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ABSTRACT: 
 
Residents’ activities have a significant interaction with urban socioeconomic environment. Taxi trajectory data has been widely used 
to mine human activity patterns to identify urban functional districts. However, previous studies merely chose several spatiotemporal 
statistics of taxi pick-up and drop-off points. This paper compares seven time series statistics of taxi pick-up and drop-off points, and 
selects the best combination to identify urban functional districts. The basic analysis units are not only constructed based on the 
OpenStreetMap data, but also optimized with the fine-grained clean rasterized pixels, generated from preprocessed taxi trajectory 
data through the improved head/tail breaks method. The experiment conducted in Wuchang District, Wuhan, shows that the 
combination of the average statistics of pick-up points, the average statistics of drop-off points, and the ratio statistics of pick-up and 
drop-off difference achieves the best identification precision of 83.65%, the F1-score of 82.2%, and the recall score of 81.48%. The 
proposed approach has good scalability and can be transplant to other identification applications. 
 
 

1. INTRODUCTION 

Urban0F

 functional districts refer to residential land, commercial 
land, industrial land, public management and public service 
facilities as well as other functional zones are gradually formed 
in the process of urban development (Zhang et al., 2017). The 
unified, coordinated and reasonable layout of urban functional 
districts is conducive to improving urban land use efficiency, 
optimizing resource allocation, realizing balanced urban 
development, and improving the overall strength of the city. 
Identifying different types of functional districts and studying 
their spatial distribution patterns and interaction laws are of 
great significance for managing the urban spatial structure and 
establishing formulating scientific and reasonable urban 
planning policies (Yao et al., 2022).  
 
The emergence of remote sensing data provides a large amount 
of accurate land cover information, making it possible to 
effectively characterize the land use status of each urban 
functional district. It has been widely used in high-precision 
mapping (Li et al., 2016), typical natural element extraction 
(Huang et al., 2017), emergency monitoring of natural disasters 
(Lu et al., 2018), and so on. However, early urban remote 
sensing research mainly focused on mining natural physical 
information in urban areas. Therefore, the development of urban 
remote sensing is constrained by two aspects (Zhu et al., 2019): 
on the one hand, it is very difficult to directly obtain other 
socioeconomic information in urban areas; on the other hand, 
urban land use classification based on remote sensing data 
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always needs the support of prior knowledge. Inspired by 
‘citizens are sensors’, we could transform earth observation into 
human observation, bringing in more socioeconomic data to 
address the above issues. 
 
In recent years, social sensing data has been widely used in 
human activity patterns extraction and urban studies, such as 
mobile phone data (Jia et al., 2018; Pei et al., 2014; Ratti et al., 
2006; Reades et al., 2009; Toole et al., 2012), points of interest 
(POIs) (Hu et al., 2016; Jiang et al., 2015; Yao et al., 2017; 
Yuan et al., 2012), check-in data (Gao et al., 2017; Zhang et al., 
2017), smart card data (Zhong et al., 2014, 2016), and taxi 
trajectories (Chen et al., 2017; Liu et al., 2012, 2016, 2020; Pan 
et al., 2013; Zheng et al., 2011). A few studies focused solely on 
social sensing data to infer urban land use. For instance, (Pei et 
al., 2014) used the normalized hourly call volume and the total 
call volume of mobile phone data, inside each Voronoi polygon, 
to characterize human communication and applied the semi-
supervised fuzzy c-means clustering approach to split Singapore 
into residential, business, commercial, open space and others. 
Jiang et al. (2015) used US census data, GIS data and multi-
source POIs with the North American Industry Classification 
System (NAICS) codes to disaggregate land use at the census 
block level. Their goal is to provide a new way to disaggregate 
employment data by sizes and industrial category into higher 
spatial resolution units. Wang et al. (2016) used a regular grid 
of 400 m x 400 m to divide the study area into cells. Within 
each cell, they applied K-means clustering algorithm to analyze 
discussion topics on geotagged social media (Sina-Weibo) data 
to identify seven types of land use clusters. Then among the 
seven clusters, they used text mining and word clouds to 
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estimate land use types: residential areas, commercial areas, 
work areas, transportation hub areas and mixed land use areas. 
Zhong et al. (2014) used smart card data, the Household 
Interview Travel Survey, bus stop location points and geo-
referenced building footprints to infer urban functions 
(shopping, studying, working, at home, eating and social 
visiting) at the building level. Pan et al. (2013) focused 
exclusively on using taxi trajectories to classify land use at two 
stages. First, they proposed an improved clustering algorithm 
(iterative DBSCAN) to extract regions with high taxi pick-up 
density and manually labeled social function (e.g., stations, 
campuses, hospitals, scenic spots, commercial districts, 
entertainment districts, office buildings and residential districts) 
as training samples. Then they comparatively analyzed the land-
use classification performance of four classifiers with designing 
six taxi pick-up and drop-off features for land-use classification, 
e.g., daily pick-up feature, daily set-down feature, pick-up and 
drop-off difference feature, pick-up and drop-off ratio feature, 
weekly pick-up feature and weekly drop-off feature. The 
experiment results showed that the first feature has the best 
discriminative capability and the daily pick-up and drop-off 
information is very helpful. 
 
