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ABSTRACT:  

 

Speckle noise is an intrinsic property of Synthetic Aperture Radar (SAR) imagery, which affects the quality of image. Single-temporal 

despeckling methods usually pay attention to the utilization of spatial information, but sometimes due to lack of sufficient information, 

the despeckling image is too smooth or losses some information about edge details. However, multi-temporal SAR images can provide 

extra information for despeckling resulting in better performance. Therefore, in this paper, we proposed a novel multi-temporal SAR 

despeckling method based a convolutional neural network (MSAR-CNN) embedded temporal and spatial attention (TSA) module to 

deeply mine the spatial and temporal correlation of multitemporal SAR images. The whole network, which is end-to-end trained with 

simulate realistic SAR data, consists of several residual blocks. In addition, the simulated and real-data experiments demonstrate that 

the proposed MSAR-CNN outperforms most of the mainstream methods in both the quantitative evaluation indexes and visual effects. 

 

 

1. INTRODUCTION 

Synthetic aperture radar (SAR) can be capable of all-time and all-

weather observation, which provides conditions for obtaining 

long time-series images of the same area. Thus, the application 

of multi-temporal SAR images is emerging with the launch of 

more SAR satellites, such as forest and disaster monitoring 

(Rauste et al., 2005; and Bovolo et al, 2007), land-cover 

classification (Dobson et al., 1995), and glaciers and snow 

analysis (Fallourd et al., 2011; and Nagler et al., 2000). However, 

speckle is generated by the coherent processing of radar signals, 

which affects the SAR images of scene interpretation and 

automatic analysis. Therefore, before SAR images are applied, 

the speckle suppression operation should be done. 

 

In the past few decades, most SAR despeckling methods focus 

on utilizing the redundancy of neighbouring or nonlocal spatial 

information on a single temporal image. Although these methods 

keep a balance between speckle reduction and spatial resolution 

degradation, sometimes the lack of sufficient similar spatial 

information leads to poor robustness. However, multi-temporal 

images provide additional time dimensional information to 

supplement spatial information. At first, the multi-temporal 

despeckling methods only process images in time dimension like 

unbiased temporal average filter (UTA) (Lee et al., 1991). Up to 

now, part of the spatial or temporal dimension denoising methods 

are extended to the spatio-temporal joint dimension. The 

following three are typical. Firstly, three-dimensional adaptive 

neighbourhood filter (3D-ANF) is a classical spatio-temporal 

filter, which determines the spatio-temporal adaptive 

neighbourhoods by statistic information in the local 3D patch of 

the center pixel (Ciuc et al., 2001). Two-step multi-temporal 

nonlocal mean method (2S-PPB) consists of a temporal 

averaging step (the first step), and a spatial denoising step (the 

second step) (Su et al., 2014). Lastly, multi-temporal SAR block-

matching in 3D (MSAR-BM3D) expands spatial grouping into 

spatio-temporal grouping, as well as four-dimensional 
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collaborative filtering (Chierchia et al., 2017b). Recently, some 

other novel methods have been proposed, such as ratio-based 

SAR despeckling method (RABASAR) (Zhao et al., 2019) and a 

scattering covariance matrix of image patch for multi-temporal 

SAR image despeckling (SCM-MSAR) (Ma et al. 2019). These 

methods combine spatio-temporal information to present a more 

effective despeckling result than single-temporal methods in 

spatial resolution preservation. But if the significant change of 

multi-temporal SAR images exists, these methods may introduce 

the error information to the despeckling results.  

 

