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ABSTRACT:

Long-term human path forecasting in crowds is critical for autonomous moving platforms (like autonomous driving cars and social
robots) to avoid collision and make high-quality planning. It is not easy for prediction systems to successfully take into account
social interactions and predict a distribution of future possible path in a highly interactive and dynamic circumstance. In this
paper, we develop a data-driven model for long-term trajectory prediction, which naturally takes into account social interactions
through a spatio-temporal graph representation and predicts multi-modes of future trajectories. Different from generative adversarial
network (GAN) based models which generate samples and then provide distributions of samples, we use mixture density functions
to describe human motion and intuitively map the distribution of future path with explicit densities. To prevent the model from
collapsing into a single mode and truly capture the intrinsic multi-modality, we further use a Winner-Takes-All (WTA) loss instead
of computing loss over all modes. Extensive experiments over several trajectory prediction benchmarks demonstrate that our method
is able to capture the multi-modality of human motion and forecast the distributions of plausible futures in complex scenarios.

1. INTRODUCTION

Forecasting long-term future trajectories of dynamic pedes-
trians through crowded scenarios is of major importance for
autonomous driving, social robots navigation and surveillance
systems (Luber et al., 2010, Kitani et al., 2012, Karasev et al.,
2016, Liu et al., 2016, Lee et al., 2017, Su et al., 2017). In
autonomous driving and social robot navigation, autonomous
driving cars and social robots share the same ecosystem with
humans. They adjust their path by anticipating human move-
ment, specifically, avoid collision or keep safe distance with
other people. Predicting long-term trajectories in crowds is still
a challenging topic due to the following properties of human
motion.

1. Multi-modes of future trajectories. Given the observation
of motion sequence, multiple future trajectory sequences are
acceptable. It is more rational to map the distribution of future
path instead of forecasting a single path especially for the task
of long-term prediction.

2. Social interactions. Interactions between people happens
frequently. Although humans can intuitively know how to in-
teract with other people in crowds, it is not easy for machines
to learn those rules due to complexity and dynamics of social
interactions.

3. Scene context. Pedestrians motion should also obey phys-
ical constraints. Pedestrians walk on feasible terrains such as
sidewalk or grass and avoid static obstacles such as roadblocks.
Instead of encoding image of scenario into prediction model,
physical constraints can also be learned from trajectories.

Since the success of recurrent neural network (RNN) on se-
quence modeling, the existing research focus on inventing
∗ Corresponding author

RNN-based models for addressing the above problems and pre-
dicting long-term trajectories. Social LSTM (Alahi et al., 2016)
pooling latent states coming from LSTMs of spatially proximal
trajectories to model interactions, is a tipping point for real-
world path forecasting. The existing research follow the direc-
tion of Social LSTM but with improvements. To directly model
connections between people, articles (Gupta et al., 2018, Zhang
et al., 2019) embed relative positions between agent and neigh-
bors, then integrate those embeddings to generate a global fea-
ture for social interactions. Those methods learn interactions
more intuitively by modeling relative motion between people,
but they ignores time dependencies of long-term social inter-
actions. Besides modeling social context, recent research pay
more attentions to capture the intrinsic multi-modality of path
forecasting. RNN-based generative adversarial network (GAN)
are designed to capture uncertainty of future path (Gupta et al.,
2018, Sadeghian et al., 2019, Kosaraju et al., 2019, Li et al.,
2020a). Social GAN (Gupta et al., 2018) and Sophie (Sade-
ghian et al., 2019) utilize GAN-based (RNN-based generator
and RNN-based discriminator) encoder-decoder architectures
with social mechanism. They use generators to sample mul-
tiple future trajectories and plot distributions of those samples.
We argue that it is not a direct way to model the multi-modes of
trajectories and they don’t yield complete distributions. They
might only learn a single mode with high variance (Kosaraju et
al., 2019).

