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ABSTRACT: 

More than half of the world-population lives in urban areas, with more than 1 billion people lacking basic services and 
infrastructure. Spatially targeted, data-driven policies are crucial for sustainable urban planning to improve these situations and 
increase the resilience. Earth observation (EO) can support the process of achieving the SDGs, in particular SDG 11. Aiming at such 
high-level targets requires a multi-source data environment, defining and extracting suitable EO-based indicators and linking them 
with socio-economic or environmental data. When embedded in the context of humanitarian response, where physical access to 
regions is often limited while at the same time, insights on several scales of intervention are key to rapid decisions, the integration of 
(potentially) heterogeneous datasets requires adequate data assimilation strategies and a good understanding of data quality. This 
paper investigates the usability of datasets regarding technical and organisational aspects from an application-driven point of view. 
We suggest a protocol considering various quality dimensions to evaluate via scoring the fitness of multi-source geospatial datasets 
to integration. The aim is to provide a general orientation towards data assimilability in the context of deriving higher-level 
indicators, while specific constraints and the need to relativize may occur for concrete use case. 

1. INTRODUCTION

1.1 EO and sustainable city development 

Currently more than 55% of the world-population (around 4 
billion people) live in urban areas; projections show that 
urbanization will increase in the coming years (World Bank 
Group, 2021). This requires sustainable planning of city 
development to increase the resilience of citizens, especially as 
around a quarter of the world-wide urban population live in 
slums, informal settlements or inadequate housing, lacking 
basic services and infrastructure (United Nations, 2021).  

Advantages of EO data like high temporal availability, area-
wide coverage including remote and inaccessible areas, 
objectivity, accuracy and reliability and increasing 
democratization of data, are recognized as key benefits for 
monitoring and achieving SDGs in general and especially 
relevant for SDG 11 Sustainable City Development (O’Connor 
et al., 2020; Paganini et al., 2018). This is of particular 
importance in areas difficult to access and for large, fast-
growing cities with urban sprawl.  

In the urban context EO data are widely used for sustainable 
urban development (Prakash et al., 2020) and to map slums, 
informal settlements or deprived areas (Kuffer et al., 2016; 
Kuffer et al., 2020). The latter approach is mainly based on 
building morphology (such as area, shape, height, orientation) 
and physical characteristics of the near surrounding such as 
building patterns (Jochem and Tatem, 2021; Kuffer et al., 2016; 
Taubenböck et al., 2018). These techniques requires reliable 
building footprints, and thus the need for a comparable 
evaluation of underlying data quality and suitability is evident.  

1.2 Multi-source data integration 

Experience with the extraction of single proxies that can 
additionally contribute to the definition of settlement structure 
like height information with a higher resolution (Krauß et al., 
2019), urban greenness (Kothencz et al., 2018) or distance-
based spatial analyses (Hofmann et al., 2015) was gained in 
various studies. Moving a step ahead towards data integration in 
remote sensing applications, e.g. urban green classes can be 
weighted by survey-based preferences of citizens to resemble 
green valuation (Lang, 2018). In reality, the situation is much 
more complex. Multiple combined social and environmental 
factors may affect liveability, wellbeing and deprivation, such as 
the risk of natural disasters, exposure to diseases, environmental 
pollution or barriers to services (Abascal et al., 2022).  

Operationalising such multi-dimensional concepts and deriving 
suitable spatial indicators for an integrated assessment requires 
a multi-source data environment, where EO data are linked with 
other relevant socio-economic and environmental data. This 
necessitates techniques to integrate and assimilate data varying 
in scale, type of measurement, spatio-temporal resolution and 
extent and combining them meaningfully to set results in a 
broader social context. Integration of different data through a 
reliable data assimilation strategy can address complex 
problems through the identification and description of 
settlement structure or population distribution models in urban 
areas to allow a better estimation of where, which and how 
many people live. This can be a valuable basis for urban 
infrastructure development and/or logistical planning in 
humanitarian action, which is of special importance in the 
current pandemic situation, where the design of vaccination 
campaigns is more essential than ever. 
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This paper suggests the usability and assimilability of relevant 
datasets in the urban context from an application driven point of 
view. We suggest a systematic approach to evaluate their 
potential for the analysis or study of complex urban features in a 
purpose-driven manner (i.e., regarding scale of observation / 
intervention, as well as application-specific). The following 
aspects we take into consideration when assessing potential 
datasets and scoring them accordingly: temporal and spatial 
resolution, precision, coverage, consistency, completeness, 
reliability, accessibility and trust of source. Datasets are 
evaluated based on a fixed scheme and can be ranked according 
to their scoring and suitability under these aspects. The aim is to 
provide a general orientation towards usability in the context of 
higher-level indicators for humanitarian action in an urban 
environment, e.g. for describing urban structure, while specific 
constraints and the need to relativize may occur in dependence 
of the concrete use case.  
 