Compared with traditional data sources such as questionnaire 
surveys, the outstanding advantages of taxi trajectory data are 
large coverage, large sample size and high precision (Kandt and 
Batty, 2021). Among these social sensing data, taxi trajectory 
data is more accurate than mobile phone data, demographic 
coverage is more diverse than POIs and check-in data, and 
geographical routes are more flexible than smart card data. 
When it comes to fixed-route public transportation such as 
buses and subways, although taxi trajectories represent only a 
small fraction of the total a city’s total public transport, it can 
provide 24 hours a day, 7 days a week, wide coverage, and 
detailed data on residents' travel routes. Residents’ travel 
behavior can extract urban functional areas by providing 
information on the following two aspects: on the one hand, 
when residents arrive or leave a certain area; and on the other 
hand, where residents arrive or leave (Yuan et al., 2015). 
Consequently, inferring residents' travel purposes from taxi 
trajectories can more accurately reflect the current land use in 
urban areas (Liu et al., 2016).  
 
As demonstrated above, existing researches inferred urban land 
use at different levels,ranging from single building level (Du et 
al., 2015; Huang et al., 2017; Zhong et al., 2014) to urban 
parcel/block level (Voltersen et al., 2014; Zhang et al., 2017). 
This study constructed the analysis unit based on the 
OpenStreetMap road network to unify the spatial scale of the 
aforementioned multi-source data. Urban blocks are defined as 
the space delineated by road networks. Many researchers 
generated urban blocks with the help of the local authorities 
(Voltersen et al., 2014), object-based image analysis maps, or 
open source data such as OpenStreetMap. However, it is 
difficult to obtain the official data, and the large number of trees 
on the roadside hinder the extraction of the complete urban road 
network from remote sensing images. While previous 
researches have shown that the OpenStreetMap road network 
meets the need of designing urban blocks (Zhang et al., 2017) 
and its availability enhances the portability of the proposed 
method (Du et al., 2015).  

 
In addition to the OpenStreetMap road network, this study used 
taxi trajectory data to help refine the road network. Existing 
studies mostly extract road centerlines from taxi trajectory data 
in four ways: (1) clustering, (2) the incremental method (Wu et 
al., 2019), (3) rasterization (Fang et al., 2020), (4) other 
methods (Yang and Ai, 2017; Zhang et al., 2020). This paper 
uses mathematical morphological methods to extract road 
centerlines from the rasterized image of taxi trajectories. After 
testing and analysis many times, taxi trajectory points were 
mapped onto an image with a spatial resolution of 2.5 meters. 
Additionally, an improved head/tail breaks method was used to 
filter noise pixels. 
 
This study focuses on identifying urban functional zones from 
multi-source data. It contributes in three ways. First, taxi 
trajectory data has been used to extract residents’ travel 
behavior for urban functional district identification. Second, the 
head/tail breaks method has been introduced and improved to 
reduce the noise pixels when using taxi trajectory data to 
construct analysis zones. Third, optimum combination of time 
series statistics of taxi pick-up and drop-off points has been 
analyzed to identify urban functional districts.  
 
The reminder of this paper is arranged as follows: Section 2 
introduces multi-source data and preprocessing and methods in 
detail. Section 3 analyzes the experimental results of analysis 
unit construction and urban functional district identification, and 
discusses the best combination of time series statistics of taxi 
pick-up and drop-off points for identification. Finally, our 
conclusions are stated in Section 4. 
 

