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ABSTRACT: 

 

Existing approaches to accuracy assessment of LiDAR-derived DEM are typically based on statistical methodology and focus on 

vertical accuracy. This paper presents a new framework which calls for assessment of not only a DEM’s vertical accuracy, but also its 

ability to preserve a point’s elevation rank in the bare earth topographic surface. New methods to assess each aspect are presented. For 

DEM’s vertical accuracy, approximation theory from numerical analysis is used to quantify the total error at each DEM point as well 

as its three error components – sensor error, ground error, and interpolation error. For DEM’s elevation order which is critical to model 

terrain structure, the concept of isomorphism in set theory is drawn as the mathematical rationale and Kendall’s rank correlation 

efficient is used to quantify the accuracy. The new framework is illustrated using a DEM derived from LiDAR for sea-level rise 

vulnerability assessment of a tidal salt marsh. Compared to conventional methods based on statistics, the new framework and methods 

produce detailed mapping of error distribution thus enable the identification of the main sources of error and where improvement is 

needed most. Results call for re-evaluation of the current practice of assessing filtering accuracy in LiDAR data processing and further 

research on relative elevation and isomorphism.   

 

 

1. INTRODUCTION 

High-accuracy elevation data is essential to many applications 

such as flood risk mapping and sea-level rise vulnerability 

assessment. Light Detection and Ranging (LiDAR) is a standard 

source to obtain such data. Because of the high cost of LiDAR 

data acquisition and the steep learning curve of LiDAR data 

processing, few users fly LiDAR for their own projects but seek 

available LiDAR data and LiDAR-derived Digital Elevation 

Models (DEM). Different applications have different demands 

for elevation data accuracy, thus users of a LiDAR product not 

customized for their projects usually need an assessment of its 

accuracy to determine the product’s appropriateness for their 

needs. For DEM producers, accuracy assessment is also 

important for the purpose of quality control and quality 

assurance. A sound framework for DEM accuracy assessment is 

thus necessary.   

 

Many frameworks and methods to assess DEM accuracy have 

been reported. The majority focuses on the vertical accuracy 

aspect and resorts to statistical methodology for quantification 

(Höhle, Höhle, 2009; Maune, 2007). However, literature has 

pointed out the limitation of this methodology ( Hu et al. 2009a). 

More importantly, increasing amount of research has realized 

that vertical accuracy is but one aspect of DEM accuracy; other 

aspects such as a DEM’s ability to reproduce critical terrain 

features are also important. As illustrated by Chassereau et al. 

(2011) who compared a LiDAR-derived DEM with GPS-

collected field data, a DEM of high vertical accuracy ended up 

modelling the overall shape of a salt marsh poorly because of its 

inability to depict terrain’s microtopograhic variations. At the 

time being, there is little research beyond general discussions on 

how to assess this aspect of DEM accuracy, further research is 

thus necessary.  

 

This paper strives to address the two challenges identified above. 

Given that terrain is a complex surface and DEM is meant to 

model it, it is imperative to understand terrain properties first. 

Only by doing so, it is possible to create a DEM to adequately 

account terrain properties. Liu et al. (2015) discussed terrain 

properties and their implications to DEM generation. This paper 

focuses on two of these properties which are based on absolute 

elevation and relative elevation respectively. The first is that the 

elevation at a location 𝑇 is not random but has a single and 

determined true elevation denoted by 𝑧𝑇 . While its exact value 

may never be known, 𝑧𝑇  exists and has a single value. To account 

for this property of terrain, a DEM is expected to produce an 

accurate estimate of the absolute elevation at any points. This is 

the vertical accuracy aspect which has been examined intensively 

and extensively in the literature. The other property of terrain is 

that terrain is not a random collection of points but a surface 

resulting from the orderliness of point elevations. It is this 

elevation order that determines how water flows and what kind 

of landforms exist. For applications studying flood and 

landforms, a DEM’s ability to preserve elevation order is very 

important, in fact more important than the vertical accuracy 

aspect because elevation order is about the rank of each point in 

the terrain in terms of elevation, i.e. the highest, the second 

highest, the third highest etc.. It is the relative elevation, not 

absolute elevation, that is of primary concern. Despite its 

importance, the implication of this property to DEM accuracy 

assessment and DEM generation is much less discussed in the 

literature. Researchers recognize it explicitly (Chassereau et al., 

2011; Maune, 2007), but the mathematical rationale behind it is 

not articulated and methods to quantitatively assess it are yet to 

be reported.  

