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ABSTRACT:

Land subsidence is a geological disaster. It will lead to the decline of land elevation, resulting in the potential safety hazards
of urban facilities. Thus, the prediction of land subsidence displacement is significant. Among the existing prediction methods,
the methods based on the time-series prediction model only analyze the settlement series data without considering the settlement
mechanism, so they are easy to apply. However, they less consider the influence of other factors on land subsidence. Besides,
they independently input displacement time-series data from different monitoring points without considering their relationship. To
solve these problems, we take the monitoring point as the entity and take the DEM, soil type, building height, and land subsidence
displacement sequence at the corresponding position of the monitoring point as the attributes to construct the knowledge graph.
And then, we propose a framework Graph-TAP for modeling temporal attribute prediction of the knowledge graph’s entity. This
framework learns the representation of events with the specific entity at first. Then it captures the temporal dependency between
historical events using GRU. Finally, it predicts the entity’s displacement attribute. We randomly selected 61 subsidence monitoring
points in Shenzhen, China. We used the land subsidence displacement InSAR time-series data (12-day time interval) and other
attribute data from June 22, 2015, to April 5, 2016, for model training, validation, and testing. The experimental results show
that our method is better than the time-series prediction based on the LSTM model and the DARNET(a knowledge graph temporal
attribute prediction framework).

1. INTRODUCTION

Land subsidence refers to the phenomenon that the ground sinks
relative to the surrounding terrain or sea level under the influ-
ence of natural factors or human activities (Xu et al., 2016). It
is generally manifested as regional subsidence and local sub-
sidence. Crustal movement, sea-level rise, and other natural
factors will cause regional subsidence; the construction of a
large number of high-rise buildings, the exploitation of ground-
water, and the excavation of underground tunnels will cause
local settlement of urban land (Xue et al., 2005). Land sub-
sidence is a slow and continuous geological disaster. It is not
easy to detect in the early stage of the disaster. However, after
the local surface settlement accumulates to a certain extent, it
will lead to a series of secondary disasters, such as building
tilt deformation, urban traffic road damage, and seawater back-
flow (Xue et al., 2005, Hu et al., 2019). Therefore, the accur-
ate prediction of land subsidence can provide the basis for the
early warning of secondary disasters caused by land subsidence,
which has essential research significance.

The existing land subsidence prediction methods are mainly di-
vided into two categories: the prediction method based on phys-
ical mechanism, and the other is the prediction method based on
the time series prediction model. The first method is to build
a numerical simulation model according to the hydrogeolo-
gical and settlement mechanisms to establish the corresponding
mathematical control equation by studying the internal develop-
ment trend of settlement. And then solve the equation accord-
ing to the model’s initial conditions and boundary parameters to
predict land settlement displacement. The classical models in-
clude subway settlement model (Yang et al., 2013) and ground-
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water coupling model (Phi and Strokova, 2015, Li et al., 2019).
Although this kind of method considers the mechanism of land
subsidence, it needs to obtain the hydrological, lithologic, and
other parameters required for modeling through field measure-
ment and experiment. Hence, its application is complex, and its
generalization is poor. The second kind of method can be di-
vided into methods based on mathematical statistics and meth-
ods based on deep learning. The methods based on mathemat-
ical statistics include gray model (Xu et al., 2014, Deng et al.,
2017, Zhou et al., 2020) , BP neural network (Li et al., 2009),
extreme learning machine and support vector machine (Abdol-
lahi et al., 2019, Mohammady et al., 2019). These methods
do not pay attention to the settlement mechanism but only ex-
plore and fit historical settlement displacement data’s internal
law and development trend. Although the implementation is
relatively simple, the prediction accuracy is not high due to the
single data and easy overfitting of the model. The method based
on deep learning is mainly based on LSTM network (Chen et
al., 2021, Kumar et al., 2021, Liu et al., 2021). Compared with
previous methods, these methods improve the prediction accur-
acy to a certain extent by better simulating the nonlinear effects
between land subsidence displacement and various influencing
factors. However, in the model training, the improvement in ac-
curacy is limited without considering the relationship between
different monitoring point data.