2. MATERIALS AND METHODS 

2.1 Study Area 

Wuchang District, is one of the main districts of Wuhan city 
(Figure 1 (b)), Hubei Province, China. As far as the 
geographical environment is concerned, Wuchang is bordered 
by the Yangtze River in the west and East Lake in the east, with 
complex terrain and intertwined hills and lakes. From the 
perspective of the socioeconomic environment, Wuchang 
District has 14 administrative streets, with 141 city communities 
in 2015. Meanwhile, the permanent population is 1.27 million, 
and the registered population is 1.06 million. Its gross domestic 
product achieves 881.56 billion yuan, and the total industrial 
output value is 201.42 billion yuan (Bureau of Statistics of 
Wuhan, 2016). In addition, there are government agencies such 
as Hubei Provincial People's Government and Wuchang District 
People’s Government, places of interests such as Memorial Hall 
of the Revolution of 1911 and Yellow Crane Tower Scenic Area, 
residential areas, and other urban functional districts. The 
complexity of functional types in Wuchang District makes it a 
good representative study area for identifying functional 
districts. This paper mainly uses taxi pick-up and drop-off 
points to extract the travel patterns of residents for describing 
the socioeconomic environment of Wuchang District. Figure 1 
(a) depicts the spatial distribution of taxi pick-up points in 
Wuchang District, and the distribution of drop-off points is very 
similar.  
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Figure 1. Study area. 

 
 

2.2 Multi-Source Data and Preprocessing 

2.2.1 Taxi Trajectories and Preprocessing 
The whole taxi trajectory dataset was collected from February 
1st to August 10th, 2015. This paper uses taxi trajectories of 
Wuchang District to provide sufficient information for road 
network update, residents’ travel pattern analysis, and urban 
functional district identification. Its sampling interval is less 
than one minute. The trip records were collected by the GNSS 
device installed in the taxis. And each record consists of the 
following information: the ID of the taxi, the timestamp, 
longitude, latitude, the instantaneous driving direction, the 
driving speed, the Advanced Cruise Control (ACC), the taxi 
operation status and the vacant statue. Among them, the vacant 
status reflects the situation of passengers getting on and off.  
The original taxi trajectory data has been preprocessed 
according to common operations in previous studies (Chen et al., 
2017; Zheng et al., 2018). We removed the following records, 

such as: (1) the location outsides the Wuchang District, (2) the 
timestamp is beyond the range of February 1st to August 10th, 
2015, (3) the attributes are incomplete or invalid in this study. 
Besides, we modified some records with the correct attributes, 
but not in the correct order.  
 
Figure 2 shows a histogram of the number of daily taxi pick-up 
and drop-off point during the study period, where the x tick 
labels represent each date from February 1st to August 10th. It 
can be clearly seen that the total numbers fluctuate greatly and 
sometimes the numbers are wrong. During the research period, 
the national holidays, represented by oranges cylinders, were 
first removed, and the research mainly focuses on the daily taxi 
travel patterns. We sorted the number of daily taxi pick-up and 
drop-off points, and selected the top 120 days by number. 
Because Pan et al. (2013) have tested different time lengths of 
taxi trajectory data for feature extraction and found that the best 
land-use classification result is achieved using four-month data. 

 
Figure 2. Total number of taxi pick-up and drop-off data per day (Zhang, 2020). 

 
In this study, the key process for matching taxi pick-up and 
drop-off points into the analysis unit is to determine which side 
of the road (i.e. the edge of the analysis unit) each taxi pick-up 

and drop-off point is assigned to. Compared with the traditional 
nearest-neighbor distance matching method, it is more accurate 
to project each pick-up and drop-off point into the 
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corresponding analysis unit considering the distance and angle 
of the taxi pick-up and drop-off point to the road, especially at 
road intersections (Xu, 2020). Inspired by Xu’s work, the 
analysis unit matching was implemented in four steps in the 
software ArcMap 10.5. 
 
Firstly, the ‘Split Line At Vertices’ tool split the final road 
network (introduced in Section 3) into road segments.  
 
Secondly, the ‘Add Geometry Attributes’ tool added the 
‘LINE_BEARING’ field to each road segment. The value 
ranges from 0° to 360°, where 0° means north, increasing in a 
clockwise direction, which is the same as the instantaneous 
driving direction of the taxi trajectory data.  
 