Recently, deep convolutional neural network (CNN) has 

performed well in SAR despeckling domain (Chierchia et al., 

2017a; Wang et al., 2017; and Zhang et al., 2018). Compared to 

traditional methods, the deep learning based SAR despeckling 

methods can fit the non-linear relationship more accurately 

between the speckle image and noise-free image because of the 

deep structure. But these methods are limited to single-temporal 

SAR despeckling, and the redundant information among multi-

temporal SAR images is not exploited. In this paper, we aim to 

combine spatio-temporal information with deep CNN to get 

higher spatial resolution multi-temporal SAR images. Therefore, 

we proposed a combining spatio-temporal residual network for 

multi-temporal SAR image despeckling. The model consists of 

several residual blocks (He et al., 2016) embedding a fusion 

module known as temporal and spatial attention (TSA). TSA 

(Wang et al., 2019) is an important module, which consists of 

temporal attention and spatial attention, and helps aggregate 

information across the features of each time image. Firstly, the 

temporal attention aims at computing the element-wise 

correlation between the target time image and each time image in 

feature level. Then each temporal feature is weighed by the 

normalized correlation coefficient at each location by element-

wise product. A convolutional layer is used for fusing the 

convolved weighted features from all times. On the basis of the 

temporal fusion, spatial attention is applied to adaptively rescale 
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Fig. 1 the overall Frameworks of MSAR-CNN  

 

 

Fig. 2 Residual Block.  

 

the feature at each location in each channel to deeply mine the 

cross-channel and spatial feature. 

 

The remainder of this paper is organized as follows. Section 2 

describes our proposed MSAR-CNN model. Experimental 

results and some relevant discussions are demonstrated in Section 

3. The conclusions are finally summarized in Section 4. 

 

2. PROPOSED METHOD 

2.1 Framework of MSAR-CNN 

The overall framework of the proposed MSAR-CNN is shown in 

Fig.1. Given five different multi-temporal SAR images 1 5t −  as 

inputs, we denote the last image 5t  as the target image and the 

others as assistant images. Firstly, the feature of the target image 

and assistant images are respectively extracted by five parallel 

structures which consist of a convolutional layer along with 

rectified linear unit (ReLU) activation function and five residual 

blocks. And then TSA is used to fusion the spatio-temporal 

information. Ten series residual blocks with a convolution in the 

last act as reconstruction layers on the concatenated features of 

fusion and target. Lastly, the despeckling target SAR image is 

generated by the sum of the output residual and the input target 

image. The detailed configuration of the proposed MSAR-CNN 

is provided in Table 1. 

 

 Layers Filter size Filters 

L1 Conv+ReLU 1×3×3×5 32 

L2-L6 Residual blocks 32×3×3×5 32 

L7 

Temporal and 

spatial attention 

block 

32×3×3×5 32 

L8-L17 Residual blocks 64×3×3×1 64 

L18 Conv 64×3×3×1 1 

Table 1. Detailed configurations of the proposed MSAR-

CNN 

 

2.2 Residual Learning 

The residual learning is an effective strategy to improve the 

performance of the network and speed up the training when the 

network is deeper. The key point is the shortcut connection which 

makes new features easier to extract on the stack layers. Here, we 

introduce two different residual learning strategies respectively 

in image level and feature level. 

 

Therefore, to overcome the difficulty of the common deep 

network in approximating identical mappings by stacked flat 

structures, we consider restoring the residual speckle noise image 
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(c) 

 

Fig. 3 the Frameworks of Temporal and Spatial Attention (TSA). (a) the overall structure for TSA (b) Temporal 

Attention. (c) Spatial Attention 

 

by skip connection in image level. As we all know speckle noise 

is described by the multiplicative noise model 

 

 f uv=  (1)  

 

where f  and u  are, respectively, the contaminated image and 

clean image, the speckle noise v is assumed to be statistically 

independent with ( ) 1E v =  and stationary variance 2

v . 

However, the multiplicative noise can be translated into the 

flowing additional equation 

 

 ( 1)f u v u= + −  (2) 

 

Therefore, the residual speckle noise   is defined as 

 

 u f = −   (3) 

 

where   is also donated as (1 )v u− , which is the additional 

single-dependent noise with zero-mean and nonstationary 

variance related to u .  

 

For the proposed model, given multi-temporal data training pairs 

5 5
ˆ{ , , }t t t Nu f u , tf  is the input five temporal speckle images, 

5t
u  

represents the clean image of the target time phase as the label, 

5
ˆ

tu  is the corresponding despeckling image. and N donates the 

number of data pairs. The output residual speckle noise is defined 

as 

 

 
5 5 5t t tu f = −   (4) 

 

The mean-square error is set as loss function, formulated as 

 

 
5

2

2
1

1
( ) ( , )

2

N
i i

t t

i

loss Net f
N


=

 =  −   (5) 

 

where  is the parameters of the network. 