To solve this problem, we construct the knowledge graph using
land subsidence displacement monitoring data and subsidence
influencing factor data and using the knowledge graph to im-
prove the accuracy of displacement prediction. The land subsid-
ence time-series data is obtained by Interferometric Synthetic
Aperture Radar (InSAR) technique. We take the displacement
monitoring point as the entity. Then, we take the longitude and
latitude, DEM, soil type, building height, settlement displace-
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ment, and monitoring timestamp of the corresponding position
of the displacement monitoring point as the entity’s attributes to
construct the knowledge graph. Subsequently, we calculate the
spatial distance between monitoring points according to longit-
ude and latitude and then establish the spatial adjacency rela-
tion between monitoring nodes with a spatial distance of less
than 100m. Next, we propose a framework for temporal attrib-
ute prediction of the knowledge graph, namely Graph-TAP. We
divide this framework into three steps: (1) learning the repres-
entation of events in the knowledge graph; (2) learning the tem-
poral dependency between historical events in the knowledge
graph; (3) predicting the displacement attribute at the next time.

Using the land subsidence monitoring data and land subsidence
influencing factor data of the location of the impervious surface
in Shenzhen, we construct a knowledge graph with 395149 en-
tities and 22619704 spatial adjacency relations. Then we ex-
tract 27370 event tuples for training and validation. The ra-
tio of the training set to validation set is 9:1, the number of
entities is 61, the monitoring time is from June 22, 2015, to
March 24, 2016 (the time interval is 12 days). The testing set
contains 1190 events with the same entities on April 5, 2016.
Moreover, the maximum length of the historical event sequence
is 10. Finally, we compare our proposed Graph-TAP method
with the time-series prediction method based on LSTM and an-
other knowledge graph temporal attribute prediction method,
DARNET. The experimental results on the testing set show that
our method outperforms these methods.

The paper is organized as follows. Section 2 briefly reviews
the land subsidence displacement prediction methods and the
knowledge graph temporal attribute prediction method. In Sec-
tion 3, we give the formal definition of the problem studied in
this paper. Section 4 provides an overview of our proposed
method. Section 5 introduces the experimental datasets, eval-
uation metrics, experimental results and analysis, and Section 6
summarizes our work and draws conclusions.

2. RELATED WORK

2.1 Land subsidence displacement prediction

Land subsidence prediction methods can be divided into phys-
ical mechanism-based, mathematical statistics-based, and deep
learning-based methods.

The method based on physical mechanisms first establishes a
physical model or numerical simulation model according to hy-
drogeology and settlement mechanism, then determines the rel-
evant physical parameters through field measurement, and fi-
nally predicts the future land settlement. These methods are
mainly aimed at the land subsidence caused by groundwater
development (Phi and Strokova, 2015, Li et al., 2019) and sub-
way project (Yang et al., 2013). Although this kind of method
considers the mechanism of land subsidence, it is difficult to
obtain accurate physical parameters, which leads to its complex
application and poor generalization.

The settlement displacement is predicted based on mathemat-
ical statistics by mining the internal law in the historical dis-
placement monitoring data. These methods’ model structures
are relatively simple, there is no need to obtain physical para-
meters, and the implementations are also relatively simple. The
classic method among these methods is the (Xu et al., 2014)
based on the gray model. In order to further improve the accur-
acy of the model, in (Deng et al., 2017), the authors adapt to the

conventional GM (1,1) model by using the sliding mechanism
and integrating the K-means clustering method into the Markov
chain state interval division to predict the land subsidence in
Beijing from 2015 to 2016. In (Zhou et al., 2020), the authors
combine terrain factor and neural network to correct the error
of the Gray Prediction GM(1,3) model.