2. DATA SELECTION 

2.1 Data sources for humanitarian action 

Here we broadly differentiate between three types of freely 
available data for the practical use in the urban and 
humanitarian context: 
 

(i) EO satellite data (primary, pre-processed), e.g. Copernicus 
Sentinel missions, Open Topography, as well as systematic in-
situ measurements 
(ii) volunteered geographical information (VGI) or 
professionally collected data following a certain community-
agreed standard, e.g. OSM, Missing Maps, HDX Humanitarian 
data and 
(iii) modelled, derived or interpreted data,  e.g. UNOSAT flood 
maps, Copernicus information services.  
 

A fourth group may arise from semi-voluntary data collection 
such as call records data (CRD) or georeferenced tweets, which 
are not primarily collected for mapping purpose. Due to the it´s 
specific nature and requirements for analyses, this group of data 
is not explicitly considered in the following (as yet). 
 
In practice, very often multiple data sources need to considered 
and integrated to support humanitarian action on the ground. 
Fig.1 illustrates various input data sources - primary data, which 
undergo interpretation and analysis and additional non-EO data 
sources towards highly integrated information products relevant 
in the process of geospatial data integration. The issue of data 
quality applies to all levels of processing, in the following we 
focus on the issue of data integration towards an integrated 
assessment, e.g. by constructing composite indicators. 
Conducting such advanced spatial analyses like the construction 
of meaningful spatially aggregated indicators, may be guided by 
the following steps: 
 

1) Assessment of relevance: which data, indicators, 
information is needed to answer a specific problem or can 
support a decision making process 

2) Harvesting of existing data: search of collections, data 
catalogues, interfaces to data portals  

3) Information production: derivation and analysis of missing, 
but needed information (includes classification, spatial 
analyses, interpolation)  

4) Quality control: assessment of usability for all relevant data 
sources 

5) Data harmonization: procedures to make relevant 
heterogeneous data sources suitable to integrate and 
assimilate (includes thematic and spatial aspects) 

6) Data aggregation: building of in integrated indices if needed 
(includes statistical analyses, weighting, composite 
indicators) 

7) Spatial integration: integrating relevant information on the 
scale of need 

 

 
 

Figure 1. Data and information products. Data quality issue 
may influence all stages from primary to secondary, and all 
kinds of input data that are required for an integrated 
information product.   

 
2.2 Domains and components of data quality 

Different requirements for the assessment of quality and 
usability arise for primary vs. secondary data, for EO vs. GIS 
data, for collected vs. modelled data, and for authoritative data 
such as socio-economic data or data originating from surveys or 
censuses. Accordingly, there are different existing initiatives 
and standards ensuring data quality of different data types, e.g. 
the ISPRS working group on Data Quality (Batini et al., 2017) 
or QA4EO by CEOS; and for different aspects such as metadata 
standards (e.g. ISO19115), thematic standardization 
frameworks like the European INSPIRE initiative or technical 
interoperability, ensured by the Open Geospatial Consortium 
(OGC). 
 