 

This paper presents a new examination of the above two aspects 

in DEM accuracy assessment. For each aspect, a new method will 

be given; the mathematical rationale behind each method will 

also be articulated – approximation theory for vertical accuracy 

and isomorphism for elevation order. A LiDAR-derived DEM, 

employed to assess the vulnerability of a salt marsh to sea-level 

rise, is used to illustrate the methods.  
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2. VERTICAL ACCURACY  

2.1 Error Component 

Generally speaking, there are two main steps when generating a 

DEM from a LiDAR point cloud: filtering and interpolation. 

During filtering, each LiDAR point is labelled as “ground”, 

“vegetation”, “building” etc. During interpolation, bare-earth 

ground points are used to create a Triangulated Irregular Network 

(TIN) to which interpolation can be applied to creating a raster 

DEM.  Because LiDAR sensor/platform has inherent errors, the 

filtering algorithm is rarely 100% accurate, meaning that there 

are omission and commission errors in LiDAR points classified 

as bare-earth ground. When TIN is constructed and converted to 

raster DEM, these errors are propagated through the interpolation 

function. As a result, a point in a LiDAR-derived DEM has three 

error components: error due to LiDAR sensor/platform, error due 

to filtering/classification, and interpolation error. The vertical 

error at a point 𝑇 covered by a DEM, denoted as 𝛥𝑍𝑇 , is the sum 

of these three components:  

 

                            𝛥𝑍𝑇 = 𝑍𝑇 − 𝑧𝑇 = Ɛ𝑇 + 𝐺𝑇 + 𝑅𝑇               (1) 

 

where  𝑍𝑇   =  𝑇’s elevation in a LiDAR-derived DEM 

 𝑧𝑇   =  𝑇’s true bare-earth elevation 

 Ɛ𝑇  =  error due to LiDAR sensor or platform 

 𝐺𝑇  = ground error due to imperfect filtering  

 𝑅𝑇   = interpolation error  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Triangular interpolation. 

 

 

When triangular interpolation (Figure 1) is used, there are  

 

  Ɛ𝑇 =  𝑤𝑎Ɛ𝑎 + 𝑤𝑏Ɛ𝑏 + 𝑤𝑐Ɛ𝑐   

 

𝑅𝑇 = 𝑤𝑎𝑧𝑎 + 𝑤𝑏𝑧𝑏 + 𝑤𝑐𝑧𝑐 − 𝑧𝑇  

 

𝐺𝑇 = 𝑤𝑎𝐺𝑎 + 𝑤𝑏𝐺𝑏 + 𝑤𝑐𝐺𝑐 

 

 

Where     𝑤𝑎, 𝑤𝑏, 𝑤𝑐 = weight of point 𝑎, 𝑏, and 𝑐 respectively; 

𝑤𝑎 + 𝑤𝑏+𝑤𝑐= 1  

 Ɛ𝑎, Ɛ𝑏 , Ɛ𝑐 =  LiDAR-senor error at 𝑎, 𝑏, and 𝑐 

respectively 

 𝑧𝑎 , 𝑧𝑏, 𝑧𝑐  = true bare-earth elevations at 𝑎, 𝑏, and 𝑐 

respectively  

  𝐺𝑎, 𝐺𝑏, 𝐺𝑐 = ground errors at 𝑎, 𝑏, and 𝑐 respectively  

 

Ground error is the difference between a point’s elevation 

reported by an error-free LiDAR sensor and the point’s true 

bare-earth elevation. This error is introduced by filtering,  

labelling, and/or classification and has nothing to do with the 

LiDAR sensor or platform. In the literature, filtering accuracy is 

widely reported as a percentage value such as overall accuracy, 

Kappa statistics, or type I/ II error (Meng et al., 2010; Sithole, 

Vosselman, 2004; Yan et al., 2012). While these statistics 

summarize the percentage of points classified correctly, they do 

not carry the critical information on the error occurred at each 

misclassified point. For example, two points both have true 

bare-earth elevation of 10 cm but LiDAR-reported elevations 

are 9 cm and 13 cm respectively. Both are misclassified as bare-

earth ground thus both are included in TIN interpolation and 

DEM generation. However, the 9-cm point only introduces an 

error of -1 cm while the 13-cm point introduces an error of 3 

cm. If only summary statistics is used to report filtering 

accuracy, the important information that one misclassified point 

carries less error than the other misclassified point will be lost.  