To address the above limitations, we develop an encoder-
decoder model which can learn the multi-modes of future tra-
jectories. Different from GAN-based models which generate
samples and then plot distributions of samples, we map the dis-
tribution of future path with explicit densities. To prevent the
model from collapsing into a single mode and truly capture the
intrinsic multi-modality, we use Winner-Takes-All (WTA) loss
instead of computing loss over all modes. Besides, we utilize a
spatio-temporal graph representation to naturally model social
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interactions and ego-trajectories. We leverage relative motion
between people while consider time dependencies of long-term
social interactions. Instead of setting a certain neighborhood
size or certain number of neighbors, we assume all people in
a shared environment interacting and pool relative latent states
between people through an attention mechanism. We test the
model using classic trajectory prediction benchmarks and the
experiments show promising results.

2. RELATED WORKS

2.1 Social Interactions for Trajectory Prediction

Social LSTM introducing Social Pooling to learn a global fea-
ture of all nearby neighbors around an agent which is meant
to represent common sense rules and social conventions, is a
tipping point for data-driven long-term trajectory prediction.
Many research follow the way of Social LSTM (Alahi et al.,
2016) but with improvements. Attention mechanism is intro-
duced to learn neighbors’ weights on agent (Zhang et al., 2019,
Sadeghian et al., 2019, Fernando et al., 2018). Fernando et
al. extended the classic model to incorporate both soft atten-
tion as well hard attention where the former is for handling
longer trajectories and the latter is used for modeling interact-
ing people (Fernando et al., 2018). Instead of directly mod-
eling hidden states of neighbors’ motion, some research pool
relative motion between agent and neighbors to model inter-
actions. SR-LSTM proposed a state refinement module for
LSTM, which extracting social effects of neighbors by em-
bedding and aggregating the relative spatial location between
agent and neighbors (Zhang et al., 2019). Graph representa-
tion, specifically spatio-temporal graph (ST-graph) is well ap-
plied to illustrate human motion and their interactions (Karasev
et al., 2016, Zhu et al., 2019, Shi et al., 2020, Mohamed et al.,
2020, Yu et al., 2020, Peng et al., 2021). ST-graph provide
a more direct and natural way to model interactions for tra-
jectory prediction. Structure-RNN (Jain et al., 2016) combin-
ing high-level spatio-termporal graphs with sequence modeling
success of RNN made significant improvements on problem of
human motion modeling. Some research follow this direction.
Social-BiGAT introduced a flexible graph attention network to
model social interactions between pedestrians in a scene. It as-
sumes all people in a scene interacting instead of setting a local
neighborhood (Karasev et al., 2016). Social-STGCNN utilized
spatio-temporal graph representation and proposed a weighted
adjacency matrix to meansure the influence between pedestri-
ans (Mohamed et al., 2020). Recently, Transformer is also used
to model the motion and social interactions for trajectory pre-
diction (Li et al., 2020c, Yuan et al., 2021, Liu et al., 2021).
Li etc. utilized self-attention mechanism to integrate social in-
teractions by using queries Q to represent the agent actor, keys
K and values V to represent neighbor agents (Li et al., 2020c).
Although most of the current research claim they consider so-
cial interactions for future prediction, it is hard to say what kind
of social interactions going on among pedestrians are really en-
coded. Thus in the paper, we investigate to explain the social
netiquettes among pedestrians and to encode the explainable
social interactions for prediction problem.