Commonly, data quality is a multidimensional concept that 
broadly describes the fitness for use, in particular in support to 
decision making as well as the conformance to set standards 
(Herzog et al., 2007). Next   to (i) ‘accuracy’ as the most 
intuitive and well-researched quality dimension (Wang et al., 
1995), there are other dimensions widely established (Mahanti, 
2019), comprising (ii) completeness, (iii) consistency, (iv) 
timeliness, (v) uniqueness, (vi) validity; (vii) relevance, in 
different orders of prioritisations. The trade-off between 
accuracy and timeliness (Ballou and Pazer, 1995) which 
intuitively confronts a user with the choice between accurate but 
outdated data, has a specific meaning in humanitarian 
applications, where time-criticality over rapidly changing 
conditions, is key. This may also refer to information products 
in particular, where concepts such as “first available maps” or 
“fast available products” are meanwhile established service 
elements. In addition, there is balance between timeliness and 
coverage. Generally considered highly up-to-date, even standard 
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reference data sets such as Google Maps lack behind, especially 
in fast onset humanitarian crisis situations, Crowd mapping 
(such as Humanitarian OSM or Missing Maps) provide more 
timely information in this specific setting while the overall 
(global) coverage might be limited. 
 
Broadly abstracting from specific dimensions there are two 
major perspectives  referring to quality structure (Meirovich, 
2006), notably quality of design and quality of conformance 
(Heinrich et al., 2007). While the first has a more qualitative 
and often more subjective component addressing a potential 
misalignment between user requirements (of individual users or 
a community) and the provided data or information product, the 
second is more objective and characterises the correspondence 
of a specified data schema or measurement detail and the actual 
values. When referring to geospatial data (including EO data), 
conformance may be considered as data-inherent quality, which 
greatly influences the level of trustfulness: a defined maximum 
precision or level of detail, or degree of completeness may set 
the standard, the deviation of which can be quantified. One 
example is the top-of-atmosphere correction of remotely sensed 
imagery, as a key step to achieve remote sensing data 
calibration. Another example would be the incompleteness of 
OSM data in a specific urban setting. A third example is the 
misalignment of a set of administrative units to an existing base 
map. Inherent data quality is independent of the application 
case and can be measured according to the deviation from an 
(assumed) maximum value: for example, completeness in %, or 
offset in meters. Geospatial data usually have a well-defined or 
at least community-agreed inherent maximum quality level 
(precision, scale, etc.), such that conformance can be 
determined (or least estimated) quantitatively. The other aspect, 
, is a relative quality parameter and represents the usefulness 
(fitness-for-use) as a second component of the overall usability. 
It depends on the application case. In geospatial applications, 
this includes the debate on the scale of investigation, meaning 
that the observation scale needs to match the modelling scale 
(Hagenlocher et al., 2014). Example; a well-calibrated TOA 
corrected Sentinel-2 image might be of limited use in detecting 
single dwellings in a deprived urban area. It does not question 
its inherent quality (which might be perfect), but its 
appropriateness in usage in a certain application context. 
Usefulness, however, we hardly can measure directly, therefore 
we rely on expert judgement. Still, in order to compare both 
components on a gradual scale we need to take into 
consideration their different data scale levels and ideally bring 
them into an interval scale. As an intermediate step, we suggest 
a binning of 10 for each component. That means, we 
operationalise inherent quality by using step percentages (10%, 
20%, …, 90%, 100%) taking into account its deviation from a 
maximum quality level (while 0% denotes maximum deviation 
and 100% minimum deviation), and we apply a 10-step Likert 
scale (1-10) for the assessment of the relative quality. Both 
gradual step assessments can be converted into scores. When 
doing a suitability assessment of several input data sets with 
respect to conformance (inherent quality), it obviously requires 
high scoring of all data in order to achieve high trustfulness in 

the process of data integrattion. For relative quality, this 
intuitively applies as well, leading to maximum usefulness at a 
generally high scoring level. Still, usefulness may be fairly high, 
when uniform scoring prevails on a low level. In other words, 
we assume that a known overall low level of relative quality is 
easier to handle than mixed quality levels. In geospatial 
applications a commensurate scale (or domain of scale) of 
investigation is an aspect of design quality. Low levels of 
relative quality might be compensated with a shift in scale of 
investigation rather than mixing input data with a different 
observation scale. An example would be an assessment of 
malaria breeding habitats. Ideally, the study would be 
conducted on high spatial detail, but due to the lack of VHR 
data, the scale of investigation is adapted to a coarser scale 
where all input data score high in usefulness. 
 