 

To stress the importance of retaining such information, we use 

the term ground error, not filtering error, in this paper and 

define it as follows: the ground error at a LiDAR point 

classified as bare-earth ground, e.g. point 𝑎 in Figure 1, is  

 

        𝐺𝑎 =  𝐿𝐼𝐷𝐴𝑅𝑎 − 𝑧𝑎              (2) 

 

where 𝑧𝑎  = true bare-earth elevation at 𝑎 

               𝐿𝐼𝐷𝐴𝑅𝑎 = elevation at 𝑎 reported by an error-free 

LiDAR 

  

In typical TIN construction and triangular interpolation, only 

points classified as bare-earth ground are included thus ground 

error is concerned mostly at these points. However, the concept 

of ground error is applicable to any points. For example, if 

vegetation heights are known, the bare-earth elevation of points 

classified as vegetation can be inferred by subtracting 

vegetation heights from LiDAR-reported heights. These 

vegetation points can then be included in DEM generation. 

Ground error as defined in Equation 2 can be easily modified to 

apply to such situations. This flexibility is important for 

circumstances where sparse bare-earth ground points are 

available, e.g. non-open space. It enables the employment of 

non-bare-earth LiDAR points in DEM construction after their 

above-ground elevations are shaved.  

 

2.2 Approximation Theory 

Previous research has shown that, while LiDAR-senor error 

(Ɛ𝑇) may be random error, interpolation error (𝑅𝑇) and ground 

error (𝐺𝑇) are not, they are systematic error instead (Liu et al., 

2015). Since the total vertical error at a point is the sum of these 

three error components, vertical error cannot be random. As a 

result, the errors cannot be assumed to follow normal 

distributions as in the case of random error. This challenges the 

validity of using parametric statistics such as 95% confidence 

interval or Root Mean Squared Error (RMSE) to describe a 

DEM’s vertical accuracy. A viable alternative is approximation 

theory which is widely used in numeric analysis in computational 

science to control the errors introduced when approximating a 

function by simpler functions (Atkinson, K. and Han, W., 2004). 

For example, the function 𝑓(𝑥) in Figure 2 is to be approximated 

by 𝐹(𝑥) and a set of reference points are provided. According to 

approximation theory, the accuracy of the overall approximation 

is determined by the largest error of any point in the entire 

domain, i.e., max |𝐹(𝑥) − 𝑓(𝑥)| . The rationale is simple: If the 

largest error is acceptable, the error at any point must also be 

acceptable, hence the overall approximation is acceptable.   

 

In the case of DEM research, terrain is the function  𝑓(𝑥) to be 

approximated by a simplifier function which is the DEM. By 

approximation theory, the vertical accuracy of a DEM is 

determined by the largest error at any point in the terrain. Based 

on Equation 1, the vertical accuracy of a DEM is controlled by  

 

T 
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max|𝛥𝑍𝑇| = max |Ɛ𝑇 + 𝐺𝑇 + 𝑅𝑇|                                 
                          ≤ max|Ɛ𝑇 + 𝐺𝑇| +  max |𝑅𝑇|                       (3) 

 

After rearrangement of the terms, it can be seen that the largest 

error at a point is capped by the sum of the largest interpolation 

error, the largest ground error, and the largest sensor error.  In 

this paper, sensor and ground error are grouped together because 

of the difficulty to separate them by users who did not produce 

the LiDAR dataset by themselves.  

 

 
 

Figure 2. Approximation theory to estimate accuracy 

 

2.3 Sensor and Ground Error (Ɛ𝑻 + 𝑮𝑻)                        

Sensor error is typically provided by the metadata of a LiDAR-

acquisition project. LiDAR sensor error is usually believed to be 

random error, hence it is routinely reported using RMSE. 

Currently, many LiDAR sensors have a RMSE around 9 cm or 

better.  

 

Ground error is ideally measured when evaluating filtering 

accuracy. If a is a LiDAR point classified as bare-earth ground, 

and if the LiDAR sensor used is error free, then a’s ground error 

is the difference between these two elevations. In reality, it is 

difficult to separate sensor error from ground error, therefore they 

are assessed together, i.e.  

