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ABSTRACT:

Vision in the deep sea is acquiring increasing interest from many fields as the deep seafloor represents the largest surface portion on
Earth. Unlike common shallow underwater imaging, deep sea imaging requires artificial lighting to illuminate the scene in perpetual
darkness. Deep sea images suffer from degradation caused by scattering, attenuation and effects of artificial light sources and have
a very different appearance to images in shallow water or on land. This impairs transferring current vision methods to deep sea
applications. Development of adequate algorithms requires some data with ground truth in order to evaluate the methods. However,
it is practically impossible to capture a deep sea scene also without water or artificial lighting effects. This situation impairs progress
in deep sea vision research, where already synthesized images with ground truth could be a good solution. Most current methods
either render a virtual 3D model, or use atmospheric image formation models to convert real world scenes to appear as in shallow
water appearance illuminated by sunlight. Currently, there is a lack of image datasets dedicated to deep sea vision evaluation. This
paper introduces a pipeline to synthesize deep sea images using existing real world RGB-D benchmarks, and exemplarily generates
the deep sea twin datasets for the well known Middlebury stereo benchmarks. They can be used both for testing underwater stereo
matching methods and for training and evaluating underwater image processing algorithms. This work aims towards establishing
an image benchmark, which is intended particularly for deep sea vision developments.

1. INTRODUCTION

The open ocean, as the largest living space on our planet, covers
more than half of Earth’s surface with more than 1000m of wa-
ter. The deep sea is characterized by extremely high pressure
and permanent darkness, and remains largely unexplored by
humans. Vision systems have been widely applied in ocean ex-
ploration missions, which is being increasingly adopted also for
deep ocean research. To develop computer vision algorithms
for classical applications, benchmarks are often used to evalu-
ate the performance of the methods. Running algorithms on a
benchmark with ground truth (GT) allows us to directly com-
pare the performance between different methods. Good vision
benchmarks can lead to a boost of the methods’ development in
the corresponding area, such as ImageNet (Deng et al., 2009) to
visual object recognition, the Middlebury datasets (Scharstein
et al., 2014) to stereo vision, and KITTI (Geiger et al., 2012) to
autonomous driving. Unfortunately, we are lacking such data-
sets specifically developed for deep sea vision algorithm de-
velopment. Since the image degradation due to water-based
absorption, scattering and light cones are the particular extra
challenges for deep sea data, GT data should include also how
the images would look without water (as also sought in image
restoration algorithms). Simultaneously obtaining a deep sea
scene and its corresponding GT appearance without water or
lighting effects is practically impossible. The lack of proper
deep sea vision datasets with GT is impairing the development
of corresponding vision methods (Song et al., 2022).

Synthesized datasets could be a solution to this problem. They
must be valid and verifiable, e.g. using physically based tech-
niques to generate realistic deep sea images and utilize existing
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Figure 1. Synthesizing deep sea images with GT for existing real
world in-air benchmarks.

models or benchmarks to create the GT. There are two types
of solutions to simulate the deep sea images. One is convert-
ing existing color and depth (RGB-D) images into the deep
sea scenario and generate their deep sea twin images (see Fig.
1). Existing benchmarks outside the ocean, e.g. for dense ste-
reo matching, already provide in-air images, as well as the GT
depth (or disparity) (Scharstein et al., 2014), to evaluate the res-
ults that could be used also to evaluate simulated images with
different appearance. However, the GT depth maps of the real
world scene often contain missing areas that require additional
pre-processing before generating the underwater data.

The other technical solution is directly rendering deep sea ef-
fects from a fine-textured 3D model (Sedlazeck and Koch, 2011,
Song et al., 2021a, Zwilgmeyer et al., 2021). Both, the deep
sea images, as well as their in-air appearances, can be simu-
lated using the same camera parameters but different lighting
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and medium configurations, possibly using different rendering
pipelines. Simulating from a 3D model using advanced ren-
dering techniques allows to provide perfect pose information
and depth images. Nevertheless, they do not show a real world
scene, and the rendered images’ quality mostly depends on the
quality of the 3D model. Existing methods all synthesize deep
sea appearance images from virtual scenes. To our best know-
ledge, there is currently no literature to discuss the synthesis
issues of real world scenes in a physically realistic deep sea
scenario. To bridge the gaps between real world in-air scenes
and deep sea images, we introduce a complete pipeline to syn-
thesize deep sea images with GT from existing in-air bench-
marks. Exemplarily, we create deep sea image twin datasets
for the Middlebury stereo benchmark that could later become
part of a Deep Sea Vision (DSV) dataset, particularly intended
for deep sea underwater photogrammetry and image processing
evaluation. It consists of high-resolution deep sea stereo im-
age pairs with GT disparities for underwater stereo matching
evaluation or for training. Moreover, the in-air/underwater twin
color images of the original benchmark can be used as the GT
for developing underwater image restoration approaches.

