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ABSTRACT:

In order to reach the goal of reliably solving Earth monitoring tasks, automated and efficient machine learning methods are necessary
for large-scale scene analysis and interpretation. A typical bottleneck of supervised learning approaches is the availability of
accurate (manually) labeled training data, which is particularly important to train state-of-the-art (deep) learning methods. We
present SemCity Toulouse, a publicly available, very high resolution, multi-spectral benchmark data set for training and evaluation
of sophisticated machine learning models. The benchmark acts as test bed for single building instance segmentation which has been
rarely considered before in densely built urban areas. Additional information is provided in the form of a multi-class semantic
segmentation annotation covering the same area plus an adjacent area 3 times larger. The data set addresses interested researchers
from various communities such as photogrammetry and remote sensing, but also computer vision and machine learning.

1. INTRODUCTION

The automatic interpretation of aerial and satellite images is of
considerable research interest in the areas of remote sensing,
machine learning (ML) and computer vision. One of the most
active areas is the development of efficient and scalable learn-
ing algorithms. The “big data” regime is now dictated by the
exponential increase in data availability, with frequent improve-
ments on spatial, spectral and temporal resolutions, and Earth
observation (EO) missions lasting longer and guaranteeing data
continuity.

For the purpose of fostering research and operational practices,
the community at large proposed various benchmarks (Bakuła
et al., 2019), which deal with different tasks such as land cover
classification (Demir et al., 2018), road detection (Mnih, 2013),
instance segmentation (Waqas Zamir et al., 2019), and object
recognition (Humanity & Inclusion, 2018, Van Etten et al.,
2018).

Challenges arise when the amount of labeled information which
is necessary to build a well generalizing interpretation model is
limited or not representative enough of operational scenarios.
In general, it is common to have access to a vast amount of un-
labeled data, but only a tiny fraction of it is accurately labeled.
This setting drives the ML practitioners in EO applications to
perform research in the areas of active learning, weakly su-
pervised or few shot learning, transfer learning, and self-taught
learning (Wurm et al., 2019, Bettge et al., 2017, Crawford et al.,
2013). On a parallel line, lots of efforts are devoted to methods
which are able to efficiently use large amounts of labeled data,
in particular since the success of deep learning, which is avid
in terms of annotations. Still, deep learning has now become
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the go-to technique for most image processing tasks, a success
also translated to the EO community, where the adaptation of
deep learning techniques from the computer vision community
became one of the most active research areas (Ma et al., 2019).
However, unlabeled data contains invaluable information, but
its extraction is far from trivial and requires dedicated meth-
ods often dealing poorly with unbalanced data and rare classes
(Oliver et al., 2018).

The development and analysis of methods able to deal effi-
ciently with large-scale data sets in EO is still connected to
many open research questions such as imbalanced classes, non-
uniform atmospheric effects, and varying spatial and spectral
resolutions. Furthermore, most recent methods are developed
independently to EO data peculiarities: A proper exploitation
of geographical and spatial invariance, the use of object sizes
in a consistent metric space, or known land cover reflectances
are mostly ignored. These aspects can be used to regularize
the learning process and, to some extent, improve the sample
complexity and cope with rare and unbalanced classes.

One obstacle to analyze, optimize, and evaluate suitable modern
machine learning methods is the missing availability of public
benchmark data sets and the lacking diversity of implemented
tasks on the same data. Moreover, various shortcomings can
occur: While many benchmark data sets address realistic ques-
tions and already refer to large areas, some of them lack in ac-
curacy or do not reflect space-borne settings (e.g., multispec-
tral imagery), which would not favour scientific developments
over engineering efforts. The following list covers some recent
benchmarks related to ours:

crowdAI Mapping Challenge. This benchmark challenge
deals with building instance segmentation (Humanity &
Inclusion, 2018). The training set is composed of more

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-5-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-5-2020-109-2020 | © Authors 2020. CC BY 4.0 License.

 
109



Figure 1. 1 out of 16 tiles of the SemCity Toulouse data set (876 px× 863 px, area covered ≈3 km2). Illustrated are the satellite
image (near infrared-green-blue), semantic segmentation annotation, and building instance annotation (from left to right).

than 200.000 300 px × 300 px tiles, but only in RGB
channels. The areas covered are mainly residential areas,
where buildings are homogeneous in size, background
discriminative and instances clearly separated one from
each other.