Thirdly, the ‘Near’ tool assigned each taxi pick-up and drop-off 
point to the nearest road segment by setting the ‘Method’ 
parameter to ‘Planar’ and checking the ‘Angle’ parameter. The 
‘NEAR_ANGLE’ field has been added to each taxi pick-up and 
drop-off point, ranging from -180° to 180°, 0° means east, 90° 
means north, 180° or -180° means west, and -90° means south.  
 
Fourthly, we constructed logical rules to accomplish the 
analysis unit matching using the relationship between the 
instantaneous driving direction and the ‘NEAR_ANGLE’ field: 
(1) when the direction value is less than or equal to 90°, or 
greater than or equal to 270°, and the ‘NEAR_ANGLE’ value is 
greater than 0°, the taxi pick-up and drop-off point will be 
assigned to the left side of the road segment, otherwise, the taxi 
pick-up and drop-off point will be assigned to the right side of 
the road segment. (2) When the direction value is greater than 
90° and less than 270°, and the ‘NEAR_ANGLE’ value is 
greater than 0°, the taxi pick-up and drop-off point will be 
assigned to the right side of the road segment, otherwise, the 
taxi pick-up and drop-off point will be assigned to the left side 
of the road segment. 
 
2.2.2 OpenStreetMap Road Network and Preprocessing 
OpenStreetMap was used to construct the primary road network 
of Wuchang District. It is a remarkable project in the field of 
Volunteered Geographic Information since 2004. It collects data 
from volunteers with the help of manual survey, Global 
Positioning System instruments and other free services, and its 
availability in urban land use classification has been 
demonstrated in (Grippa et al., 2018). Two preprocessing steps 
are required before generating the primary road network. The 
first step is to extract road centerlines, and the second step is to 
remove the dangling roads (Zhang et al., 2017). 
 
2.3  Methods 

The workflow of the proposed method is show in Figure 3. It 
composes of three parts: analysis unit construction, time series 
statistic extraction, and urban functional district identification. 
During the analysis unit construction, the primary road network 
was extracted from OpenStreetMap. Then, taxi trajectories were 
used to update the road network, but not all preprocessed 
trajectory points. We used the improved head/tail breaks 
method to filter noise pixels from the rasterized image of taxi 
trajectories and applied morphological operators to extract 
skeleton pixels as road bases. With reference to Baidu Map and 
AutoNavi Map, the actual land use of local area was manually 
tagged. After classifying functional districts according to the 
national standard and the actual situation of Wuchang District, 
the analysis units were constructed. Another major part is 
calculating time series statistics for taxi pick-up and drop-off 

points and testing different combinations of statistics to identify 
urban functional districts. 
 

 
 

Figure 3. The workflow of the proposed method. 
 

2.3.1 Improved Head/Tail Breaks Method 
Inspired by (Ma et al., 2020), this article extended the head/tail 
breaks method described in (Jiang, 2013) to reduce the noise 
pixels in the rasterized image of taxi trajectory data and 
preserve the pixels that contain a certain number of taxi 
trajectory points. Jiang (2013) used the original head/tail breaks 
method to equally divide all data values into two parts, and 
iteratively divided the values (above the mean) until the head 
part values were no longer heavy-tailed distributed. Generally, 
researchers rasterize all taxi trajectory data to update the road 
network, resulting in a large number of abnormal points in the 
preprocessed taxi trajectory data being mistaken for road pixels. 
This paper improved the head/tail breaks method by using the 
weighted average number of taxi trajectory points within a 
single pixel as the threshold instead of the arithmetic average. 
 
2.3.2 Morphological Operators 
After removing a large number of abnormal points, the obtained 
rasterized image from low-frequency and low-precision taxi 
trajectory points still has the following problems: 1) The image 
contains a large number of isolated point groups and holes; 2) 
The edges of the elements in the image are jagged and uneven. 
Aiming at these two types of problems, this paper adopted 
mathematical morphological processing to eliminate outliers, 
fill holes, and smooth images. 
 
Mathematical morphology, which emerged in 1960s, focuses on 
the geometric structure of images. The main idea is to scan an 
image with a structuring element and determine if that element 
can be effectively filled into the image (Cui, 2000).  
 
The basic morphological operators are dilation and erosion, and 
the Minkowski form was used here to represent these elements 
(Haralick and Shapiro, 1993). Dilation used vector addition to 
filter outside the image and merge the two groups. Erosion used 
vector subtraction to filter inside the image, merging the two 
groups. Under the premise of maintaining the main shape 
features of the image, this paper iteratively used 27 x 27 square 
structuring elements or 17 x 17 square structuring elements to 
simplify the rasterized image of taxi trajectories and extracted 
skeleton pixels. 
 