2. RELATED WORK

The first report of filming underwater images dates back to the
19th century (according to (Jaffe, 2014)), and nowadays pho-
togrammetry has been successfully applied to many aspects of
shallow underwater research (Bythell et al., 2001, Drap, 2012,
Menna et al., 2013). Most of such images are acquired via
scuba divers and their operating depth is limited to a few tens of
meters. Imaging in the deep sea started much later as it was fa-
cing many physical and technological barriers. The first attempt
of deep sea imaging was deployed during the second world war
(Harvey, 1939). Thanks to the advancement of technologies,
nowadays deep sea photogrammetry via robotic platforms be-
comes applicable and is increasingly being used in deep ocean
research (Pizarro and Singh, 2003, Kwasnitschka et al., 2016).

On land, good benchmarks and test data played important roles
in the development of vision methods, as improving and valid-
ating algorithms requires to continuously evaluate the results
and performances. Several datasets with GT were captured
under different scenarios for different applications and evalu-
ations. A famous in-door scene 3D vision benchmark is the
Middlebury dataset, which contains Stereo (Scharstein et al.,
2014), Multi-View Stereo (MVS) (Seitz et al., 2006), and Op-
tical Flow (Baker et al., 2011) datasets. It provides the offi-
cial page for evaluating the submitted results, which has been
widely used in 3D vision and photogrammetry research. An-
other well known 3D vision benchmark is the ETH3D dataset.
It includes MVS (Schops et al., 2017) and simultaneous localiz-
ation and mapping (SLAM) (Schops et al., 2019) benchmarks.
Similar benchmarks exist for dense matching in airborne pho-
togrammetry such as the ISPRS/EuroSDR (Nex et al., 2015)
and the Hessigheim 3D (H3D) (Kölle et al., 2021) datasets.
The KITTI (Geiger et al., 2012) dataset, is a benchmark cur-
rently often used for vision in autonomous driving. It provides
various sensor measurements including stereo images in the
urban region with GT trajectories, and is utilized for evaluat-
ing Visual Odometry and SLAM methods. Besides the KITTI
datasets there are several others as well, e.g. the Málaga Urban
dataset (Blanco-Claraco et al., 2014) also contributes stereo im-
ages and light detection and ranging (LiDAR) measurements in
urban scenario for SLAM in autonomous driving. Apart from
that, the EuRoC micro aerial vehicle dataset (Burri et al., 2016)

provides the images sets with GT poses and a detailed 3D scan
of the in-door environment for visual-inertial SLAM. The TUM
RGB-D SLAM dataset (Sturm et al., 2012) captured RGB-D
images through Microsoft Kinect, with given GT trajectories.
Even though various 3D vision datasets are available, they are
often still not sufficient for training neural networks with their
need for huge amounts of training data and diversity in the data.
Here, synthetic rendering of data could help, and many large-
scale synthetic datasets with GT exist for different purposes.
The MPI Sintel Flow dataset (Butler et al., 2012) derived the
optical flow GT from an open source 3D animation Sintel. The
FlyingThings3D (Dosovitskiy et al., 2015) is another synthetic
optical flow dataset which consists of renderings of 3D chairs
with different poses and backgrounds. The Monkaa (Mayer et
al., 2016) dataset rendered stereo frames with GT from the an-
imated short film Monkaa, including optical flow, disparity and
disparity change. Many of the above mentioned datasets are
later included in the recent Robust Vision Challenge 2020 1.