 
2.3 Protocol for data quality assessment and integration 

When starting the process of data integration, one often faces an 
unknown degree of heterogeneity. In order to minimize errors 
and avoid extra efforts, there is a need for a protocol, which 
may guide users and practitioners to perform data integration in 
a solid, sound and well-informed manner. This comprises the 
integration of EO data with VGI-generated data, survey-based 
field datasets and pre-existing public, institutional and 
administrative e.g. socio-economic data. Table 1 provides an 
overview on data quality aspects related evaluation scores, 
which enables users to assess quality and suitability of data 
sources. Note that for reasons of simplicity we illustrate the 
concept with a 4-step scoring (as opposed to 10 bins as 
suggested above).   
 
The information for scoring data sources can be partly found in 
the metadata. Metadata record the overall quality of the data on 
the level of the entire record set. A simple example is cloud 
cover of remote sensing data, which ideally (but hardly in 
reality) is 0%. Automatic data quality assessment relies on data 
quality methods (Woodall et al., 2014) as algorithms for 
detecting errors and issues on validity and integrity. Global 
quality parameters assume the entire dataset is recorded under 
the same conditions and captured instantly or within a short 
time frame. Otherwise each record would need to be tagged 
with individual data quality indicators (Wang et al., 1993).   
 
Other aspects such as completeness of features needs to be 
checked depending on the area of interest and information 
needed for a specific application case. Such an evaluation can 
be used for two different scenarios:  
 

(i) Detailed assessment and comparison of different data sources 
describing the same aspect to find the most suitable data for a 
specific applications;  
(ii) Evaluation of thematically different data sets that potentially 
should be integrated to answer specific research and practical 
questions at a specific location. 
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Table 1.  Data quality protocol for integrating EO data, GI data set and spatially implicit socio-economic data  

 

Quality dimensions [conformance] Evaluation score (low to high) 
1 2 3 4 

 Accuracy and 
Reproducibility 

EO data: thematic accuracy 
 <60% 60-80% 80-90% >90% 

Declaration / reproducibility of 
models and methods: e.g. 
classification, delineation, survey 
design, etc. 

unknown or 
unclear 

methods, no 
reproducibility 

methodol. 
details 

unclear, low 
reprod. 

established 
method, 
missing 
details 

established 
method, fully 
reproducible 

 Accessibility & 
Exchangeability 

Open source vs. restricted data 
access 

restricted, 
private use 

commercial 
use 

partly or 
temporary 

open source  

open source 

Interoperability according to OGC 
standards; data integration as 
service 

non-
standardised 

format 

proprietary 
format 

exchange 
format 

fully inter-
operable and 
harvestable 

 Trust of source Reputation of data producer1  unknown 
producer, no 
info available 

to evaluate 

unknown 
producer, 

partly 
reviewed 
e.g.  VGI  

known, but 
not reviewed 

by community 

well known, 
public, 

reviewed and 
certified 

 Spatial precision Spatial data: accuracy of the 
position of features on Earth surface  
 

no projection 
information, 

location 
unknown 

 

severe shift, 
incomplete/ 

incorrect 
info about 
projection 

slight shift in 
position, less 
widely used 
projection 

 

accurate 
position, 

widely used 
projection  

 Consistency / 
Comprehensibility 

Consistency of attributes, measure-
ment levels, capturing scale, etc. 
 

low     low-medium medium-high high  

Metadata documentation documentation 
missing / not 

comprehensible 

metadata 
not self-

explanatory 

partly 
documented, 
largely self-
explanatory 

fully 
documented, 
comprehensi

ble 
 Completeness EO data: cloud cover, degree of 

haziness, malfunction of sensor 
 

>50% 25-50% 10-25% < 10% 

Spatial features, specific attributes  <30% 30-60% 60-80% ≥80% 

Quality dimensions ]design] Evaluation score (low to high) 
1 2 3 4 

 Timeliness Timeliness and relevance of data  
EO data: date of acquisition 
Derived data: date of acquisition 
 of underlying data sources 
 