2.2 Multi-modality of Trajectory Prediction

Human motions under crowded scenarios imply a multiplicity
of modes. To capture the uncertainty of future path, some re-
search apply generative adversarial network (GAN) or variable
autoencoder (VAE) to generate multiple possible paths (Gupta

et al., 2018, Sadeghian et al., 2019, Sohn et al., 2015, Cheng
et al., 2021, Chen et al., 2021, Eiffert et al., 2020, Neumeier et
al., 2021). Gupta A. et al. proposed Social GAN which con-
tains RNN based encoder-decoder generator and RNN-based
decoder discriminator (Gupta et al., 2018). Social GAN integ-
rates all the interactions involved in the scenarios and encour-
ages the generative network to spread its distribution and cover
the space of possible paths by introducing a variety loss. Sade-
ghian A. et al proposed Sophie, an attentive GAN to jointly
model static human-space, and dynamic human-human inter-
actions by blending a social attention mechanism with a phys-
ical attention that helps the model to learn where to look in a
large scene and to extract the most salient parts of the image
relevant to the path (Sadeghian et al., 2019). Some research ap-
ply Mixture Density Network (MDN) to map the distribution
of future trajectories (Shi et al., 2020, Bishop, 1994, Makansi
et al., 2019, Eiffert et al., 2020) . The article (Makansi et al.,
2019), based on MDN, proposed a two stage strategy that first
predicted several samples of future with Winner-Takes-All loss
and then iteratively grouped the samples to multiple modes.
There are also goal-based multi-trajectory prediction (Tang and
Salakhutdinov, 2019, Mangalam et al., 2020, Li et al., 2020b,
Zhang et al., 2020, Gu et al., 2021, Zhao and Wildes, 2021,
Girase et al., 2021). Those models predict multiple futures
based on hypothesis of goals. One kind of goal-based prediction
models the trajectories based on the semantic destinations, such
as turning right/left, going straight (Tang and Salakhutdinov,
2019, Li et al., 2020b). Another kind firstly forecasts multiple
positional designations and then estimates futures matching the
goal hypothesis (Dendorfer et al., 2020). We also model the
multi-modality of trajectory and forecast multiple plausible fu-
tures by using MDN. But worth noting that it is not our key
contribution and we mainly focus on modeling explainable so-
cial interactions. We predict multiple futures mainly for: (1) to
better compare our method with other baselines; (2) to demon-
strate the proposed explainable social interactions able to apply
to forecast multi-modal futures.

3. PROBLEM FORMULATION

We assume that each scenario has been preprocessed to get
2D spatial coordinates (xti, y

t
i) ∈ R and 2D walking speed

(ut
i, v

t
i) ∈ R of all people at all time instances. There are N

agents in a scenario. The observation of agent i is past traject-
ories represented as: X1:τ

i = {(xti, yti , ut
i, v

t
i)|t = 1, 2, · · · , τ}

while the future trajectories is Y τ :T
i = {(xti, yti)|t = τ +

1, · · · , T}.

Our goal is to learn the posterior distribution
p(Y τ :T

i |X1:τ
i , X1:τ

1:N\i). To generate the distribution of fu-
ture trajectories, we jointly model multiple ego-trajectories and
their interactions with f . Therefore, the distribution is denoted
as:

p(Y τ :T
i |X1:τ

i , X1:τ
1:N\i) = f(X1:τ

i , X1:τ
1:N\i;w

∗), (1)

where w∗ are the parameters of the model we aim to learn. We
denote the predicted future paths as Ŷ τ :T whose distributions
are learned from our model.
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Figure 1. Overview of our method. We set an agent and illustrate the model. We use a separate LSTM for each person in a scene. The
latent features from LSTMs are differencing to connect two interacting people, specially to construct spatial edges. The spatial edges
are pooled to generate social features through an attention mechanism. Then the social features are fed into LSTM stacked with an

Mixture Density Network (MDN) to forecast the distribution of future trajectories.