Compared with the method based on mathematical statistics,
the method based on deep learning can better learn the non-
linearity and randomness in data. Among the land subsidence
prediction models based on deep learning, the models based on
LSTM and its variants are most widely used (Chen et al., 2021,
Kumar et al., 2021, Liu et al., 2021). In (Liu et al., 2021), con-
sidering the spatial heterogeneity of land subsidence, the au-
thors first cluster the land subsidence data and then train the
prediction model based on LSTM for each subclass. The ex-
perimental results show that this method can improve the accur-
acy of displacement prediction. However, these aforementioned
methods are only for historical settlement data, without consid-
ering other settlement influencing factors. In (Ding et al., 2021),
the authors quantitatively analyze the relationship between land
subsidence and influencing factors by using geographic detect-
ors. In (Li et al., 2021), the authors use geospatial weighting
to analyze the spatial correlation between land subsidence and
groundwater level change. The obtained spatial correlation is
combined with LSTM to predict the subsidence of Beijing. The
experimental results show that considering the spatial correla-
tion between land subsidence and groundwater level change can
significantly improve the accuracy of the displacement predic-
tion model.

2.2 Knowledge graph temporal attribute prediction

In order to further improve the accuracy of land subsidence
prediction, we need to consider both the spatial relationship
between land subsidence data and the relationship between
land subsidence data and data of other subsidence influencing
factors. Therefore, we consider introducing knowledge graph
technology. We first use the knowledge graph to represent these
relations and then predict the temporal attributes of the know-
ledge graph. In (Zhang et al., 2020), the authors regard entities,
attributes, and attribute values as attribute triples and then use a
deep convolution neural network to learn the representation of
entities. Similarly, in (Tay et al., 2017), attributes are represen-
ted by a neural network and then predicted. However, these are
all for non-temporal knowledge graphs. A method for predict-
ing temporal attributes based on dynamic knowledge graphs is
proposed in (Garg et al., 2020), namely DARNET. Since the
relation of the knowledge graph in (Garg et al., 2020) changes
with time, the authors propose the prediction process of joint
modeling the relations and the attributes to improve the accur-
acy of attributes prediction.

3. PROBLEM FORMULATION

We first construct a land subsidence knowledge graph based on
land subsidence displacement time-series data of multiple mon-
itoring points obtained by InSAR technology. The knowledge
graph G at time τ can be represented by multiple hexagons
(h, r, t, ah, at, τ), and a hexagon is called an event E. The h
and t in the hexagon refer to the head entity and the tail entity,
both of which represent the monitoring points of land subsid-
ence; r is the relationship between the head entity and the tail
entity, which in the graph we constructed refers to the spatial
distance between the monitoring points represented by the head
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and tail entities is less than 100 meters; τ represents the obser-
vation timestamp; ah and at refer to the set of attributes of the
head entity and the tail entity.

The land subsidence displacement prediction problem is con-
verted into the prediction problem of the land subsidence dis-
placement attribute in the knowledge graph. The solution to
this problem is to learn a set of functions {F (.)} that predict
the events corresponding to future timestamps from the events
corresponding to historical timestamps, thus predicting the un-
known land subsidence displacement attributes of the events,
i.e.:

(Eh,1, Eh,2, . . . , Eh,τ )
{F (.)}−−−−→ (Eh,τ+1) (1)

where Eh,τ represents events with the head entity h at time τ .
An event of Eh,τ is composed of (h, r, t) and (ah, at). ah and
at include the longitude and latitude of the location of the mon-
itoring point, DEM, soil type, building height, and the displace-
ment of land settlement at time τ . In this paper, the longitude
and latitude coordinates, soil type, and building height are not
temporal and known, and the spatial relation between nodes is
not changed with time and known. The displacement of land
subsidence is the temporal attribute we want to predict.