SpaceNet. Several Space Net data sets have been released and
used for benchmark challenges. The first and second chal-
lenges aim at the detection of building footprints from
Worldview-II and Worldview-III high-resolution 8-band
images. The building footprint annotations are initially
derived semi-automatically and subsequently improved
manually. Buildings are marked individually, where each
street address is defined as building. However, building
corners are only accurate to 5 px.

DeepGlobe. This data set contains three challenges: road de-
tection, building detection, land cover classification (De-
mir et al., 2018). The building detection data set is based
on the SpaceNet data set, and contains 24.586 images of
size 650 px × 650 px from the WorldView-III sensor with
a spatial resolution of 31 cm in the panchromatic band and
1.24m in all other bands. Adjoining buildings are marked
as single buildings, and thus the data set is more detailed
than previous building data set. Since the building foot-
print is annotated, the appearance of the building in the im-
age deviates from the annotation, depending on the height
of the buildings and the viewing angle. The annotations
are, however, not consistently performed throughout the
data set.

INRIA Aerial Image Labeling data set. The semantic seg-
mentation data set contains building/non-building annota-
tions, where training and test set are split over cities in
Europe and America (Maggiori et al., 2017). The RGB- or
RGB-Infrared imagery has a spatial resolution of 10 cm-
30 cm, covering a total area of 810 km2. The benchmark
does not distinguish between building instances, such that
adjoining buildings are marked as one segment.

ISPRS Vaihingen and Potsdam. The multi-class semantic
segmentation data sets contain 4-band RGB-Infrared im-
agery with a high spatial resolution of 9 cm and 5 cm,
respectively (Rottensteiner et al., 2013). Vaihingen cov-
ers an area of 1.5 km2 with small detached buildings, and
Potsdam covers an area of 3.5 km2 comprising the historic
city and dense settlements. Both data sets are smaller than
the other mentioned data sets and do not contain building
instances.

Open Cities AI Challenge. This semantic segmentation data
set consists of RGB images with varying spatial resolu-
tion, in which building footprints in 10 cities across Africa
are annotated (GFDRR, 2020). The quality varies signific-
antly across the data sets (marked as tier 1 and tier 2) with
some annotations having a displacement of several meters.

iSAID . This data set is a multi-class instance segmentation
benchmark (Waqas Zamir et al., 2019). It contains 2.806
high-resolution aerial images taken from the DOTA (Xia et
al., 2018) data set with over 655.000 annotated instances
from 15 classses. This benchmark covers many classes
that are not of global interest (e.g., baseball courts), in-
stances are clearly identifiable, and the class “building” is
not part of the benchmark.

Benchmarks are an invaluable contribution to the community
and pushed many boundaries in terms of research. The more
tasks and data characteristics are covered, the more ML meth-
ods can be compared and more limitations can be identified.
The above-mentioned data sets and the many others not men-
tioned here, enable an objective and comprehensive comparison
of different ML approaches and a thoughtful development of
novel methods. Some of the data sets were offered in the form
of challenges and have thus led to further progress in the de-
velopment of new, more efficient methods (Bakuła et al., 2019,
Rottensteiner et al., 2014). The provision of winning solutions
as open-source software promotes further progress, as it was
done for example in the SpaceNet Challenge 11. We advoc-
ate that experiments should be released as open source code to
foster reproducibility and development.

In this paper, we introduce the SemCity Toulouse benchmark,
which aims at complementing existing benchmarks, and to
foster the development of machine learning methods which ad-
dress the aforementioned open research questions. The bench-
mark focuses on building instance segmentation, where addi-
tional information is provided in the form of a multi-class se-
mantic segmentation annotation covering the same area plus an
adjacent area 3 times larger. Although this is a traditional task,
our benchmark focuses on a densely populated area, the city of
Toulouse (France), showing nicely organized residential areas
and old town structures. Each single building instance is inde-
pendently annotated, so no large blocks of multiple housing are
depicted in the training set. This issue is of particular interest
when cadastral archives need to be updated or, in turn, when

1https://spacenetchallenge.github.io/Challenges/

Challenge-1.html
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those are used to generate training data. Our data set comes dir-
ectly from the Worldview-II sensor, providing 8 spectral chan-
nels and therefore going beyond the use of standard RGB im-
agery and opening the doors to multi-spectral deep learning.