4. METHODOLOGY

4.1 Overall Architecture

Fig. 1 illustrates a unit of our encoder-decoder model at any
time instance. We utilizes a spatial-temporal graph illustrated
in Fig.2(a) to represent human motion and their interactions.
At any time instance, point elements of a graph are people
characterized with real-world location and velocity while lines
between two points are spatial edges represent their current in-
teraction. Temporal edges transferring adjacent graphs over
temporal space. We leverage an LSTM to encode motion se-
quence. At any time instance, agent and neighbors are firstly
connected by differencing latent features coming from last step
as shown in Fig.2(b). Then an attention mechanism are used
to pool all spatial edges to generate social features. The social
features storing interaction information are be fed into LSTM to
generate latent features which represent next states of people.
Based on latent features, our model directly outputs the para-
meters of Gaussian Mixture Models (GMMs) which describe
the distribution of future trajectories. It is easy to build a pre-
diction model for any length based on the unit. In our encoder,
social features are firstly concatenated with current state’s em-
bedding feature and then fed into LSTM. In decoder, social fea-
tures are concatenated with latent features of last step.

4.2 Social Interactions

We assume person with index i is the agent. The hidden states
from LSTM at time instance t-1 are represented as {ht−1

j |j =
1, · · · , N} which are then utilized to construct spatial edges
between agent and neighbors as Et

j = {ht−1
j - ht−1

i |j =
1, 2, · · · , N\i}. We assume all people in a shared scenario are
allowed to interact. Most of the existing research construct spa-
tial edges by embedding relative location between people. Un-
like those research, we directly difference the latent states of
LSTM between agent and neighbors, which also encourages the
model to capture long time dependencies of social interactions.
An attention mechanism is then applied to get the weights of
neighbors on agent.

wt
j =

exp(ϕ1(Et
j ;ω

∗
1 ))∑N\i

k=1
(exp(ϕ1(Et

k
;ω∗

1
)))

(2)

where ϕ1(·) is a fully connected layer for embedding spatial
edges, ω∗

1 are the embedding weights. wt
j is a variable-length

alignment vector, whose size equals the number of neighbors
N -1.

sti =
∑N\i

j=1
(wt

j ∗ (ht−1
j − ht−1

i )) (3)

Given wt
j as weights, the social feature sti is computed as

weighted sum over all spatial edges. sti stores information how
the agent interact with others. Some previous works use a Eu-
clidean distance-based ordering structure to select a fixed num-
ber of neighbors, which is not rational in highly interacted, dy-
namic scenes. Some research used Max or Average functions
to pool neighbors which may lost individual uniqueness. Here,
we allow all neighbors to interact and selectively sum their fea-
tures through an attention mechanism, which fits the realistic
circumstance and doesn’t lose individual uniqueness.

4.3 Path Forecasting

As mentioned in Section 3, the agent i at time instance t is
characterized with location (xti, y

t
i) and velocity (ut

i, v
t
i). We

embed them respectively to obtain input for LSTM.

f t
i = [ϕ2((x

t
i, y

t
i);w

∗
2), ϕ3((u

t
i, v

t
i);w

∗
3)] (4)

where ϕ2(·) and ϕ3(·) are fully connected layers with ReLU
non-linearity, w∗

2 and w∗
3 are the embedding weights. We rep-

resent social state for agent i at time t as sti and concatenate it
with f t−1

i to predict next state of agent.

ht
i = ψ1(h

t−1
i , [f t

i , s
t
i];w

∗
h) (5)

ψ1(·) is LSTM and its weightsw∗
h are shared between all people

in a scenario. To capture the multi-modality of future paths,
we utilize MDN that combines a multilayer perception with
GMMs. The next location of agent conditioned on ht

i are de-
noted as:

p(Ŷ t+1
i |ht

i) =
∑M

g=1
αt
gp(Ŷ

t+1
i |µt

g, σ
t
g) (6)

where M is the number of Gaussian models of MDN, αt
g

is the prior of gth kernel, p(Ŷ t+1
i |µt

g, σ
t
g) is the probability

density functions (PDFs) given by gth component of GMMs
which is a bivariate Gaussian model parametrized by the mean
µt
g = (µx, µy)

t
g , standard deviation σt

g = (σx, σy)
t
g and correl-

ation coefficient ρtg . We set ρtg as constant and learn µt
g , σt

g and
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αt
gthrough our network.