 

                  𝛥𝑍𝑎 =  𝑍𝑎 − 𝑧𝑎 =  Ɛ𝑎 + 𝐺𝑎   (4) 

 

where      𝑍𝑎  = LiDAR-reported elevation at a,  

𝑧𝑎  = a’s true bare-earth elevation.   

 

Note a in Equation 4 refers to a LiDAR point while 𝑇 in Equation 

3 refers to any point on the terrain covered by the DEM.   

 

2.4 Interpolation Error   

Hu et al. (2009a) shows that the interpolation error in triangulated 

interpolation is bounded by  

 

                         |𝑅𝑇|  ≤  
3

8
𝑀2ℎ2                                              (5)                                   

 

where     𝑅𝑇   = interpolation error at point 𝑇 

𝑀2  = the maximum norm of the second-order 

derivative,  

ℎ    = the longest edge of the triangle containing 𝑇.  

 

ℎ can be calculated based on the coordinates of triangle vertices. 

𝑀2 is the maximum norm of the second-order derivative of the 

triangle containing 𝑇. Since the first-order derivate is slope, the 

second-order derivative is slope of slope, i.e. curvature. 𝑀2 can 

be calculated using the method described in Liu et al. (2015). 

Equation 5 articulates why large errors in DEM tend to occur in 

steep areas or where points density is low. For flat areas where 

curvature is near 0, even if only sparse points are available, the 

interpolation error will be small. On the other hand, if an area is 

curvy, dense points are needed in order to reduce interpolation 

error.   

 

3. ISOMORPHISM 

While a DEM’s ability to estimate the absolute elevation at a 

point is important, its ability to reproduce the order and rank of 

terrain points according to their elevations is equally important if 

not more. Taking flow direction as an example: whether water 

flows from point a to point b or vice versa depends little on their 

absolute elevations but whose elevation is higher. Thus for a 

DEM to be useful for applications such as watershed 

management and landform analysis, its ability to preserve 

elevation order is critical, more critical than vertical accuracy.  

 

Literature recognizes the importance of this aspect of DEM and 

had approached it from relative elevation perspective (Dakowicz 

and Gold, 2003). While relative elevation is very relevant to 

elevation order, the two are not exactly the same. Relative 

elevation, like absolute elevation, is about the distance above or 

below a reference. While absolute elevation uses the mean sea 

level as the reference, relative elevation uses another point. For 

example, if the absolute elevation of point 𝑎 and 𝑏 are 10m and 

30m respectively, the relative elevation of point 𝑏 with reference 

to point 𝑎 would be 20m. As it can be seen, the value of a relative 

elevation has both magnitude and direction. For the purpose of 

identifying the higher point, however, magnitude is irrelevant; 

direction or sign of the value is sufficient. As long as the relative 

elevation of point 𝑏 is positive – it does not matter whether the 

magnitude is accurately-estimated as 30m or poorly-estimated as 

1m, one can conclude that point 𝑏 is higher.  

 

Like relative elevation, elevation order involves comparing 

points according to their elevations. In fact, elevation order of a 

terrain can only be determined by comparing every possible pair 

of points. However, elevation order is about ranking points 

according to their elevations, i.e. finding the highest point in the 

terrain, the second highest point, the third highest point etc. How 

much a point a higher than the other points is not of interest. It is 

from this perspective that this paper uses elevation order or 

elevation ranking instead of relative elevation.  

 

Sparse discussion is available in the literature on how to evaluate 

a DEM’s ability to preserve elevation order. In this paper, we 

draw on the concept of isomorphism in set theory. Let 𝑎 and 𝑏 be 

two points whose true elevations are 𝑧𝑎  and 𝑧𝑏, respectively; their 

elevations in the DEM are 𝑍𝑎  and 𝑍𝑏 correspondingly. The 

ability of a DEM to preserve elevation order can be described 

mathematically as follows: If 𝑧𝑎 ≤  𝑧𝑏, will 𝑍𝑎 ≤ 𝑍𝑏? Similarly, 

if 𝑍𝑎 ≤ 𝑍𝑏, will 𝑧𝑎 ≤  𝑧𝑏? The first question examines whether a 

lower point in terrain will remain lower in a DEM.  The latter 

question examines whether a lower point in a DEM is indeed 

lower in the field. If a DEM can answer yes to both questions, it 

is called an isomorphic DEM. In reality, the latter question is 

especially important because most often a DEM user cannot visit 

the field in person but relies on the DEM to understand the terrain 

of his/her study site.  