2. DATA SETS

In this section, we discuss the study site, imagery characterist-
ics, the annotated sets, and the annotation process which was
conducted to derive the labels.

2.1 Study site

Our study site is a 50 km2 area covering the greater city cen-
ter of Toulouse, France. Toulouse is the capital of the Oc-
citanie region and located in the southwest of France in the
département Haute-Garonne. It has over 480.000 inhabitants
and is the fourth largest city in France. Our study city covers the
river Garonne and neighborhoods including the old city, several
residential areas, sparsely built areas, and work/industrial dis-
tricts.

2.2 Imagery

The original data set contains a 16 bit 8-band Worldview-II
satellite image from April 2011 with a ground sample dis-
tance of 50 cm for the panchromatic band and 2m for the
other bands. The 2m-resolution image has a spatial extent of
3643 px × 3560 px. In the data set, we provide the geotiff im-
age in original resolution and a pansharpened image produced
with the band-dependent spatial detail algorithm (Garzelli et al.,
2007)2, resulting in a spatial resolution of 50 cm.

We split the image into 16 tiles of equal size, as illustrated in
Fig. 2, where one tile has a size of 3504 px×3452 px in the pan-
chromatic band and a size of 876 px×863 px in all other bands,
covering an area of about 3 km2. In addition to the image data,
two annotation sets are provided for each tile in the resolution
of 0.5m. The high resolution panchromatic images, the pan-
sharpened images, and additional tools like Google StreetView
and OpenStreetMap3 were used as a basis for visual inspection.
In the following, we introduce the building instance segmenta-
tion task in more detail.

Figure 2. Splitting of training (light gray) and test tiles (dark
gray) for the building instance segmentation task. Further areas
with semantic segmentation annotations (white) are provided.

2.3 Single Building Instance Segmentation

The annotation are given as indexed geotiff images with con-
secutive indices for each instance. The set covers the tiles 3, 4,
7, and 8 and contains building instances, where an individual
building is defined as an object with a street number. In this

2https://www.pansharp.com/applications/panfusion/
3openstreetmap.org.

benchmark, buildings are annotated as they can be seen in the
image rather than building footprints, to guarantee a precise
match between annotation and input imagery. The number of
building per tile is given in Tab.1.

Table 1. Number of building instances per tile.

Tile # buildings
3 1.273
4 1.755
7 3.464
8 2.963
Total 9.455

Since building instances are not uniquely defined across differ-
ent benchmarks, the following list provides more details about
the annotation process.

Types of buildings We include all types of residential build-
ings, shops, office buildings, department stores, discount stores,
shopping centers, as well as buildings and halls of industrial in
the data set. However, a few large building structures mainly
from industrial districts which cannot certainly be divided into
single building instances are excluded. Also, in the case of
dense building structures, especially in the old city centre,
building structures cannot be certainly assigned to an instance,
for example due to the limited resolution, and excluded from
the instance data set. Overall, about 5% of all buildings are ex-
cluded from evaluation. In case they can be generally identified
as building, they are included in the semantic segmentation an-
notations. Three examples of included building types can be
seen in Figure 3.

Figure 3. Various kinds of buildings included in the benchmark:
residential buildings, detached houses, and Zénith Toulouse

Métropole (from left to right).
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Figure 4. Distribution of buildings given their surface, in m2, for
the training and test sets. Values larger than 1000m2 have been

clipped out.

The distribution of buildings regarding their size in m2 is given
in Fig. 4.

Shadows and occlusions We exclude buildings affected by
the following two cases: First, buildings which are mostly
covered by other objects such as trees, and second, buildings
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which are covered largely by the shade of a neighbouring house.
The latter case occurs in the vicinity of tall houses or terraced
houses that lie on a north-south axis and are of different heights.
Due to the unfavorable position of the sun in the South, entire
buildings in these rows are often covered with shadow. How-
ever, as long as the shape of the house and the separation of the
instances is recognizable, these houses are not excluded. Ex-
amples are illustrated in Fig. 5.

Figure 5. Buildings that are clearly in the shadow of other
objects and whose outlines or separation are not visible to the
annotator (indicated in red) are not included in the instance

segmentation data set and excluded for evaluation. Buildings
which can be identified though, for example, covered in shadow

are included to foster models which are robust to shadows.