4. METHODOLOGY

4.1 Land subsidence knowledge graph construction

As mentioned before, various factors can influence the change
of land subsidence displacement. In order to improve the ac-
curacy of land subsidence displacement prediction, we set the
monitoring points of land subsidence as nodes and the influ-
encing factors of land subsidence as attributes of nodes to
construct a graph. Following are the representative influence
factors we choose as nodes’ attributes:

• DEM: DEM is a visual and mathematical representation
of the height values, related to the mean level, which can
reflect surface characteristics, such as slope (Tafreshi et al.,
2020, Galeana-Pérez et al., 2021).

• Soil type: Different types of soil have different softness.
Engineering construction on soft soil is easier to cause land
subsidence (Nameghi et al., 2013).

• Building height: The construction of buildings, especially
high-rise buildings, will increase the ground load and ac-
celerate the land subsidence (Cui et al., 2010).

Considering that the land subsidence monitoring point’s land
subsidence displacement will also be influenced by the land
subsidence displacement of the monitoring points in the neigh-
boring areas, we establish the relationship between monitoring
nodes based on spatial distance. In this paper, we use a two-way
edge to indicate that two monitoring nodes possess a spatial ad-
jacency relation, and the attribute of the edge is the spatial dis-
tance between two nodes, which is less than 100 meters. The
structure of the knowledge graph at time τ is shown in Figure
1.

We store nodes and node attributes in the graph database Neo4j
1. Then, according to nodes’ longitude and latitude attributes,
the Neo4j Spatial plug-in is used to build the spatial index
between nodes. After building the spatial index, it is more con-
venient to calculate the distance between nodes and establish
the spatial adjacency relationship between nodes.
1 https://neo4j.com/

Figure 1. The structure of a knowledge graph at time τ .
Other attributes include DEM, soil type, and building height

attributes. The number in displacement represents the value of
the displacement attribute.

4.2 Temporal attribute prediction

We propose a framework for learning a set of functions to pre-
dict nodes’ land subsidence displacement attributes in the next
timestamp through the input historical events. We named this
framework as Graph-TAP, i.e., a Graph-based framework for
Temporal Attribute Prediction.

The Graph-TAP framework includes three steps: first, learn-
ing the representation of events in the graph, then learning the
temporal dependency between historical events, and finally pre-
dicting the displacement attributes of nodes in the event corres-
ponding to the next timestamp. The whole process is shown in
Fig 2.

Representation of events in the knowledge graph Firstly,
we use randomly initialized eh ∈ Rd, et ∈ Rd represents the
head entity h and tail entity t in the event at time τ . How-
ever, these embeddings have nothing to do with land subsid-
ence influence factor attributes. Then, we need to concaten-
ate the attributes’ embeddings. The head entity’s attributes in
each event can be divided into two components: static attrib-
utes ah,S ∈ Rk1 that do not change with time and dynamic
attributes aτh,D ∈ Rk2 that change with time, k1 and k2 are
the number of the attributes. After linear transformation, we
can obtain the static attribute embedding eah,S = ah,S · W1

and dynamic attribute embedding eaτ
h,D

= aτh,D ·W2, of which
W1 ∈ Rk1×d, W2 ∈ Rk2×d are learnable parameter matrices.
At next, (eh; eah,S ; eaτh,D ) is the embedding representation of
the head entity h at time τ , of which ‘;’ represents concaten-
ation operator. The tail entity’s attributes are embedded in the
same way.

Then we aggregate the information of neighborhood entities us-
ing the mean method. The neighbor entities of the head entity h
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Table 1. An event’s contents

Head entity
Spatial adjacent

relation
Tail entity

Static attributes of
the head entity

Static attributes of
the tail entity

Dynamic attribute of
the head entity

Dynamic attribute of
the tail entity Timestamp

DEM Soil type Building height DEM Soil type Building height Subsidence displacement Subsidence displacement

Figure 2. The whole process of the Graph-TAP framework

refer to all tail entities connected to the head entity through the
spatial adjacency relation r. Therefore, the embedding of all
events with the head entity h at time τ , i.e., eEh,τ is represented
as:

eEh,τ =

(
eh; eah,S ; eaτh,D;