αt
g =

exp(at
g)∑M

k=1
exp(at

k
)

µt
g = ut

g

σt
g = exp(ztg)

(7)

where {atg|g = 1, · · · ,M}, {ut
g|g = 1, · · · ,M} and {ztg|g =

1, · · · ,M}is obtained by applying fully connected layers ϕα(·),
ϕµ(·) and ϕσ(·) to ht

i respectively.

4.4 Loss Function

The loss function is usually designed to compute negative log-
likelihood of future trajectories over all components of a mix-
ture model as Eq. (8). But it is easy to cause problems, such
collapsing to a single mode.

Lall = −
∑T−1

t=τ
log(

∑M

g=1
αt
gp(Ŷ

t+1|µt
g, σ

t
g)) (8)

To capture the variety of multi-modes and truly learn the multi-
modality of human motion, we design a WTA loss as Eq. (9).
In the training process, we always base the winner selection
on the probability. We compute loss by multiply the winner
probability with learned weight. The weight of winner mode
increase through training. Since our model is an encoder and
a decoder model, it can be trained end to end and update all
parameters.

Lwta = −
∑T−1

t=τ
log(αt

gp(Ŷ
t+1|µt

g, σ
t
g))

g = gargmax p(Ŷ t+1|µt
g, σ

t
g)

(9)

5. EXPERIMENTS

In this section, the proposed model is evaluated on two publicly
available datasets: UCY (Lerner et al., 2007) and ETH (Pel-
legrini et al., 2009). The two datasets contain 5 sets, which are
UCY-zara01, UCY-zara02, UCY-univ, ETH-hotel, ETH-eth in
4 crowded scenarios with totally 1536 trajectories. We firstly
preprocess those two datasets by resampling them as 2.5fps and
transforming the coordinates of people to world coordinates in
meters.

Implementation Details. The experiments are implemented
using Pytorch under Ubuntu 16.04 LTS with a GTX 1080 GPU.
The size of hidden states of LSTM is set to 128. The embedding

layers are composed of a fully connected layer with size 64 for
Eq. (4) and 128 for others. The batch size is set to 8 and all the
methods are trained for 200 epochs. The optimizer RMSprop is
used to train the proposed model with learning rate 0.001. We
clip the gradients of LSTM with a maximum threshold of 10 to
stabilize the training process. The model outputs GMMs with
five components.

Evaluation Approach. The proposed model is trained and
tested on the two datasets with leave-one-out approach: trained
on four sets and tested on the remaining set. We observe the
trajectories for 8 timesteps (3.2 sec) and show prediction res-
ults for 12 timesteps (4.8 sec). To evaluate the performance, we
compare our method with other state-of-the-art models on two
generally used metrics.

1. Average displacement error (ADE): average L2 distance over
all prediction results and ground truth. ADE measures average
error of the predicted trajectory sequence.

2. Final displacement error (FDE): distance between prediction
result and ground truth at final timestep. FDE measures the
error ”destination” of the prediction.

Baselines.The proposed model is compared with the following
baselines.

1. Linear. The second order Kalman Filter, which is modeled
based on position, velocity, acceleration, is used as the linear
method.

2. LSTM. Human motion is modeled without considering hu-
man interaction. Offset is used as input (Becker et al., 2018).

3. Social LSTM. This method models human interactions by
pooling hidden states of spatially proximal motion sequences
(Alahi et al., 2016).

4. Social GAN. This approach captures the multi-modality
of future trajectory prediction, which contains a RNN based
encoder-decoder generator and a RNN-based encoder discrim-
inator. We consider one variant of Social GAN: best results of
sampling 20 times (Gupta et al., 2018).

5. Sophie. This is a GAN-based model which takes into account
both social and physical interactions to make more realistic pre-
dictions. We consider one variant of Sophie: best results of
sampling 20 times (Sadeghian et al., 2019).