 

An isomorphic DEM guarantees the preservation of elevation 

order, thus appropriate for applications involving flow directions 

and terrain structures. Hu et al. (2009b) discussed the necessary 

conditions to create an isomorphic DEM and applied them to the 
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examination of three interpolation methods. They found that, 

when input data is error free, linear interpolation and triangular 

interpolation can generate isomorphic DEM but bilinear 

interpolation cannot. While their mathematical proofs are 

valuable, how to assess whether a DEM is isomorphic remains a 

challenge because, in reality, LiDAR data is never error free. 

Even if an isomorphic method is used to generate a DEM, e.g. 

triangular interpolation as is often used in TIN to Raster DEM 

conversion, filtering error and ground error discussed previously 

in Section 2.1 may still render the resultant DEM non-

isomorphic.  

 

In this paper, we explore Kendall’s rank correlation coefficient 

as a first solution. Kendall’s rank correlation coefficient is a non-

parametric method that compares the ranks of two sets by 

measuring their ordinal association. Let { 𝑍𝑖} be the set of points 

in a DEM, { 𝑧𝑖} be their corresponding true elevations. Any pair 

of observant (𝑧𝑖 , 𝑍𝑖) and (𝑧𝑗 , 𝑍𝑗) are said to be concordant if both 

𝑧𝑖 <  𝑧𝑗  and 𝑍𝑖 <  𝑍𝑗 , or if  𝑧𝑖 >  𝑧𝑗  and 𝑍𝑖 >  𝑍𝑗. They are said 

to be discordant if  𝑧𝑖 <  𝑧𝑗  but 𝑍𝑖 >  𝑍𝑗 , or if  𝑧𝑖 >  𝑧𝑗  but 𝑍𝑖 <

 𝑍𝑗 . The Kendall’s rank correlation efficient τ measures the 

difference between concordant pairs and discordant pairs, and 

normalizes the difference by the number of possible pairs. 

Kendall’s τ value ranges between -1 and 1: 1 means the two 

rankings agree perfectly; -1 means one ranking is the reverse of 

the other; 0 means the two sets are independent with no 

correlation. Thus, an isomorphic DEM would have Kendall’s τ 

of 1. The higher a DEM’s Kendall’s τ is, the better terrain’s 

elevation order is preserved.   

 

The next section illustrates the ideas and methods discussed in 

Section 2 and Section 3 using a case study.  

 

4. A CASE STUDY 

4.1 Data and Study Area  

As an illustration, we assess the accuracy of a LiDAR-derived 

DEM. The study site is a tidal salt marsh in China Camp State 

Park located approximately 25 km north of the city of San 

Francisco in California, U.S.A. Tidal salt marsh and surrounding 

estuaries are among the World’s most biologically productive 

ecosystems, providing commercial harvesting and recreational 

fishing opportunities that produce tremendous economic benefits 

(Allen, J. et al., 1992). Marsh elevation relative to the local tidal 

range, however, must be monitored closely, as deviations from 

established tidal marsh elevations as small as 10 cm can change 

salt marsh ecology, erosion and accretion (Silvestri et al., 2005; 

Vanderzee, M., 1988). An accurate DEM is thus critical.  

 

To obtain an accurate DEM at low cost, LiDAR data from the 

Golden Gate LiDAR Project was used. The Golden Gate LiDAR 

Project was commissioned by the United States Geological 

Survey; its dataset including a DEM is publicly available. The 

minimum point density is 2 points/m2 and the vertical accuracy 

is less than or equal to 9.25 cm when measured as root mean 

squared error (RMSE) (Hines, E., 2011). The producers used 

TerraScan, a proprietary LiDAR processing software to filter the 

dataset; the result is a set of points classified as bare-earth ground 

(Hines, 2011). For our study site of China Camp salt tidal marsh, 

over 18 million points were extracted to cover it; bare-earth 

points within the study site boundary were used to build a TIN. 

Triangular interpolation was then conducted to generate a 1-m 

DEM.  