Small independent man-made objects Small independent
man-made objects such as free-standing garages are not defined
as building instances. If garages connect directly to a residen-
tial building, they form a common instance with this building.
Examples are illustrated in Fig. 6.

Figure 6. Small independent man-made objects (indicated in
red) are not defined as building in the instance segmentation data

set and marked as void. Therefore, they are not used for
evaluation.

Prefab housing estate and apartment buildings Long
building blocks such as prefab housing estates and apartment
buildings are divided into building instances if identifiable with
Google Maps. The division is based on the assignment of house
numbers and visually visible borders in the image. In case that
the building cannot be divided into separate instances and at the
same time we have evidence that it has not only one house num-
ber, the instance is excluded from the annotated set. Examples
are illustrated in Fig. 7.

Figure 7. Apartment buildings and their instance annotation
provided in the data set (indicated in blue). Red marked objects

are not identifiable and excluded from evaluation.

2.4 Semantic Segmentation

Each of the 16 image tiles is paired with a manually annotated
land cover map, which can be used as ancillary data for building

instance segmentation, e.g., by learning multiple tasks on the
same data. The annotation is an indexed tiff image with the
following eight classes:

• impervious surface: street, pavement, concrete;

• building: all kinds of buildings and building complexes;

• pervious surface: grass, low vegetation, soil;

• high vegetation: trees;

• car: vehicles of all kinds;

• water: natural water bodies, swimming pools;

• sport venues: all kind of event and sport venues such as
horse race tracks, tennis courts;

• void: all pixels, which could not be assigned to any of the
above mentioned classes.

The total amount of annotated pixels without the class void is
about 12.5 Mio., where the class-wise percentage of labels is
given in Tab. 2.

Table 2. Number of labeled samples (in percentage) in the
semantic segmentation ancillary data.

class # labeled samples
impervious surface 23%
building 23%
pervious surface 30%
high vegetation 16%
car 2%
water 3%
sport venues 3%

The annotations are provided pixel-wise, where all pixels are
assigned to a class void if they do not belong to any of the
considered classes or if they cannot be assigned with a high
certainty. Examples image patches are given in Fig. 8.

Figure 8. Sample panchromatic image patches with annotation
(color coded as described in Tab. 2)

Please note, since the annotation was performed by photo-
interpretation, small errors are unavoidable.

2.5 Intention behind the provided data sets

Tasks which can be considered with the provided data sets will
revolve around the transfer of knowledge between scenes of
different characteristics (e.g., old town and suburbs) and learn-
ing with limited labeled data. Special focus should be laid on
scalable algorithms which can deployed to large-scale data pro-
cessing.

In detail, we encourage the development and evaluation of ap-
proaches which use transfer learning between EO specific mod-
els for common tasks such as instance segmentation. Here,
a relevant research question is how models, learned on other
benchmark data sets, perform on our data set. The differences
between the benchmark data sets can be exploited to answer
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questions about the influence of i) a different number of spec-
tral channels, ii) different spatial resolutions, and iii) differ-
ent geographical scales and locations. Furthermore, most of
these questions can also be addressed by a multi-task approach,
in which building instance segmentation is supported by land
cover semantic segmentation.

We further encourage the development and evaluation of meth-
ods which use both labeled and unlabeled data, or various kinds
of labeled data. The latter one can be approached by using
OpenStreetMap data or ancillary data, which we provide with
multi-class semantic labels. A promising direction is multi-
task learning, where different kinds of tasks such as instance
segmentation and semantic segmentation are solved jointly and
both tasks regularize each other, resulting in a higher generaliz-
ation ability and a higher robustness of the learned models. An-
other promising direction is the pre-training of models which
use labels, which are easier to acquire then instances. That
means, we encourage the development of approaches which use
different levels of label information.

3. STATE-OF-THE-ART AND INSTANCE
SEGMENTATION BASELINES

3.1 Evaluation

SemCity Toulouse is designed for building instance segment-
ation, where individual building masks are compared to refer-
ence building masks.