 

Furthermore, to be better utilizing and mining the character of 

different temporal SAR images and avoiding the vanishing 

gradient problem, the basic structures of the proposed MSAR-

CNN are the residual blocks as shown in Fig. 1 respectively 

stacked in the layers 2-6 and layers 8-17. Fig. 2 shows the 

building block of residual learning, which is defined as 

 

 { , } { , } { , }( ,{ , })
i j i j i jL t L t L ty x w b x= +  (6) 
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where { , }i jL tx  and { , }i jL ty  represent the input and output features 

of the residual block, when 2 6, ,iL L L= , 
1 5, ,jt t t=  and 

8 17,iL L L= , 
j fuisont t= ,   is the function consisted of two 

convolutions embedded one ReLU, { , }w b  are the parameters of 

the two convolutions. 

 

2.3 Spatio-temporal information fusion 

As mentioned in section 1, spatio-temporal redundant 

information can effectively improve the SAR image despeckling 

performance owning to the high correlation and similarity in 

different temporal images. The spatial relation and temporal 

relation are critical in fusion since they directly determine the 

performance of multi-temporal despeckling algorithms. Because 

SAR is sensitive to geometric structures, the difference between 

two short period images is increased and the non-linear relation 

of multi-temporal SAR images is more complex. However, the 

existing traditional methods have a limitation on fitting the more 

complex non-linear relationship resulting in the spatial resolution 

reduction or detail loss. Therefore, in the proposed MSAR-CNN 

model, the temporal and spatial attention (TSA) module (Wang 

et al., 2019) are used for more accurately fusing spatio-temporal 

information shown in Fig. 3(a) which is embedded in the middle 

of the whole network to calculate the temporal relation and 

spatial relation in feature level rather than image level. As can be 

seen in Fig. 3(a), temporal relation is firstly calculated by 

temporal attention, and then spatial relation is found by spatial 

attention based on the fused features in the temporal dimension. 

 

The temporal attention block aims to compute the similarity 

between each temporal image and target temporal image in the 

feature level in Fig. 3(b). Thus, for each temporal image 

[1: 5]t , the element-wise correlation is calculated by the 

element-wise product between the features of each image and 

target image. Then, the element-wise correlation is normalized 

by sigmoid function to compute the similarity distance h , which 

is formulated as 

 

 
5 5 5( , ) ( ( ) ( ))T

t t th F F Sigmoid F F =   (7) 

 

where 5F  is the feature of the target SAR image, tF  represents 

the features of each temporal SAR image, t  and 5  

respectively equal the parameter of embedded convolutions. 

 

Secondly, the similarity distance h  is multiplied in a pixel-wise 

manner to the original feature tF . Lastly, a convolutional 

operation is used to fusion all attention-modulated features 
tF . 

 

 
5( , )t t tF h F F F=   (8)  

 

 
fusion 1 2 5= ([ , , , )F Conv F F F  (9) 

  

where fusionF  denotes the fused features. 

 

In temporal attention, the fused features are got by a pixel-wise 

manner in temporal scale regardless of the spatial scale. The goal 

of spatial attention is to correct weights at each location in each 

channel features. Thus, a three-level pyramid structure is 

employed to extend the attention receptive field by pooling 

(mean pooling and maximum pooling) and convolution shown in 

Fig. 3(b). Then, the spatial-attention-modulated feature is 

upsampled to element-wise add to the original features for fusing 

spatial features (Wang et al., 2018). 

 

3. EXPERIMENTAL RESULTS 

In this section, we present the simulated and real experimental 

results of the proposed MSAR-CNN model to verify the 

effectiveness. We compare the performance of our model with 

four different multi-temporal despeckling methods: UTA (Lee et 

al., 1991), nonlocal temporal filter (NLTF) (Chierchia et al., 

2017b), MSAR-BM3D (Chierchia et al., 2017b), and RABASAR  

(Zhao et al., 2019). For all the compared method, the parameters  

 are set as suggested in the referenced paper. Five different 

temporal images are used except MSAR-BM3D which uses four 

different temporal images because the time series must be equal 

to a power of two.  