 

In addition to LiDAR data, a set of 753 points collected by the 

United States Geological Survey (USGS) in China Camp using 

Real Time Kinetic (RTK) Global Position System (GPS) during 

the same time when LiDAR was flied was also available and 

obtained. The horizontal and vertical accuracy of these points are 

reported as ± 1 cm and ± 2 cm respectively (Takekawa, et al. 

2013). A vegetation classification map, created from a 0.25-m 

resolution colour-infrared aerial image of the study site, was also 

obtained from the United States National Oceanic and 

Atmospheric Administration. The overall accuracy of the 

classification was 91% and the Kappa statistics was 82% for six 

vegetation species.  

 

4.2 Vertical Accuracy  

4.2.1. Sensor and Ground error  

 

LiDAR data filtering was conducted by the Golden Gate LiDAR 

Project using a proprietary software; the only publicly-available 

information is that the overall accuracy of filtering process was 

95%. Since this value does not tell ground error, this research did 

a separate assessment of it. In theory, ground error calculation 

requires the LiDAR sensor to be error-free (Equation 2) but this 

is not feasible, therefore sensor error and ground error were 

assessed together using Equation 3.  Among the 753 RTK GPS 

points, 733 had a bare-earth ground LiDAR point within 1 m.  

The LiDAR-reported elevation of these 733 points were 

compared with the RTK-GPS elevation which was used as the 

true bare-earth elevation in this research; the difference is the 

sum of sensor and ground error.  

 

 
 

Figure 3. Absolute error at RTK GPS points. 

 

Results show that the vertical difference between the elevation 

values reported by RTK GPS and LiDAR ranged between -51.5 

cm to 47.0 cm; the median is 18.1 cm, the mean is 17.9 cm, and 

the standard deviation is 8.6 cm. Histogram shows that the errors, 

when taking absolute values as needed by approximation theory, 

are only slightly positively skewed with a skewness of 0.37. The 

95th percentile is 31.3 cm. Figure 3 shows the spatial distribution 

of these absolute errors at RTK GPS points.  

 

4.2.2. Interpolation Error  

 

To calculate interpolation error, triangles in the TIN were 

extracted so as to calculate ℎ and 𝑀2. Triangles near site 

boundary were excluded – many such triangles are erroneous 

because LiDAR bare-earth points outside our study site were not 

included in TIN construction. Overall, the study area was 

covered by over 4.9 million triangles. 

 

The longest edge of these triangles (ℎ ) ranged between 0.9 cm 

to over 2 m.  The median value of ℎ was 84 cm, the mean was 86 

cm, and the standard deviation was 57 cm. Histogram showed 

that the distribution was highly positively skewed. 19% triangles 

had their longest edge less than 50 cm, 50% between 50 cm and 
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1 m, 30% between 1 cm and 2 cm. Only about 1% triangles had 

its longest edge greater than 2 m.  

 

The maximum norm of the second-order derivative (𝑀2) of these 

triangles can be calculated using the method in Liu et al. (2012) 

where contour lines are generated from TIN and 𝑀2 is calculated 

as the slope change along the flow line of waterdrops between 

adjacent contour lines. This method is rigorous but involves 

complex computations. Since second-order derivative is 

essentially curvature, this study calculated curvature using a GIS 

software and 𝑀2 is the largest curvature values. Results show that 

𝑀2 in the study area  varied between -0.1 and 0.1 with a mean of 

nearly 0. This is expected since our study area is a tidal salt 

marsh. Using Equation 5 to combined 𝑀2 and ℎ , interpolation 

errors are calculated. It is found that 88.7% of the area had an 

interpolation error less than 10 cm and 4.7% had an interpolation 

error between 10 cm and 20 cm, the rest was over 20 cm. In other 

words, more than 95% area had an interpolation error less than 

20 cm.  

 

Figure 4 shows the spatial distribution of interpolation errors. It 

can be seen that nearly all large errors (> 20 cm) are found along 

tidal creeks where LiDAR bare-earth points are much sparser 

than other areas. In fact, the longest edge in triangles in these 

areas was 105 cm on average with a standard deviation of 56 cm. 

In contrast, the triangles in areas whose interpolation error was 

less than 20 cm had their longest edges much shorter, about 26.8 

cm.  The curvature of the triangles where large interpolation 

errors occurred turned out also higher than other areas. These two 

factors combined explain the large interpolation error found 

along tidal creeks. This result echoes the observation by 

Chassereau et al. (2011) that LiDAR-derived DEM performed 

best on the marsh platform but poorly along tidal creeks and 

creek heads.  

