2017. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. Advances in neural in-
formation processing systems, 30.

Iimi, A., Ahmed, F., Anderson, E., Diehl, A., Maiyo, L.,
Peralta-Quirós, T., Rao, K., 2016. New rural access index: main
determinants and correlation to poverty. World Bank Policy Re-
search Working Paper.

Isola, P., Zhu, J., Zhou, T., Efros, A., 2017. Image-to-image
translation with conditional adversarial networks. Proceedings
of the IEEE Conference on Computer Vision and Pattern Re-
cognition, 1125–1134.

Kirthika, A., Mookambiga, A., 2011. Automated road net-
work extraction using artificial neural network. 2011 Interna-
tional Conference on Recent Trends in Information Technology
(ICRTIT), IEEE.

Li, M., Stein, A., Bijker, W., Zhan, Q., 2016. Region-based
urban road extraction from VHR satellite images using binary
partition tree. International Journal of Applied Earth Observa-
tion and Geoinformation, 44, 217-225.

Mantelli, M., Pittol, D., Neuland, R., Ribacki, A., Maffei, R.,
Jorge, V., Prestes, E., Kolberg, M., 2019. A novel measurement
model based on abBRIEF for global localization of a UAV over
satellite images. Robotics and Autonomous Systems, 112, 304–
319.

Mendes, C., Frémont, V., Wolf, D., 2016. Exploiting fully con-
volutional neural networks for fast road detection. 2016 IEEE
International Conference on Robotics and Automation (ICRA),
IEEE, 3174–3179.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2022-267-2022 | © Author(s) 2022. CC BY 4.0 License.

 
273



Figure 10. The loss function of the GANs-UNet, or pix2pix, trained on our data set.

Nobrega, R., O’Hara, C., Quintanilha, J., 2006. Detecting
roads in informal settlements surrounding Sao Paulo city by
using object-based classification. Proceedings of the 1st Inter-
national Conference on Object-based Image Analysis (OBIA
2006), Salzburg, Austria, 4–5.

Nowosad, J., Stepinski, T. F., 2018. Spatial association between
regionalizations using the information-theoretical V-measure.
International Journal of Geographical Information Science,
32(12), 2386-2401.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-
net:Convolutional networks for biomedical image segmenta-
tion. International Conference on Medical Image Computing
and Computer-Assisted Intervention, Springer, 234–241.

Rui, Y., 2013. Urban growth modeling based on land-use
changes and road network expansion. PhD thesis, KTH Royal
Institute of Technology.

Runsten, S., Nerini, F., Tait, L., 2018. Energy provision in
South African informal urban settlements- A multi-criteria sus-
tainability analysis. Energy Strategy Reviews, 19, 76–84.

Ruwaimana, M., Satyanarayana, B., Otero, V., Muslim, A.,
Syafiq A., M., Ibrahim, S., Raymaekers, D., Koedam, N.,
Dahdouh-Guebas, F., 2018. The advantages of using drones
over space-borne imagery in the mapping of mangrove forests.
PlOS ONE, 13(7), e0200288.

Senthilnath, J., Dokania, A., Kandukuri, M., Ramesh, K.,
Anand, G., Omkar, S., 2016. Detection of tomatoes using
spectral-spatial methods in remotely sensed RGB images cap-
tured by UAV. Biosystems Engineering, 146, 16–32.

Thiede, R. N., 2019. Statistical accuracy of an extraction al-
gorithm for linear image objects. Master’s thesis, University of
Pretoria.

Thiede, R. N., Fabris-Rotelli, I. N., Debba, P., Lib, M., A. Stein,
A., 2020. Uncertainty quantification for the extraction of in-
formal roads from remote sensing images of South Africa.
South African Geographical Journal, 102(2), 249–272.

UN Habitat, 2006. State of the world’s cities 2006/7. New York:
United Nations, 292.

UN Habitat, 2015. Habitat III Issue Paper 22: informal settle-
ments. New York: United Nations.

Varia, N., Dokania, A., Senthilnath, J., 2018. Deepext: A con-
volution neural network for road extraction using RGB images
captured by UAV. 2018 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), IEEE, 1890–1895.

Wang, J., Song, J., Chen, M., Yang, Z., 2015. Road network
extraction: A neural-dynamic framework based on deep learn-
ing and a finite state machine. International Journal of Remote
Sensing, 36(12), 3144–3169.

Wang, R., Strong, D., 1996. Beyond accuracy: What data qual-
ity means to data consumers. Journal of Management Informa-
tion Systems, 12(4).

Wang, W., Yang, N., Zhang, Y., Wang, F., Cao, T., Eklund,
P., 2016. A review of road extraction from remote sensing im-
ages. Journal of Traffic and Transportation Engineering (Eng-
lish Edition), 3(3), 271–282.

Wei, Y., Wang, Z., Xu, M., 2017. Road structure refined CNN
for road extraction in aerial image. IEEE Geoscience and Re-
mote Sensing Letters, 14(5), 709–713.

Xu, Y., Xie, Z., Feng, Y., Chen, Z., 2018. Road extraction from
highresolution remote sensing imagery using deep learning. Re-
mote Sensing, 10(9), 1461.

Zhang, X., Han, X., Li, C., Tang, X., Zhou, H., Jiao, L., 2019.
Aerial image road extraction based on an improved generative
adversarial network. Remote Sensing, 11(8), 930.

Zhang, Z., Liu, Q., Wang, Y., 2018. Road extraction by deep
residual U-net. IEEE Geoscience and Remote Sensing Letters,
15(5), 749–753.

Zhao, F., Wu, J., Sun, H., Gao, Z., Liu, R., 2016. Population
driven urban road evolution dynamic model. Networks and Spa-
tial Economics, 16(4), 997–1018.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2022-267-2022 | © Author(s) 2022. CC BY 4.0 License.

 
274