For the evaluation of the building instance segmentation, we
follow the evaluation metrics of the COCO data set (Lin et al.,
2014) 4. One essential measure is the intersection over union
(IoU) score defined as:

IoU =
TP

TP + FP + FN
, (1)

where TP are the true positives, FP the false positives, and FN
are the false negatives. Moreover, we evaluate the result by
means of precision p and recall r scores, which are defined as:

p =
TP

TP + FP
r =

TP
TP + FN

. (2)

We summarize precision and recall scores by means of the F1
score for the class “buildings”:

F1 =
2 · p · r
p+ r

. (3)

Precision and recall are computed with respect to the build-
ing instances. We also report average precision (AP), average
recall (AR) and average F1 (AF1), which are calculated over
multiple IoU values as for the COCO benchmark. Specifically,
(·)@0.5 − 0.95 means the average of measure (·) over several
IoU thresholds in the interval from 0.5 to 0.95 with step size
0.05. As standard for COCO, we use P@.5, P@.75 and AP@.5-
.95; but we also use recall R@.5, R@.75 and AR@.5-.95 and
F1@.5, F1@.75 and AF1@.5-.95. We report these metrics for
two different, complementary settings. The former relates to
the detection of an instance: a counter is simply increased when
the predicted object mask IoU ≥ t, where t is the IoU threshold

4http://cocodataset.org/#detection-eval

with the reference mask. In the second setting, we retrieve ob-
jects as detected based on the mask IoU, but we then accumu-
late, for each object, the number of correctly segmented pixels.
This way, we can recompute the metrics above but taking into
account objects size. Obviously, the two correlate as IoU impli-
citly measures the segmentation accuracy, but, particularly for
lower thresholds, we can appreciate how the model is correct in
detecting reference instance boundaries.

3.2 Experimental setup

To create a first and realistic baseline, we use the benchmark in
combination with the standard instance segmentation method
Mask R-CNN (He et al., 2017). We use this method as it is
widely accepted as a standard benchmark, and it provides the
baseline metrics to which all consecutive developments should
compare to. We use the Matterport implementation, avail-
able at https://github.com/matterport/Mask_RCNN. Be-
fore training, we re-tile original images into 512×512 patches.
For training, we use a stride of 256, so every image overlaps
with a direct neighbor 50%. We also use data augmentation,
wrapped by the imgaug package in Matterport, available at
https://github.com/aleju/imgaug. We use vertical and
horizontal flipping with a probability of 0.5, and one rotation
among 7 main directions. We also scale channel values by mul-
tiplying them by a factor sampled uniformly in [0.9, 1.1].

We train on single GPU machine NVIDIA Tesla P100, as
provided by Swiss Data Science Center on demand infrastruc-
ture. We adjust the architecture to accommodate 8 channels
as inputs and the final branches to predict only one instance
class. We select the remaining hyperparameters by searching
for better F1 score by using a random subset of the tiled train-
ing data as a validation set (then merged to the training set
for the final model). In this case, only non-negative maximum
suppression thresholds and detection thresholds are tuned. We
fine-tune for 100 epochs, each going over a random subset of
500 image patches, with a learning rate of 0.001 and balanced
losses. The training is performed using Tensorflow’s Stochastic
Gradient Descent implementation (via the keras interface). The
first 25 epochs are dedicated into training the first and the last
layers, while the remaining 75 to fine-tune the whole model.
The last 25 epochs are run with a learning rate reduced by 10.
We use ResNet-50 as backbone, fine tuning weights transferred
from COCO instance segmentation, and a batch size is 3. This
baseline will provide a crude, first evaluation to be used for fur-
ther comparisons.

3.3 Results

We show in Fig. 9 the different metrics at the predefined IoU
levels. In panel (a), we show the precision at different IoU
levels. It is clear that at lower IoU levels, the predicted in-
stance masks cover less well the reference, as indicated by a
lower precision. Notably, as reported in Tab. 3, at IoU ≥ 0.5
84% of the predictions are correct, which is good for a com-
paratively simple baseline. In panel (b), we show recall with
the same IoU thresholds. This time, only roughly more than
60% of the object have been correctly detected, which in turn
points at the fact that many instances present in the reference
are missed. As for precision, the pixel-level evaluation shows
that, in general, the number of correctly segmented pixels from
the reference could be improved. Panel (c) shows a combina-
tion of the scores, the F1 (see Eq. 3). The object-level score at
lower IoU is high, but decreases quickly as the IoU threshold
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Figure 9. Panel (a) shows evaluations at different IoU scores for the precision, for both the object-level evaluation (solid line) and the
pixel-based evaluation (dashed line). Panel (b) shows the recall of the model, with the same style as panel (a). Panel (c) shows the

same for the F1 score.