6. Social BiGAT. This method uses a generator, two discrimin-
ators (local discriminator and global discriminator) and a latent
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Method Year Note
Evaluation (ADE(m)/FDE(m))

ETH-eth ETH-hotel UCY-univ UCY-zara01 UCY-zara02 AVG
Linear kalman filter 1.65/2.84 0.99/1.70 0.86/1.51 0.83/1.44 0.54/0.96 0.97/1.69
LSTM 2018,ECCV offset is input 0.71/1.40 1.15/2.09 0.72/1.49 0.48/0.98 0.38/0.77 0.69/1.35

S-LSTM 2016,CVPR social pooling 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
Sophie 2018,CVPR 20 samples 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15
S-GAN 2018,CVPR 20 samples 0.72/1.29 0.48/1.01 0.56/1.18 0.34/0.69 0.31/0.65 0.48/0.96

S-BiGAT 2019,NeurIPS 20 samples 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00
S-STGCNN 2020,CVPR 20 samples 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75

T-LwatV1 2021 not social,Lwat, 1sample 0.72/1.25 1.10/2.09 0.70/1.38 0.50/1.10 0.37/0.80 0.68/1.32
S-T-LallV1 2021 Lall, 1sample 0.63/1.12 1.44/2.76 0.53/1.10 0.41/0.90 0.31/0.69 0.66/1.31
S-T-LwatV1 2021 Lwat, 1sample 0.64/1.20 0.87/1.65 0.65/1.21 0.50/1.08 0.33/0.75 0.60/1.18
T-LwatV2 2021 not social, Lwat, 20samples 0.37/0.59 0.51/1.10 0.30/0.60 0.21/0.45 0.18/0.38 0.31/0.62
S-T-LallV2 2021 Lall, 20samples 0.47/0.77 0.97/1.75 0.32/0.61 0.22/0.48 0.19/0.40 0.43/0.80
S-T-LwatV2 2021 Lwat, 20samples 0.36/0.62 0.45/1.00 0.27/0.59 0.23/0.48 0.17/0.36 0.30/0.61

Table 1. Quantitative results of baselines vs. our method across datasets for predicting 12 future timesteps(4.8 sec) given 8 timesteps
observation(3.2 sec). The results of S-LSTM, S-GAN are from (Gupta et al., 2018). The results of Sophie are from (Sadeghian et al.,

2019). The results of S-BiGAT are from (Kosaraju et al., 2019). The results of S-STGCNN are from (Mohamed et al., 2020).Our
model consistently outperforms other baselines (lower is better).

ground truth observation agents

(1) (2) (3) (4)

Figure 3. Distribution prediction of final step from two proposed models S − T − LallV2 and S − T − LwtaV2 in four different sets.
Lall is model with loss over all modes. Lwta is our model with WTA loss. (1)(2) show the distributions in social interactions. (3)(4)

show the distributions in multiple entries/exits.

noise encoder to construct a reversible mapping between pre-
dicted paths and learned latent features of trajectories. We con-
sider one variant of Social BiGAT: best results of sampling 20
times (Kosaraju et al., 2019).

Ablation Study. To explain how our model works, we also rep-
resent results of various versions of our models in an ablative
setting by T -LwtaV1/V2: with WTA loss and doesn’t consider
social interactions, S-T -LallV1/V2: with loss over all modes
while considering social context, S-T -LwtaV1/V2: our major
model which use WTA loss and take into account social inter-
actions. For all models, V1 means sample once from mode with
maximum weight while V2 means sample 20 times from multi-
modes.

5.1 Quantitative Evaluation

We compare our model to various baselines in Table 1, report-
ing the average displacement error (ADE) and final displace-
ment error (FDE) for 12 timesteps of human movement. In gen-
eral, linear method performs worse than other methods because
it is limited to model social context or multi-modality of human

motion. Social LSTM only achieves similar accuracy as LSTM,
although it is trained with synthetic data and then finetuned on
benchmarks (Gupta et al., 2018). LSTM use offset as input,
which makes the learning process stable and improves the per-
formance. Sophie, Social GAN and Social BiGAT capturing the
uncertainty of long-term movement achieve better results than
other baselines.