Compared to the abundant in-air vision benchmarks, there are
only limited underwater vision datasets available to the pub-
lic for evaluation purposes, due to the inherent difficulties of
deploying well-controlled experiments. In underwater robot-
ics, (Mallios et al., 2017) proposed a dataset with imagery col-
lected by an autonomous underwater vehicle (AUV) in under-
water caves. (Ferrera et al., 2019) released another real ocean
Visual SLAM dataset AQUALOC, captured by a remotely oper-
ated vehicle (ROV). In underwater image processing, (Li et al.,
2019) collected images from the Internet and presented a real-
world underwater image enhancement benchmark (UIEB). The
enhanced reference images are manually selected by human in-
spection among 12 enhanced results. (Akkaynak and Treibitz,
2019, Berman et al., 2020) utilized an underwater stereo cam-
era system and captured in total 57 stereo pairs for underwa-
ter restoration evaluation, the reference distances are computed
via Structure from motion (SfM). Since water blocks the use
of GPS underwater, the real world robotic vision datasets share
the same problem: that the GT trajectories and distances are not
precise enough for evaluating underwater Visual SLAM. Also,
enhanced images used as reference images are still not equal to
the medium-free images. As the demand of high-accuracy un-
derwater vision is increasing, the real-world underwater evalu-
ation datasets are by far not sufficient. To our best knowledge,
there is still no such dataset available for deep sea vision evalu-
ation yet. Synthesized datasets seem to offer a solution.

To physically simulate underwater images, the physics of light
travelling through water, including the attenuation and scatter-
ing, has been properly studied (Mobley, 1994). The most fre-
quently used underwater image formation model is inherited
from the atmospheric fog model (AFM) (Cozman and Krotkov,
1997), which assumes a global illumination from the water sur-
face. Another famous model is the Jaffe-McGlamery (J-M)
model (Jaffe, 1990, McGlamery, 1980), which considers point
light sources. It is regularly applied in photometric stereo ap-
proaches in participating media. See (Song et al., 2022) for a
recent survey on the different models.

Synthesized images are widely applied in learning based under-
water research. Most of them use the AFM to convert RGB-D
images to underwater scenario as the training data (Li et al.,
2020, Li et al., 2017, Ueda et al., 2019). Meanwhile, some un-
derwater vehicle simulators, such as the Unmanned Underwa-
ter Vehicle (UUV) Simulator (Manhães et al., 2016), also apply

1 http://www.robustvision.net/index.php
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this model for generating camera outputs due to its simple im-
plementation. However, (Song et al., 2021a) addressed that the
AFM is not able to imitate the complex artificial lighting effect
in the deep sea scenario, to which the J-M model better suits.
(Sedlazeck and Koch, 2011) adapted the J-M model to simulate
deep sea underwater images. Later (Song et al., 2021a) exten-
ded the model for multi directional light sources and optim-
ized the rendering strategy for faster implementation. Besides
physically based image formation models, the ray-tracing tech-
niques such as volumetric rendering, are also used for synthes-
izing light transportation in media (Bitterli and Jarosz, 2017,
Crane et al., 2007, Novák et al., 2018). (Zwilgmeyer et al.,
2021) applied the latest Monte-Carlo path-tracing rendering from
the rendering engine Blender (Blender Online Community, 2021)
to generate the underwater dataset VAROS. In order to evaluate
refraction induced by underwater housings (Nakath et al., 2022)
have introduced the GEODT toolkit based on blender.

3. APPROACH

This section describes the details of using the real word RGB-D
images for synthesizing their deep sea twins. The raw dispar-
ity data require careful pre-processing in order to be compatible
with the rendering procedure. Firstly, the disparities need to be
converted to real world depths for physical rendering. Secondly,
the converted depth map requires further refinement to fill the
incomplete data. Thirdly, we have to estimate initial normals
from the refined depth map and create a mask for depth dis-
continuity regions, where normals are uncertain. Lastly, the
masked normals are smoothed by using a median filter. The
complete pre-processing pipeline is illustrated in Fig. 2 and ex-
plained in Section 3.1.

Calibration Parameters

Raw DisparityRaw Disparity

Raw DepthRaw Depth

Refined DepthRefined Depth

Initial NormalsInitial Normals

Edge MaskEdge Mask

Smoothed NormalsSmoothed Normals

Inpainting

 Sobel Operator

Median
Filtering

GradientsGradients

 thresholding

Figure 2. Workflow of pre-preprocessing real world depth

3.1 Scene Preparation and Pre-processing

Stereo benchmarks provide disparity maps for directly evalu-
ating dense image matching performance. The disparity value
refers to the pixel coordinate difference between two corres-
ponding points in the stereo image pair. It cannot be directly
used for physical model based simulation as this requires the
knowledge of the scene depth in the real world scale. Accord-
ing to the Middlebury dataset descriptions, the disparity value d
[pixel] can be converted to the real depth Z [m] by the camera
calibration parameters:

Z =
b · f

1000 · (d+ doffs)
, (1)

where b represents the camera baseline [mm], f the pinhole’s
focal length [pixels] and doffs is the horizontal difference of the
principal points.
Real world raw depth maps usually contain empty values where
no depth information has been recorded (See Fig. 3 left). They
are often captured by external high resolution devices, e.g. struc-
tured light systems (Scharstein and Szeliski, 2003). In this case,
the offset between the camera and the infrared emitter can in-
troduce a stereo shadow and a specular object surface can cause
missing data. These incomplete depth maps can not be directly
used for deep sea rendering as the rendering relies on distance
information per pixel and a ”hole” would create strong artifacts
in the renderings. To avoid such artifacts, the depth maps have
to be filled, where the filled values are only used for creating
the underwater image appearance, but do not serve as GT in the
evaluation. Several approaches have been proposed for filling
missing depth values. In this paper, we adopt the inpainting
method from (Bertalmio et al., 2001), which is based on the
Navier-Stokes equations, for refining depth maps.

Figure 3. Left: The original raw depth map contains incomplete
data. Right: Refined depth map using inpainting.

Besides incomplete depth values, the real world benchmarks
often contain complex scene geometry for evaluation purposes.
This creates depth discontinuities that have to be carefully handled
when computing the surface normals from the depth map with
local operators. Here, depth discontinuities can cause wrong
normal computation results for rendering, which can lead to
obvious dark contours around objects in the image under the
standard Lambertian reflection. In order to avoid such artifacts,
normals facing away from the camera are median-filtered. Ad-
ditionally, we adopt also the ambient term from the Phong re-
flection model (will be discussed in Section 3.2.2) in our im-
age formation model, which essentially resembles the scattered
light that is present in the scene. The computation of normal
maps from the depth contains the following steps:

Figure 4. Left: Filtering mask for normal map edge smoothing.
Right: Smoothed normal map.

1. Compute initial normals. The initial normal for each
pixel is computed from the cross product of two vectors
formed from the 3D difference of the neighboring pixels.

2. Extract filtering mask. Whenever a normal is facing away
from the camera (z-component thresholding) and has a
high local variation (thresholding of Sobel operator res-
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ult) a potential depth discontinuity is detected and marked
in a mask image (see Fig. 4 left).

3. Normal map smoothness. A Median filter is applied to
the masked region in the initial normal map, which selects
either the foreground or the background normal.

3.2 Deep Sea Image Formation

The deep sea lies in complete darkness, where no sunlight pen-
etrates. Artificial light sources are required to provide illumin-
ation for camera imaging. Therefore the J-M image formation
model is utilized rather than the AFM, as it considers the com-
plete transmission path from point light sources (See Fig. 5).
The J-M model describes the underwater image formation as
a linear composition of direct signal, forward scattering, and
backscatter. Our approach is based on the modified J-M model
from (Song et al., 2021a), which additionally supports multi-
spotlights for simulating deep sea lighting effects.
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Figure 5. Adapted J-M model with spotlight (Song et al., 2021a).

3.2.1 Attenuation One of the iconic properties in underwa-
ter images is their color distortions caused by the water atten-
uation. The appearance of oceanic water varies depending on
the locations, time, and environmental conditions. Attenuation
is a wavelength-dependent coefficient. (Jerlov, 1968) measured
and categorized waters on Earth into fourteen different spectra,
which are also known as Jerlov water types. Later (Akkaynak
et al., 2017) utilized Jerlov water types to constrain the space of
the oceanic attenuation coefficients for underwater vision ap-
plications. The water attenuation with point light sources can
be formulated by:

E(λ, d) = Iθ(λ)
e−η(λ)·d

d2
. (2)

where λ = RGB channels
d = light traveling distances from spotlight in [m]
η = water attenuation coefficient in [m−1]
Iθ = spotlight irradiance at angle θ

3.2.2 Phong Reflection Model The Phong reflection model
(Phong, 1975) is a well-known model which has been widely
applied in computer graphics. It describes the reflected light as
a summation of the ambient, the diffuse, and the specular terms.
Since underwater specular effects are rare, we omit the specular

term in the original Phong reflection model and integrate it into
the J-M model. The J-M direct signal D(λ) with Lambertian
Phong reflection can be expressed by:

D(λ) = J(λ)E(λ, d1)e
−η(λ)·d2(cosα+ fambient). (3)

where J = surface albedo
d1 = distance from light to object in [m]
d2 = distance from object to camera in [m]
α = angle between the incident light ray and the
surface normal
fambient = ambient factor in the range (0, 1)