2.3.3 Time Series Statistics 
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Time series statistics extraction of taxi pick-up and drop-off 
points for urban functional area extraction has been extensively 
studied (Ge et al., 2019; Guo et al., 2012; Liu et al., 2012; Pan 
et al., 2013). Compared with general time series data and spatial 
data, taxi pick-up and drop-off points have the characteristics of 
massive, dynamic, high-dimensional, multi-scale, nonlinear, 
spatiotemporal correlation and spatiotemporal heterogeneity 
(Wang et al., 2012). The dynamic nature of taxi pick-up and 
drop-off points is reflected in their periodicity over time. The 
spatiotemporal correlation and heterogeneity of data distribution 
are interrelated in time and space, and at the same time, limited 
by the urban spatial structure and have spatial heterogeneity.  
 
Referring to the above researches (Ge et al., 2019; Pan et al., 
2013), this section calculated seven time series statistics based 
on 120-day taxi pick-up and drop-off points: the average 
statistics of pick-up points, the average statistics of drop-off 
points, the L2 norm statistics of pick-up points, the L2 norm 
statistics of drop-off points, the average statistics of pick-up and 
drop-off difference, the L2 norm statistics of pick-up and drop-
off difference, and the ratio statistics of pick-up and drop-off 
difference. We will not summarize the expression of each time 
series statistic here.  
 
2.3.4 Random Forest 
Random forest has been widely applied to combine multiple 
features. Because the model is insensitive to various scales of 
features and can measure the importance of features (Zhang et 
al., 2017). This paper used the random forest model from the 
Scikit-learn Machine Learning Library. 
 
2.3.5 Analysis Units Construction 
Existing studies have generated different types of spatial units 
for mapping urban land use. For convenience, some researchers 
split the study area into uniform rectangular grids. This leaves 
two problems compared to blocks. On the one hand, a grid unit 
is not as functionally meaningful as the block boundary in 
analyzing urban land use. For example, it may result in one 
building being divided into different units or one unit containing 
buildings with different functions. On the other hand, it retains a 
certain level of computational complexity. Aiming at these 
problems, this paper adopted OpenStreetMap road network and 
taxi trajectories to improve the analysis unit, and was supported 
by other online map servers. Details are as follows. 
 
(1) The preliminary road network in the study area was 
constructed from OpenStreetMap data. We used ArcMap 
software to extract the road centraline from the original 
OpenStreetMap road network layer. 
 
(2) With the help of taxi trajectory data, we got an accurate road 
network to improve the spatial division.  
 
(3) In accordance to online map servers, such as Baidu Map and 
AutoNavi Map, we manually annotated the urban functional 
classes of all 305 analysis units in ArcMap.  
    

3. RESULTS AND DISCUSSIONS 

3.1 Refined Rasterized Image of Taxi Trajectories 

According to the number of taxi trajectory points within each 
pixel, the pixels from the rasterized image of taxi trajectories 
can be classified into six groups: [1, 11], [12, 22], [23, 58], [59, 
100], [101, 256], and [257, 6647] (See Figure 4). The purpose 
of using the improved head/tail breaks method is to filter noise 
pixels with sparse points to obtain an accurate and concise road 

network. We have reserved pixels with more than 12 taxi pick-
up and drop-off points. Figure 5 shows the binary classification 
rasterized image of taxi trajectories. The lines in Figure 5 are 
thinner and clearer than the ones in Figure 4. 

 
 

Figure 4. Six-class classification rasterized image of taxi 
trajectories (Zhang, 2020). 

 

 
 

Figure 5. Binary classification rasterized image of taxi 
trajectories (Zhang, 2020). 

 
3.2 Urban Functional District Identification 

This section used the random forest model, combined with time 
series statistics of taxi trajectories within each analysis unit, to 
identify urban functional districts and evaluated the 
performance of different statistics combination. Table 1 shows 
the experimental accuracy results of different combinations of 
time series statistics of taxi trajectories for identifying urban 
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functional districts. According to the national standard for basic 
terminology of urban planning (GB/T 50280-98) and the actual 
situation, Wuchang functional districts falls into five categories: 
commercial district, mixed-use district, industrial district, 
residential district, and central business district. Mixed-use 
districts can provide administration and public services as well 
as some other functional services. The functional categories of 
an urban region are different from the land-use types in that 
region, and a region may contain multiple land use types but 
only one functional category. The dominated land use type 
would be defined as the functional category of the urban region. 
This relationship links the functional category to the land-use 
type and links this paper to our previous work (Zhang et al., 
2020). Each land use type corresponds to a functional category. 
 