≥10 years 
>12 months2 

5-10 yrs 
6-12 mths 

2-5 yrs 
1-6 mths 

≤2 yrs 
2-4 weeks 

 Coverage / 
availability 

Specific area of interest:  
coverage of AOI  
 

<30% 30-60% 60-80% >80% 

General evaluation:  
scale of observation 

local or 
regional 

country-
wide 

continent-
wide, various 

countries 

global 

 Spatial 
resolution 

EO data: spatial resolution,  
Derived data: resolution of 
underlying data sources 
 

≥30 m 5-30 m 1-5 m ≤1 m 

Survey/census data and aggregated 
data: level of availability3 

region or* 
country 

city* city district* household* 

 

                                                                 
1 Organisational aspect  
2 Second row: in the context of a fast-onset crisis 
3 Here: considering an urban scale level 
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As an illustration for the evaluation of different data covering 
the same aspect, we take the example of evaluating building 
footprints data sets (Fig. 2 and Fig. 3) to use as input for 
population modelling in urban settings. We may differentiate in 
the context of building footprints: (i) ad-hoc generated 
footprints via AI-supported information extraction techniques 
from VHR satellite imagery; (ii) crowd-based mapping (OSM 
and HOT, Missing Maps and similar) and (ii) model-based or 
algorithm-based solutions from (semi-)public or private 
organisations for settlements (World Settlement Layer, Global 
Human Settlement layer, European Settlement Map, Building 
footprints, etc.).  
 
Not surprisingly, high evaluation scores of temporal resolution 
and coverage are often in conflict with high scores in spatial 
resolution or reliability and accuracy of applied method e.g. the 
best overall evaluation is received by the European Settlement 
Map (ESM), providing consistent, complete and reliable 
building footprints but are only available for Europe and not 
regularly updated. Although OSM data has a low evaluation 
score in some of the aspects, we want to strengthen the 
importance and value of this freely available data source for 
research and practitioners in various field, such as the 
humanitarian work (Herfort et al., 2021), but also for the 
development and improvement of other building footprint data 
sets (Corbane et al., 2019).  
 
As an example for the evaluation of thematically different data 
sets Fig. 4 shows heterogeneous data potentially relevant to 
describe city structure. Such an assessment is helpful to see if 
all data sources are suitable to be included in further analyses – 
e.g. the inclusion of the elevation model might with much 
coarser resolution might be questionable -  and for identifying 
strategies that need to be implemented to harmonise and make 
data suitable for aggregation and/or spatial integration. This 
procedure can even be formalized and be used to complement 
statistical analyses for obtaining not only statistically sound, but 
also spatial and thematic sensible results.  
 

3. DATA INTEGRATION 

  
3.1 Data harmonisation  

As data are of very different nature (scale of measurement and 
representation, spatio-temporal resolution, extent, etc.), data 
integration is more than just classical ‘GIS overlay’. It requires 
a series of pre-processing, harmonisation techniques, strategies 
for disaggregation if needed, as well as (process) model 
integration with observations, what in total we may refer to as 
data assimilation (Lahoz and Schneider, 2014). The current 
transition to the big data paradigm also poses new challenges to 
existing data assimilation techniques, such as the need of 
integrating e.g. citizen science data to satellite-based land 
surface measurements on completely different scales.  
 
 

 
Figure 2. Detailed assessment of usability of freely available 
data sources of building footprints: European Settlement Map 
(ESM), Open Streetmap (OSM) and Building Footprints 

 

 
 

Figure 3. Comparison of usability of freely available data 
sources of building footprints: European Settlement Map 
(ESM), Open Streetmap (OSM) and Building Footprints  
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The first step in data assimilation routines is data harmonisation 
to make data comparable and ensuring successful and 
statistically sound data integration. Data harmonisation usually 
employs one or more of the following techniques, depending on 
the level of similarity of data:  
 

(i) Spatial referencing / co-registration: the crucial principle 
that data are measured or represented in the same or re-
projectable spatial reference system (e.g. UTM); 
(ii) Data calibration: calibrating sensor data to ensure 
measurements to be comparable to each other on a defined scale 
(e.g. 0-100% reflectance); 
(iii) Data normalisation: utilize the full value range of the 
measured phenomenon (e.g. 8-bit coding), may also include 
harmonisation of classification routines; 
(iv) Data standardisation: ensure statistical data comparability 
through e.g. z-transformation; 
(v) Data interpolation: spatial interpolation techniques to reach 
from a sparse sampling to area-intensive coverage. 
 