3.2.3 Scattering Phase Function For deep sea vehicles that
cannot avoid the light source being somewhat close to the cam-
era, significant backscatter can be observed in the images, which
is characteristic for robotic imaging in the deep ocean (Song et
al., 2021a). The scattering effect is caused by the photons inter-
acting with the medium and deviating from their original direc-
tion. A common quantity used to describe the scattering is the
scattering phase function. It characterizes the angular distribu-
tion of scattered light and is often expressed as a 1D function
of the angle between the incident light ray and the outgoing
ray (which is most relevant in case this is the camera viewing
ray) (see Fig. 6). Several phase functions have been proposed
for modeling different light scattering effects, such as Rayleigh
and Mei phase functions. Oceanographers built special instru-
ments and measured the phase functions, or their unnormalized
counterparts, the Volume Scattering Functions (VSFs), in dif-
ferent types of water. A seminal work is by (Petzold, 1972)
who measured a wide range of angles for clear, coastal, and tur-
bid ocean water scattering (see Fig. 6). This paper applies the
popular Heney-Greenstein (H-G) phase function (Henyey and
Greenstein, 1941) to render the J-M backscatter component.

pHG(ψ) =
1

4π

1− g2

(1 + g2 + 2g · cosψ)3/2
. (4)

where ψ = angle between the incident light ray and the
camera viewing ray
g = the asymmetry parameter in the range (−1, 1)
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Figure 6. Volume Scattering Phase Function measured by
(Petzold, 1972) and H-G Phase Function with different g.
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4. THE DSV DATASET GENERATION

4.1 Stereo Benchmarks and Simulation Platforms

The Middlebury Stereo dataset2 is one of the most famous vis-
ion benchmarks in photogrammetry and computer vision. It
currently consists of six subsets created in different years. The
dataset includes high-resolution stereo pairs with complex scenes.
The corresponding pixel-accurate GT disparities were obtained
from high accuracy structured light measurements. In this pa-
per, 23 stereo pairs with GT disparities from the Middlebury
Stereo 2014 datasets (10 evaluation/training sets with GT and
13 additional datasets with GT), are selected for deep sea data
synthesis. Each stereo pair consists of two views with differ-
ent illumination and exposure settings, the default left and right
view images, together with the camera calibration file and cor-
responding GT disparities. The depth maps are processed ac-
cording to the methods described in Section 3.1.

Synthesis of the deep sea images are based on the DeepSeaR-
enderer from (Song et al., 2021a). It is a rasterization-based
rendering tools which is initially used for deep sea robotic vis-
ion simulation. It utilizes RGB-D images as inputs and im-
plements a modified J-M image formation model supporting
multiple spotlights with angular characteristic. On top of the
DeepSeaRenderer, we integrated the Lambertian Phong reflec-
tion (Section 3.2.2), in particular ambient light to account for
the multiple scattered light in the scene, and the H-G phase
function (Section 3.2.3) in the renderer to further improve the
rendering results.

4.2 Parameter Settings

Setting physically correct rendering parameters is a challenging
task. It often requires professional knowledge and instruments
in order to define physically meaningful values. Wrong settings
would significantly change the image appearance (see Fig. 7)
and lead to unrealistic synthesis results.

Figure 7. Simulated images vary significantly with different
settings of lighting conditions (first row), attenuation parameters

(second row), and g in H-G phase function (third row).

In our case, the camera intrinsics are obtained from the ori-
ginal datasets, the attenuation parameters refer to (Akkaynak
et al., 2017) for Jerlov water type IB. The other radiometric
parameters are defined according to (Song et al., 2021b), which

2 https://vision.middlebury.edu/stereo/data/

provides a detailed explanation of their deep sea image render-
ing settings referring to real deep ocean images. Details about
the parameter settings in this paper are listed in Table 1. In our
modified renderer, the default values of ambient factors fambient

are set to 0.2 for all RGB channels and the g parameter of the
H-G phase function is set to -0.4. Two scenarios with differ-
ent lighting configurations are defined for synthesizing deep sea
images. One places a spotlight 0.5m away on the right side of
the origin in the local stereo camera coordinate system (Setup
1) and another moves the light on top of the origin with 0.5m
distance (Setup 2). Both setups define the central axis of the
spotlight pointing parallel to the camera viewing direction.