1

|Eh,τ |
∑

(et; eat,S ; eaτh,D ; er)·W3

)
(2)

where er ∈ Rd indicates the embedding of relation, at,S and
aτt,D are the attributes of the tail entity and ‘;’ represents con-
catenation operator. Through linear transformation, we ob-
tain an embedding representation of the neighbor entity t, i.e.,
(et; eat,S ; eaτh,D ; er)·W3, whereW3 ∈ R4d×d is a learnable para-
meter matric. Then we sum the embeddings of all neighbor en-
tities and take the average, i.e., 1

|Eh,τ |
∑

(et; eat,S ; eaτh,D ; er)·W3,
where |Eh,τ | is the cardinality of set Eh,τ .

Temporal dependency between historical events Previ-
ously, we obtained the representation of all events at time τ .
Next, we use the Gated Recurrent Unit (GRU) (Sutskever et
al., 2014) to learn the temporal dependency between historical
events. [eEh,1 , eEh,2 , . . . , eEh,τ−1 ] represents the embedding
sequence of historical events with the head entity h.

HeEh,τ = GRU(eEh,τ , HeEh,τ−1
) (3)

Displacement attribute prediction The displacement attrib-
ute value for the head entity h is a function of the historical
events’ embedding and static embeddings for the h. There-
fore, the land subsidence displacement attribute value can be
predicted as follows:

aτ+1
h,D = f(HeEh,τ , eh, eah,S ) (4)

where f is a single-layered feed-forward network.

Parameter learning We use the Adam with decoupled
weight decay (AdamW) algorithm (Loshchilov and Hutter,

Table 2. The information of datasets

Dataset name Type Spatial resolution

Displacement time-series data Point vector data -
DEM Grid data 30 meters

Soil type Grid data 1 kilometer
Building height Point vector data -

2019) to optimize the parameters in the Graph-TAP framework.
We use the mean square error (MSE) of the real value and pre-
dicted value of the dynamic displacement attribute of the head
and tail entity as the loss function. The loss function is calcu-
lated as follows:

Loss = Loss att(h) + Loss att(t) (5)

=
1

n

n∑
1

(aτ+1
h,D −

ˆaτ+1
h,D )2 +

1

n

n∑
1

(aτ+1
t,D − ˆaτ+1

t,D )2

where ˆaτh,D and ˆaτt,D are the predicted attributes, ˆaτh,D and ˆaτt,D
are the ground truth attributes at time τ + 1.

5. EXPERIMENTS

5.1 Datasets

This paper takes the land subsidence displacement monitoring
points on the impervious surface of Shenzhen, China, as the re-
search object and uses the DEM, soil type data, building height
data, and land subsidence displacement time series data to pre-
dict the land subsidence displacement of the monitoring points
at the next time. The land subsidence displacement data we
used is time series data based on multi-stage Sentinel-1 data
and InSAR technology. The data contains a total of 395149
subsidence monitoring points. Each monitoring point contains
longitude and latitude coordinates and 130 pieces of subsidence
displacement monitoring data from June 22, 2015, to December
10, 2019 (the time interval is 12 days). On April 19, 2018, the
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ground elevation was taken as the datum plane for settlement
displacement. Each displacement value of the subsidence mon-
itoring point represents the elevation difference between the
ground elevation on the monitoring day and the datum plane,
and the unit is millimeter (mm), that is, the subsidence displace-
ment of the monitoring point at that day. We use the above data
to construct a knowledge graph, i.e., a multi-attribute relational
graph of land subsidence.

Then, we extracted 27370 events with timestamps from June
22, 2015, to March 24, 2016, from this graph. These events
contain a total of 61 entities. Moreover, we divided these events
into a training set and a valid set according to the ratio of 9:1.
Finally, we extracted 1190 events on April 5, 2016, with the
same entities as the test set. The contents of each event are
shown in Table 1.