 

3.1 Training data and parameters setting 

Most deep learning based SAR despeckling method used the 

optical image as the training set, but the differences do exist 

between the two data even though the optical image is 

transformed to SAR amplitude image. Therefore, turning to the 

MSAR-CNN, the images in training dataset as label are 

calculated by the arithmetic mean of the long-time series SAR 

images. Here, we select 50 images (size of 8000 × 8000) stride 

by 10 from 100 Sentinel-1 amplitude images of the city Wuhan 

in china to produce five temporal noise-free SAR images. Then 

the five temporal images are concatenated and cropped to 400 

images size of 400 × 400 × 5 for the label of the training set. The 

training label set is divided into four parts of 100 images each, 

respectively multiplying different strength gamma-distributed 

speckle noise with the equivalent number of looks (ENL) of 1, 2, 

4, and 8. 

 

Then, these training data are then cropped in each patch size as 

40×40, with the stride equal to 10, with the ADAM gradient-

based optimization method (Kingma et al., 2014), mini-batches 

of 64 patches. Training proceeds for 100 epochs with initial 

learning rate 0.001, and after 20 epochs, the learning rate is 

reduced through being multiplied by a descending factor of 

gamma = 0.1. We implement the different models in the PyTorch 

framework and train the models with an NVIDIA Quadro P4000 

GPU. 

 

Looks 1 2 

Index PSNR EPD-ROA PSNR 
EPD-

ROA 

UTA 52.340 1.039 54.240 1.012 

NLTF 49.424 1.123 52.310 1.034 

MSAR-

BM3D 
37.200 1.334 46.430 1.168 

RABASAR 56.896 0.974 57.207 0.977 

MSAR-CNN 55.076 1.046 54.903 1.005 

Table 2 Average quantitative assessment result of test dataset 

(16 simulated realistic SAR images) with single and two looks 

 

3.2 Simulated experiments 

The simulated test SAR data were produced in the same way as 

the training data. We randomly selected a testing set of 16 (size 

of 500 × 500 × 5) Sentinel-1 images of the city Wuhan differing 

from the training data. The pick signal to noise ratio (PSNR, as 

higher as possible) and the edge-preservation degree based on the 

ratio of average (EPD-ROA, as closer to 1 as possible) are used  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 

Fig. 4 Despeckled images for the simulate realistic image. (a) 

Noisy image. (b) Truth image. (c) UTA. (d) NLTF. (e) MSAR-

BM3D. (f) RABASAR. (g) the proposed MSAR-CNN 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 5 Despeckled images for the Sentinel SLC image. (a) Noisy 

image. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) RABASAR. (f) 

the proposed MSAR-CNN. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 6 Despeckled images for the Sentinel-1 GRD-HR image. (a) 

Noisy image. (b) UTA. (c) NLTF. (d) MSAR-BM3D. (e) 

RABASAR. (f) the proposed MSAR-CNN 
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to verify the performance of the proposed MSAR-CNN. PSNR 

and EPD-ROA are formulated as 

 

 

2

10

max( )
( , ) 10log

( , )

y
PSNR x y

MSE x y
=  (10) 

 

1 2

1 2

| ( ) ( ) |

=

| ( ) ( ) |

m

D D

i

m

O O

i

I i I i

EPD ROA

I i I i

−



 (11) 

 

where x and y  are, respectively, the despeckled image and the 

reference image; i is the index set of the SAR image, 1( )DI i  and 

2 ( )DI i  respectively represent the adjacent pixel values in the 

horizontal and vertical directions of the despeckled image, and 

1( )OI i  and 2 ( )OI i  represent the adjacent pixel values in the 

horizontal and vertical directions of the reference clean image. 