Parameter Name Values
scale factor 3.5
scale factor bs 1600.0
volumetric max depth 4.0
num volumetric slabs 10
slab sampling method EQUAL DISTANCE
white balance [2.498, 1.0, 1.448]
water attenuation RGB [0.37, 0.044, 0.035]
light spectrum RGB [0.25, 0.35, 0.4]
light RID type 1
auto iso false

Table 1. Parameter settings for the rendering.

4.3 Dataset Structure and Usage

The data structure of the DSV stereo datasets is inspired by the
original Middlebury 2014 Stereo datasets. Each DSV stereo
pair is saved in a individual folder that shares the same name
with the Middlebury datasets. In each scene folder, the re-
fined depth maps (depth{0,1} rf.exr) for left and right views are
saved as 16-bit OpenEXR files. The synthesized deep sea ste-
reo images with lighting Setup 1 (im{0,1} ds1.png) and Setup
2 (im{0,1} ds2.png) are exported as the same 8-bit PNG format
with the original stereo images. Detail about the dataset struc-
ture is shown in Fig. 8.

DSV

Middlebury 2014 Stereo

10 evaluation training sets

Adirondack

depth{0,1} rf.exr
im{0,1} ds1.png
im{0,1} ds2.png

Jadeplant

Motorcycle
...

13 additional datasets

Backpack

Bicycle1

Cable
...

Figure 8. Folder structure of the DSV - Middlebury 2014 Stereo
datasets (version 1).

Each synthetic stereo pair can be used for testing correspond-
ing stereo matching methods. The evaluation SDK provided
by the Middlebury official web page enables the standardized
evaluation of the result, referring to the GT disparity maps.
Moreover, the synthetic deep sea images with their original in-
air images can be formed into the in-air/underwater pairs, which
can be used for training or testing underwater image restoration
approaches for a certain underwater approximation setting.
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Figure 9. Examples of synthetic deep sea image twins for Middlebury 2014 Stereo datasets. From left to right: original in-air images
from Middlebury dataset, Refined depth maps, Synthesized deep sea images with Setup 1 and 2. Synthesized underwater images using
the atmospheric fog model (with the same attenuation parameters, background color was set to [110, 137, 212] for RGB). From top to
bottom: left view image of Middlebury Adirondack, Jadeplant, Recycle, Shelves, Backpack, and Sword2 dataset.

4.4 Rendering Results

As it is displayed in Fig. 9, example scenes from the Middle-
bury 2014 datasets were synthesized to approximate aspects of
deep sea scenarios with two different lighting setups. As can
be seen, the synthesized images resemble some characteristics
of deep sea images. The unique scattering pattern and the un-
even illumination shading caused by artificial spotlight enable
humans to infer the lighting direction from the image. Although
the used model is not complete (only single scattering, limited
phase function), compared to the simulation results by using the
AFM, our approach provides more vision-realistic results.

During the deep sea image synthesis for the Middlebury data-
sets, we observed some limitations of our method: once the raw
disparity contains large areas of missing data, the inpainting al-
gorithms may not able to recover the complex scene accurately.
However, these areas do not contain GT for evaluation, which
will not contribute to the evaluation metrics. We also noticed

Figure 10. Slight noise in the depth map getting obvious under
the spotlight shading. From left to right: In-air color image,

Deep sea synthesis, and Normal map.

that the original Middlebury GT disparities contain some arti-
facts, potentially where inside the shadow area of the structured
light. This is also reflected in the official GT sample standard
deviations. These issues are not noticeable immediately in the
disparities, but are getting obvious when performing shading
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with spotlights (see Fig. 10). We keep this effect in our syn-
thetic results as it reflects the ”true” geometry information of
the GT depth, which can be interpreted as ”millimeters depth
scratches” on the object surface.

5. CONCLUSIONS

In this paper, we present a pipeline to generate synthetic im-
ages from existing real world in-air RGB-D benchmarks, espe-
cially for the deep sea scenario that currently lacks benchmark
datasets. It is able to generate more vision-realistic deep sea
images with different lighting configurations. The synthesized
images share the same GT disparities with the original bench-
marks, which can be directly used for evaluating underwater
stereo matching algorithms using official platforms and metrics.
Additionally, the corresponding in-air/underwater color images
can be utilized as references for training or evaluating underwa-
ter image restoration methods, though the model applied does
not yet cover all deep-sea aspects. Using a physical-model-
based rasterization renderer, we demonstrated the creation of
more realistic deep sea twins for the Middlebury 2014 Stereo
datasets under two different lighting setups. The data will be
collected in the DSV dataset, and made available to the public.
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