 

 
  Figure 4. Spatial distribution of interpolation errors  

 

In the NOAA vegetation map of the study site, some areas do not 

have vegetation information. These areas turned out to overlap 

significantly with areas whose interpolation error was over 20 

cm. Field knowledge suggests that these are the most challenging 

areas for data collection, for both LiDAR and airborne colour-

infrared imagery. LiDAR point density is much lower in these 

areas. Thus, future efforts to create a more accurate DEM for 

China Camp should focus on these areas.  

 

4.2.3. Overall vertical error  

 

As shown in Equation 1, the total error at a DEM point is 

bounded by the sum of sensor error, ground error, and 

interpolation error. Due to the limited number of RTK GPS 

points available to assess sensor and ground error, a surface 

showing the spatial distribution of each error cannot be 

generated. However, since the sum of the two errors were 

bounded by 51.5 cm in our samples, we will use 51.5 cm as the 

error bound for sensor and ground error combined. If 95th 

percentile of each types of errors were used – 31.3 cm in ground 

and sensor error combined, 20 cm in interpolation error, it is safe 

to say that quite some of the study area had a vertical error 

exceeding 51.3 cm. Such vertical accuracy renders the DEM not 

suitable for applications such as vulnerability to sea-level rise. 

The California Climate Action Team (2013) estimates that sea-

level rise for coastal areas in California including our study site 

is 15 cm between the years of 2000 and 2030, 30 cm between 

2000 and 2050, and 83 cm between 2000 and 2100.  To use a 

DEM to study the vulnerability of China Camp tidal salt marsh 

to these projected sea-level rises, the DEM’s vertical accuracy 

must be at least twice as certain as the sea-level rise increment 

(NOAA 2010). This means that the corresponding DEM must 

have a vertical error no more than 7.5 cm, 15 cm, and 41.5 cm in 

order to assess the impact in 30, 50, and 100 years respectively. 

Since the vertical error of the tidal marsh DEM in this research 

clearly exceeds the expectation, it is not useful to study the 

impact of sea-level rise to China Camp salt marsh.  

 

It has to be pointed out that the examination of vertical accuracy 

did not take horizontal accuracy, i.e. LiDAR points’ positional 

accuracy, into account. As noted by ASPRS (2015), while 

horizontal errors in elevation data do not always impact vertical 

accuracy, they normally contribute significantly to the error 

detected in vertical accuracy tests. The Golden Gate LiDAR 

dataset did not report its horizontal accuracy but it must have 

positional errors. Thus the true overall vertical error in the 

LiDAR-derived DEM is likely to be even higher than that 

reported in this paper.  

 

4.3 Isomorphism  

Kendall’s τ rank correlation was calculated by comparing the 

elevation values at RTK GPS points: One reported by the RTK 

GPS, the other by the LiDAR-derived DEM. Kendall’s τ rank 

correlation between the two sets of values was 0.38, far from 

the ideal value of 1, suggesting that the two datasets’ rank 

orders do not agree well. We also calculated Pearson’s 

correlation coefficient between the two datasets and its value 

was 0.6. Pearson’s correlation efficient measures how well 

LiDAR-derived DEM elevation agrees with RTK-GPS reported 

elevation; it provides a summary of the vertical accuracy of the 

LIDAR-derived DEM. Kendall’s τ correlation efficient, on the 

other hand, evaluates how they agree in terms of the elevation 

ranks of the points. The fact that Pearson’s correlation efficient 

is much higher than Kendall’s rank correlation coefficient tells 

that, between vertical accuracy and isomorphism, our LiDAR-

derived DEM had a better performance in vertical accuracy. 

The exact elevation at a point may be estimated quite accurately 

by the LiDAR-derived DEM, but the elevation order of the tidal 

salt marsh was not reproduced well. This explains the DEM’s 

poor ability to reflect the micro topology of the marsh 

especially on area along small-scale tidal creek networks.  