Our first set of models modelV1, which sample once from
the mode with maximum weight, outperform baselines Linear,
LSTM and Social LSTM. Even the first model T − LwtaV1

solely modeling pedestrian motion without considering so-
cial interactions achieves better performance than those three
baselines. Our second set of models modelV2 sample multiple
times from multi-modes, make significant improvement than
modelV1 over two metrics. By comparing S − T − LwtaV1

and T − LwtaV1, we can tell modeling social context helps
our model form better predictions in highly interactive scen-
arios. Interestingly, T −LwtaV2 achieves similar accuracy with
S−T −LwtaV2 potentially suggesting the WTA loss is capable
to truly forecast distributions of all possible path. The model
S − T − LallV1 trained by computing loss over all modes,
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S-GAN

Our model

ground truth prediction results observation agents

(a) (b) (c) (d)

Figure 4. Comparison of predicted results from Social GAN (best result of 20 samples) and our model (best result of 20 samples).

achieves slightly better results than the model S − T −LwtaV1

over univ, zara01 and zara02. But the second version S − T −
LallV2 performs worse than S − T − LwtaV2, which indic-
ates Lwta encourages the model forecast distributions covering
more plausible futures than Lall. Moreover, from the visual-
ization in section 5.2, we also find model with Lwta can truly
forecast the distributions of multi-modes while model with Lall

tends to learn an average mode.

5.2 Qualitative Evaluation

Human motions tend to show multi-modality especially in long-
term prediction or in a highly interactive circumstance. We fur-
ther explore how our model performs by visualizing the pre-
dicted distributions of final step. Fig.3 show the visualization
results of UCY-zara02 from two groups, social interactions in
(1)(2) and multiple entries/exits in (3)(4). Warmer color indic-
ates higher probability. We compare our model S−T −LallV2

and S − T −LwtaV2. All the predicted spaces are socially and
physically acceptable. From the visualization of distributions,
we can see that model S−T −LwtaV2 better capture the multi-
modality than S−T −LallV2. In (1)(2), the agents adjust their
path to avoid collision with neighbors in front. Except common
sense rules like avoid collision, walking destinations and indi-
vidual social manners can also have an effect on pedestrian’s
walking route. So the future trajectories tend to show multiple
possibilities. Our model S − T − LwtaV2 successfully predict
multiple plausible modes of future path. In (3), the agent might
enter ”zara” store or just walk along the road. Based on the ob-
servation, it is not easy to tell the agent’s destination. The model
S−T−LwtaV2 forecasts almost the same probabilities of enter-
ing ”zara” store and going straight, which is more realistic than
the result of S − T −LallV2. The agents in (4) might also turn
the corner instead of walking straight. The distribution from
S − T − LwtaV2 clearly show multi-modes of future possible
trajectories. Although model S − T − LallV2 owns the cap-
ability of learning multi-modes but it tends to learn an average
mode but loses the variety of multi-modes than S−T−LwtaV2.

We also visualize the results of Social GAN and our model S−
T −LwtaV2 under the same scenarios to further investigate our
model’s performance in Fig.4. Both Social GAN and our model
generate 20 samples and plot the best results. All the scenarios
contain multiple interacting agents and multiple entries/exits.

Based on the observations, the trajectories show the property of
multi-modality. Our model outperforms Social GAN by better
capturing multi-modes of future trajectories. In (b), the agents
would avoid collision with the standing person in front, so they
wouldn’t behave as Social GAN predicts. In (a)(c)(d), people
walk in a group and they might go straight, turn right or turn
left. Our model generate results more accurately while Social
GAN wrongly predict agents go straight instead of turning the
corner.