5.2 Hyperparameters setting

In this paper, we use the AdamW algorithm to optimize the
parameters of the Graph-TAP. The learning rate is 0.001, the
batch size is 50, the max historical sequence length is 10, the
epoch num is 50, the dimensions of the embeddings are 200,
and the dropout is 0.5.

5.3 Evaluation Metrics

The aim is to predict the land subsidence displacement of each
monitoring node at the next time step. Therefore, MSE loss is
used in training. The lower MSE indicates better performance.
In addition, We choose the root mean square error(RMSE) as
the evaluation index of the model on the testing set. The RMSE
is computed as follow:

RMSE =

√√√√ 1

n

n∑
1

(a− â)2 (6)

where a is the predicted displacement, â is the ground truth
displacement and n is the number of the land subsidence mon-
itoring points.

5.4 Results

In Figure 3, we show a part of the knowledge graph we built,
in which the green circle represents entities, i.e., monitoring
points, and the green line represents spatial adjacency relation-
ships.

We extract the fact training graph tap from the constructed
knowledge map. The loss curves of the training set and the
test set during the training process are shown in the figure. It
can be seen from Figure 4 that the loss curve of the test set of
the training set decreases rapidly at first and then tends to be
flat, which shows that Graph-TAP can converge quickly in the
training process.

In this paper, we also test the performance of our proposed
Graph-TAP method on the testing set and compares it with
the time-series prediction method based on the LSTM model
and the DARNET (Garg et al., 2020). The DARNET is also a
framework for temporal attribute prediction on the knowledge
graph. The experiment uses the root mean square error of the
predicted value and the real value to evaluate the model’s ac-
curacy. The experimental results are shown in Table 3.

Figure 3. A partial display of the graph we constructed. (a)
shows multiple nodes of the knowledge graph, and (b) is the

zoom in version of the red part of (a).

Table 3. RMSE results of different methods on test sets

Method RMSE (mm)

LSTM 13.311
DARNET 3.250

Graph-TAP 2.466

At first, we can find that the prediction accuracy of using a
knowledge graph to construct the relationship between mon-
itoring points is higher than the method based on the LSTM
model without considering the spatial relationship of points.

Then we found that the prediction accuracy of our proposed
method is higher than that of the DARNET. We think this is
because the static attribute information, i.e., the influencing
factors of land subsidence, is not considered in the DARNET.

6. CONCLUSIONS

The existing land subsidence displacement prediction meth-
ods can not consider the nonlinear relationship between mul-
tiple land subsidence influencing factors and land subsidence
monitoring data and the spatial relationship between monitor-
ing points simultaneously. Therefore, we first use InSAR land
subsidence displacement time-series data, DEM grid data, soil

Figure 4. The loss of Graph-TAP
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type grid data, and building height vector data jointly construct
the knowledge graph (the entity of the graph is the displace-
ment monitoring point, the attribute is the longitude and latit-
ude, DEM, soil type, building height, settlement displacement
and monitoring time of the corresponding position of the monit-
oring point, and the relation is the spatial adjacency relationship
between the monitoring points). Then we propose a Graph-TAP
framework for dynamic attribute prediction of the knowledge
graph. Graph-TAP consists of three steps: event representa-
tion learning, historical event time dependency learning, and
displacement attribute prediction. Then, we extracted 27370
events with timestamps from June 22, 2015, to March 24, 2016,
from the relational graph. These events contain a total of 61 en-
tities. We divide these events into training set and verification
set according to the ratio of 9:1. Finally, we extracted 1190
events with a timestamp of April 5, 2016. The entities in these
events are the same as the test set. The experimental results
on the test set show that this method is better than the method
based on the LSTM model and the DARNET method.

In future work, we will continue to consider other influencing
factors, such as rainfall, groundwater level, etc. In addition,
we will also consider other relationships other than spatial ad-
jacency.
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