 

5. DISCUSSION AND CONCLUION  

In this paper, we presented a new framework to assess the 

accuracy of LiDAR-derived DEM, and illustrated it using a case 

study. Compared to existing approaches which often focus 

exclusively on vertical accuracy, the new framework takes into 

account isomorphism which is another critical aspect in DEM 

generation. Furthermore, for vertical accuracy assessment, a new 

methodology based on approximation theory from numerical 
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analysis is introduced. Unlike statistical methodology where 

DEM’s accuracy is typically described using one or a few 

summary statistics, the approximation-theory-based approach 

creates a map showing the error bound at each point. Such a map 

is valuable as it points out where large errors occur; subsequent 

efforts can thus focus on these areas to effectively and efficiently 

improve the overall quality of the DEM.   

 

The separation of sensor error, ground error, and interpolation 

error also helps identify the main source of error. In the case that 

interpolation error is higher than the combined sensor and ground 

error, further efforts to improve the DEM should focus on the 

interpolation phase in DEM generation. Recall that interpolation 

error depends on the second-order derivative of terrain (𝑀2) and 

the longest edge of a triangle (ℎ2). Terrain curvature is fixed, but 

the longest edge of a triangle can be reduced by having denser 

points during triangulation. In our study, we limited triangulation 

based on bare-earth points only. In the case an area has few bare-

earth points, non-bare-earth points may also be used provided 

their ground error is carefully assessed so that their bare-earth 

elevations are reliably estimated. As high-density LiDAR points 

are increasingly available, it can be expected that ℎ2 will reduce 

significantly, thus interpolation error will be significantly 

smaller. 

 

On the other hand, if combined ground error and sensor error are 

found higher than interpolation error, further efforts on 

improving DEM should focus on the filtering stage since little 

can be done on LiDAR sensor/platform error. Filtering is a 

critical step in LiDAR data processing. However, existing 

methods focus on classification and describes filtering error in 

terms of summary statistics similar to those used in assessing the 

accuracy of remote sensing image classification. Our research 

found that such a method, though serves the purpose of 

describing classification accuracy, does not help DEM accuracy 

assessment and quality control. Instead, we propose the concept 

of ground error which is the elevation difference between 

LiDAR-reported elevation and the true bare-earth elevation. 

Measurement of ground error should be conducted during 

filtering. For example, during the ground truthing phase which is 

usually required to assess filtering accuracy, one collects not only 

the class/label of a point but also measures its true bare-earth 

elevation, especially at points that are classified as bare-earth. In 

this way, whether a point is indeed bare-earth is known as well 

as the error in its LiDAR-reported elevation.  

 

Another implication of this research is isomorphism. As pointed 

out already, DEM’s ability to preserve elevation order is an 

aspect whose importance is widely recognized but no established 

method exists yet to assess it. This research introduced 

isomorphism as the mathematical rationale and applied Kendall’s 

rank correlation coefficient to quantify it. Though Kendall’s rank 

correlation coefficient provides a summary on how well 

elevation ranking and orders are preserved, it is far from 

satisfactory because it does not provide any information on the 

spatial distribution of the errors. Many questions remain for 

future research on isomorphism – should it be assessed using 

statistical methodology as we did in this research? Or there are 

better methods? In the case of statistical methodology, how many 

samples should be used and where to collect these samples? How 

to ensure that results based on sampling can be generalized to the 

entire DEM? Admittedly, these are grand challenges for future 

DEM research, but they are extremely important.  

 

Isomorphism relates to another important issue in DEM research, 

namely DEM generalization. As high-density point clouds are 

increasingly available, point reduction has become necessary in 

generating LiDAR-derived DEM. However, mechanistic 

reduction will result in the loss of important points which defines 

the terrain structure. Generalization which involves selection, 

reduction, aggregation, and even exaggeration is thus necessary. 

In fact, even before LiDAR, generalization is necessary for any 

DEM generation because terrain is made up by infinite number 

of points but a DEM can only comprise a limited number of them. 

As discussed in Section 3, a DEM can preserve terrain structure 

only if it is created by an isomorphic process which ensures high 

points remain high and low points remain low in the output DEM. 

Some DEM generalization algorithms are available in the 

literature, but few has studied whether they are isomorphism or 

not.  Meanwhile, errors introduced by LiDAR sensor and 

filtering algorithm may result in non-isomorphic DEM even if a 

DEM generation method is proved to be isomorphism in theory. 

Intentional errors introduced by exaggerations and displacements 

during generalization may further complicate the issue. More 

advanced research on isomorphism is necessary in order to create 

DEMs effectively accounting all terrain properties.   
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