6. CONCLUSION

We introduce an LSTM-based encoder-decoder model for long-
term trajectory prediction in a highly interactive real-world cir-
cumstance. Unlike GAN-based models which firstly sample
from generator and then derive distribution of future path from
samples, we map distribution of human motion with explicit
density by using Mixture Density Network. To avoid the model
collapsing into a single mode and truly capture intrinsic multi-
modality of human path, we further introduce Winner-Takes-
All loss instead of computing loss over all modes. Besides, we
assume all people in a shared environment are interacting and
use an attention mechanism to sum all relative latent features
between people to model social interaction. Finally, we show
the efficacy of our method on several complicated real-life scen-
arios where social norms and multi-modality prediction must be
followed.

REFERENCES

Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei,
L., Savarese, S., 2016. Social lstm: Human trajectory predic-
tion in crowded spaces. Proceedings of the IEEE conference on
computer vision and pattern recognition, 961–971.
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Neumeier, M., Tollkühn, A., Berberich, T., Botsch, M.,
2021. Variational Autoencoder-Based Vehicle Trajectory Pre-
diction with an Interpretable Latent Space. arXiv preprint
arXiv:2103.13726.

Pellegrini, S., Ess, A., Schindler, K., Van Gool, L., 2009. You’ll
never walk alone: Modeling social behavior for multi-target
tracking. 2009 IEEE 12th International Conference on Com-
puter Vision, IEEE, 261–268.

Peng, Y., Zhang, G., Li, X., Zheng, L., 2021. Stirnet: A spatial-
temporal interaction-aware recursive network for human tra-
jectory prediction. Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2285–2293.

Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rez-
atofighi, H., Savarese, S., 2019. Sophie: An attentive gan for
predicting paths compliant to social and physical constraints.
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 1349–1358.

Shi, X., Shao, X., Fan, Z., Jiang, R., Zhang, H., Guo, Z., Wu,
G., Yuan, W., Shibasaki, R., 2020. Multimodal interaction-
aware trajectory prediction in crowded space. AAAI, 11982–
11989.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2022-91-2022 | © Author(s) 2022. CC BY 4.0 License.

 
97



Sohn, K., Lee, H., Yan, X., 2015. Learning structured output
representation using deep conditional generative models. Ad-
vances in neural information processing systems, 28, 3483–
3491.

Su, H., Zhu, J., Dong, Y., Zhang, B., 2017. Forecast the plaus-
ible paths in crowd scenes. IJCAI, 1, 2.

Tang, C., Salakhutdinov, R. R., 2019. Multiple futures predic-
tion. Advances in Neural Information Processing Systems, 32,
15424–15434.

Yu, C., Ma, X., Ren, J., Zhao, H., Yi, S., 2020. Spatio-temporal
graph transformer networks for pedestrian trajectory prediction.
European Conference on Computer Vision, Springer, 507–523.

Yuan, Y., Weng, X., Ou, Y., Kitani, K., 2021. AgentFormer:
Agent-Aware Transformers for Socio-Temporal Multi-Agent
Forecasting. arXiv preprint arXiv:2103.14023.

Zhang, L., Su, P.-H., Hoang, J., Haynes, G. C., Marchetti-
Bowick, M., 2020. Map-Adaptive Goal-Based Trajectory Pre-
diction. arXiv preprint arXiv:2009.04450.

Zhang, P., Ouyang, W., Zhang, P., Xue, J., Zheng, N., 2019.
Sr-lstm: State refinement for lstm towards pedestrian trajectory
prediction. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 12085–12094.

Zhao, H., Wildes, R. P., 2021. Where are you heading? dynamic
trajectory prediction with expert goal examples. Proceedings of
the IEEE/CVF International Conference on Computer Vision,
7629–7638.

Zhu, Y., Qian, D., Ren, D., Xia, H., 2019. Starnet: Pedestrian
trajectory prediction using deep neural network in star topology.
2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 8075–8080.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2022-91-2022 | © Author(s) 2022. CC BY 4.0 License.

 
98