 

Table 2 lists the average quantitative evaluation results for the 

test dataset with single and two looks, with the best performance 

marked in bold and the second-best underlined. Furthermore, for 

comprehensive evaluation, the despeckling results of a simulated 

image with 2 looks are shown in Fig. 4. The visual result of 

MSAR-BM3D is not worse than other traditional methods, while 

the quantitative assessment is the worst. It may be related to the 

artifacts shown in part despeckling results of MSAR-BM3D, and 

it is also verified in the real experiments. For the UTA and NLTF 

results, residual speckle is the main problem. Although The best 

quantitative assessment is got by RABASAR, the despeckling 

image is over-smoothing. However, the details are important for 

the subsequent application and analysis of SAR image. The better 

edge preservation result can be got by the proposed MSAR-CNN, 

which is consistent with the quantitative assessment. Therefore, 

on the whole, the proposed MSAR-CNN result provides the most 

similar performance with the truth, even though some residual 

noise may exist. 

 

3.3 Real experiments 

For the real experiments, to present the comprehensive 

comparison, different noise strength SAR images are selected. 

There are, respectively, Sentinel-1 single look complex (SLC, 

ENL = 1) and ground range detected high resolution (GRD-HR, 

ENL = 4.4) images of the city of Wuhan, cropped to 500 × 500, 

differing from the training dataset.  
 

Here, the SLC images in a mountain area of August 24, 

September 5 and 29, October 11 in 2019 are used as auxiliary 

images to despeckle the SLC image of September 17. Fig. 5 

presents the results of different multitemporal despeckling 

methods. The obvious residual speckle is apparent with UTA and 

NLTF. The performances of MSAR-BM3D and RABASAR are 

better. Over-smoothing is still existing in the results of MSAR-

BM3D and RABASAR, while the RABASAR shows lesser 

details than others. Compared to other traditional methods, the 

proposed MSAR-CNN method provides a satisfying denoising 

result since it leads to a good balance between noise reduction 

and spatial resolution degradation especially preservation of 

point. 

 

For GRD-HR data of Sentinel-1, we select the flat area of the 

images, where the auxiliary images are dated on October 21, 

November 2 and 26, and December 8, 2017, and the target image 

is dated November 14, 2017. In Fig. 6, RABASAR gives the best 

result of the traditional methods especially lying in the balance 

despeckling performance. UTA and NLTF are lacking in the 

preservation of point-like targets. And MSAR-BM3D loss some 

detail like edge and texture. Relatively speaking, the proposed 

MSAR-CNN retains more details than RABASAR and MSAR-

BM3D, and both the retention of original information and the 

removal of noise perform well. To sum up, the adaptive 

despeckling ability of the proposed MSAR-CNN method is the 

best.  

 

3.4 Temporal information preservation 

For verifying the ability of temporal information preservation, we 

select the five temporal Sentinel-1 SLC images of August 24, 

September 5, 17, and 29, October 11 in 2019 as input. And then 

the despeckling results of September 5 and October 11 are 

outputted, shown in Fig. 7. 

 

In Figs. 7(a) and 7(b), the two temporal images are very different 

because of the changing of geotexture and radiation along with 

time. Generally, both RABASR and the proposed MSAR-CNN 

method can effectively handle the changes due to the higher 

similarity between the despeckling results and the original noise 

images. However, from the zoomed images in red rectangular Fig. 

7, especially the small building shown in yellow circle, it can be 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 7 The despeckling results of two different temporal Sentinel-

1 SLC images. (a) Noisy image of September 17, 2019. (b) Noisy 

image of October 11, 2019. (c) and (d) the proposed MSAR-CNN 

despeckling results of (a) and (b). (e) and (f) RABASAR 

despeckling results of (a) and (b). 
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observed that the results of the proposed MSAR-CNN method 

are more similar with the original target temporal information 

than RABASAR. Therefore, the proposed MSAR-CNN 

effectively fuses the temporal and spatial information.  

 

4. CONCLUSIONS 

In this paper, we proposed a new multi-temporal despeckling 

method based a convolutional neural network. Since the whole 

network was trained with arithmetic mean SAR image, it 

generated a reasonable despeckling results. In addition, owning 

to the utilization of residual learning strategy and TSA module, 

the visual results of the proposed showed the better balanced 

performance on detail preservation and speckle reduction 

compared to other traditional methods. The future work will be 

devoted to introduce a recursive network architecture and update 

the training dataset to reduce residual speckle noise and further 

improve the quantitative assessment.  
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