In addition, Zhang et al. (2017) demonstrated that the 
classification accuracy of pure parcels with a single functional 
attribute is much higher than that of regions containing mixed 
functional attributes. Based on our previous work, we retained 
269 relatively pure analysis units, except for waters and open 
spaces, for further functional district identification (see Figure 
6). In addition, they can also serve as reference data for 
subsequent experimental validation. It can be seen from Figure 
6 that residential districts cover the main areas of Wuchang 
District and are distributed in clusters. A few central business 
districts and commercial districts are clustered, respectively, 
while the distribution of industrial districts is more scattered. 

 
 

Figure 6. Spatial distribution of 269 functional districts in 
Wuchang (Zhang et al., 2020). 

 
 Time series statistics of taxi trajectories Accuracy 

The L2 norm 
statistics 

The average 
statistics 

The L2 norm statistics 
of pick-up and drop-off 

difference 

The average statistics 
of pick-up and drop-off 

difference 

The ratio statistics of 
pick-up and drop-off 

difference 

Precision F1-
score 

Recall 

Pick-up 
points 

Drop-off 
Points 

Pick-up 
points 

Drop-off 
points 

A √       76.85% 74.69% 77.78% 
B  √      62.56% 61.88% 62.96% 
C   √     79.07% 76.06% 77.78% 
D    √    70.82% 69.23% 70.37% 
E √ √      84.71% 75.39% 77.78% 
F   √ √    85.19% 79.63% 77.78% 
G     √   64.52% 58.40% 59.26% 
H      √  57.78% 59.93% 62.96% 
I       √ 79.92% 68.69% 70.37% 

J   √ √   √ 83.65% 82.20% 81.48% 

Table 1. Identification accuracy results of urban functional districts with different combinations of time series statistics (Zhang, 
2020). 
 
As we can see from Table 1: (1) when only one time series 
statistic was used to identify urban functional districts, it can be 
found that using time series statistics of pick-up and drop-off 
points is more effective than using statistics of pick-up and 
drop-off difference. But the ratio statistics of pick-up and drop-
off difference is a special case. Because the operational form of 
the ratio enhances the small differences between spatiotemporal 
taxi trajectories, making the experimental accuracy of the ratio 
statistics of pick-up and drop-off difference is much higher than 
the average statistics of pick-up and drop-off difference and the 
L2 norm statistics of pick-up and drop-off difference. (2) 
Compared with the statistics of drop-off points, the accuracy of 
statistics of pick-up points is higher. The experimental accuracy 
of the  average statistics of pick-up and drop-off points is better 
that the L2 norm statistics, which is different from the results of 
(Pan et al., 2013). In conclusion, the best combination of time 
series statistics for urban functional district identification is the 
average statistics of pick-up points, the average statistics of 
drop-off points, and the ratio statistics of pick-up and drop-off 

difference. The identification precision reaches 83.65%, the F1-
score reaches 82.2%, and the recall score reaches 81.48%. 
 

4. CONCLUSIONS 

This paper couples OpenStreetMap, taxi trajectories, and Online 
maps to identify urban functional districts. OpenStreetMap 
provides the primary road network. Based on the primary road 
network, we rasterized taxi trajectories to update the road 
network to construct analysis units. The improved head/tail 
breaks method and morphological operators were used to refine 
the rasterized image of taxi trajectories. Then, seven time series 
statistics of taxi pick-up and drop-off points were calculated to 
identify urban functional districts. This paper compared the 
performance of different combinations of time series statistics to 
identify urban functional districts. The best combination of time 
series statistics is the average statistics of pick-up points, the 
average statistics of drop-off points, and the ratio statistics of 
pick-up and drop-off difference. 
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Due to the limitation of taxi trajectories, in the future we plan to 
study introduce more types of social sensing data that are easier 
to obtain, such as POIs, subway data, Sina-Weibo data, etc., to 
extract socioeconomic information in urban areas, analyze the 
benefits and drawbacks of each data, and pay more attention to 
feature contribution and feature optimization. 
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