3.2 Spatial integration 

To realise data-informed development policies often also 
requires location-specific accurate results on a very fine 
resolution. One pragmatic solution is to achieve this is to use 
regular tessellation of the area of interest and to bring all 
available information on a generic discrete grid of a defined 
spatial reference, orientation, and spacing in multitudes (e.g. 
grids or hexagons). This strategy, i.e. equally spaced sampling 
known from image data representation (pixels) or other spatial 
continua such as temperature, elevation, etc. (raster cells) can be 
used to disaggregate other spatially extensive variables such as 
data reported and collected on administrative unit level, e.g. 
dasymetric mapping).  
 
Thereby, data of different resolutions, both sampled and 
interpolated data, as well as disaggregated data, can be 
integrated (Hagenlocher et al. 2014) by which several 
advantages arise to enhance spatial analysis:  
 

(i) Combination of data of different sources (including from 
models and observations); regular updates of data sets can be 
incorporated; 
(ii) Harmonisation of varying resolution levels in terms of 
geometric properties, extent, resolution, whereby a fixed spatial 
reference and reporting grid allows further (re-)aggregation 
(iii)  Analysis of data sets in a multidimensional feature space 
(or data cube) by multivariate statistics and regionalisation 
techniques (Lang, 2018). 
A second, frequently used option is the spatial aggregation by 
administrative boundaries, such as municipalities or an existing 
urban zoning. This has the advantage of using already existing 
reporting units (e.g. enumeration areas of socio-economic 
census data). On the other hand, it may distort the actual 
distribution of relevant information assuming a spatial 
homogeneity within the pre-defined units, as addressed by the 
modifiable areal unit problem (MAUP) (Openshaw, 1984) and 
its two aspects related to scaling (number of units per group) 
and zoning (actual grouping). This particularly applies when 
indicators are aggregated over admin units, which do not reflect 
the actual spatial distribution of the measured phenomenon.  
 
One solution to minimize aggregation problems is spatial 
regionalization as discussed by the concept of geons (Lang et 
al., 2014). Thereby grid cells are grouped together based on a 

set of relevant indicators. This intuitively applies to complex 
settings like urban areas. 

 
 
Figure 4. Heterogeneous geospatial data sets for an integrated 
assessment of the city structure in Lusaka, Zambia 
 
 
Grouping and regionalisation realised by variance and/or spatial 
autocorrelation leads to statistical averaging and additional 
emergent spatial properties (size, form, etc.) of the generated 
regions. Regionalisation based on a spatial explicit multi-
indicator system minimizes a priori spatial biases and providing 
spatially explicit results that are independent of pre-defined 
boundaries. This concept has been applied in various studies 
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and domains (Hagenlocher et al., 2014; Lang et al., 2018; 
Riedler and Lang, 2018) and proves to be suitable in sustainable 
urban development in monitoring dynamic structure.  
 
 

4. CONCLUSIONS 

High-level indicators supporting the achievements of SDG 11 
require, next to the methodological setup to integrate them, a 
solid understanding of the quality, reliability and overall 
usability of input data. The latter is a function of trustfulness (as 
the total of conformance quality aspects) and usefulness (as the 
the total of design quality aspects). Assuming that well-defined 
and (semi-)standardised data sets are increasingly available, the 
suggested evaluation protocol for multi-source data sets can 
contribute to study of complex urban features and support 
sustainable urban development. If the expected overall quality 
levels are continuously raising by various global endeavours, 
the potential and reliability of these datasets for integrated 
assessments is increasing as well. That would probably shift the 
attention from dealing with imperfect and partly defect data sets 
towards the issue of fitness-for-use. Ideally, there are multiple 
options offered to match various application scenarios, 
including detail (scale), time-criticality, and so forth.  Such an 
application-driven view may overcome barriers in using 
advanced GI routines, thus bridging the gap to practitioners, 
such as governmental institutions, national entities or NGOs to 
integrate multiple geospatial information sources in their work 
and decision-making processes.  
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