Global metrics Precision Recall F1
Evaluation AR AP AF1 P@0.5 P@0.75 R@0.5 R@0.75 F1@0.5 F1@0.75

Object 0.440 0.608 0.511 0.840 0.640 0.608 0.464 0.706 0.538
Pixel 0.403 0.556 0.467 0.752 0.587 0.545 0.425 0.632 0.493

Table 3. Global evaluation metrics. AR, AP and AF1 are computed averaging values obtained in IoU 0.5 to 0.95 (cf. x-axis in Fig. 9).

level is increased, meaning that, also considering precision and
recall, instance segmentation can be improved.

In Fig. 10, we show predictions of 8 example patches, summar-
izing situations encountered for this data set with Mask R-CNN.
We also show some visual details of these results in Fig. 11. The
first 4 panels in Fig. 10(a)-(d) and Fig. 11(a)-(d) show examples,
where our method achieves good results. Over uniform back-
ground, uniform instance size – corresponding to the “peak”
shown in Fig. 4 – and fairly homogeneous color, Mask R-CNN
is able to detect most instances well enough. Note also that in
these situations, instances are composed by single housing, so
each instance mostly corresponds to an independent building.
In panel Fig. 10(c), in the bottom middle, there is an elong-
ated structure corresponding to several instances. In this case,
the model recognizes correctly the overall structure, but over-
predicts each single instance as no visual cues are available to
separate them. On an opposite situation, for panel Fig. 10(d),
upper part of the image – with detail in Fig. 11(a) – the model is
able to correctly separate many instances belonging to 4 large
building blocks, but obviously this time, visual cues are point-
ing at the right direction.

The last 4 panels of Fig. 10 show examples for incorrect pre-
dictions. Panels Fig. 10(e),(f) show situations in which visual
cues and homogeneity in color and size are detrimental to the
detection. In (e), many instances belonging to attached housing
blocks are missed completely, while in Fig. 10(f), the instances
are detected correctly (at IoU≥ 0.5) but the correct shape is
missed. This is probably due to the size of objects, which are
relatively rare occurrences in the training set. Panel Fig. 10(g)
show similar issues with large buildings, this time however the
elongated structures are undersegmented. Some more examples
of this are shown in Fig. 11(e)-(g), where the object is either
very ambiguous, such as a car park (Fig. 11(e)), unusual shapes
(Fig. 11(f)) or ambiguous in terms of number of instances, mak-
ing the model predictions incorrect, as in Fig. 11(g) and (h).

We assume a more sophisticated, more targeted training can
help to overcome this challenge. Panel (h) shows good detec-

tions illustrated in panels (a)-(d), but with clear false positives.
The model confuses building with parking lots, often visually
similar to large industrial complexes, with cluttered rooftops.

Table 3 shows a summary of the global metrics illustrated in
Fig. 9. Overall, the baseline performs fairly well on simple “ex-
emplar” situations, in which instances are spatially separated,
homogeneous in size and in color and when a single instance
correspond to a single building. Models start to struggle when
instance size or appearance is rare, which is a common feature
for industrial areas and densely build areas, particularly in old
towns, where a building appears different from all the others.
This can explain the fairly good scores at lower IoU, since at
this level many instances are detected, but not accurately seg-
mented. Obviously, as the IoU gets stricter, segmentation are
also good, as IoU is a measure of quality in segmentation, and
therefore pixel-level scores become more aligned to the object-
level metric. Still, at high IoU, the quality of the detection needs
improvement as many instances are missed (low recall) or and
many masks are imprecise, since the IoU threshold excludes
predictions (low precision).

We trained and evaluated a baseline method for instance seg-
mentation, which is however, not satisfactory at a global level.
With the provision of the data set, we leave the application of
more sophisticated methods open to research. We argue that
in order to solve problems related to complex structures and to
multiple instances visually belonging to the same structure, dif-
ferent approaches are needed. We believe that some of these
issues might be alleviated by smart data augmentation and ex-
plicit size modeling, but some of the issues that will be en-
countered in this benchmark will be only solved by the use
of geographical regularities and spatial pattern, or by an ad-
ditional usage of ancillary information available in the web.
Furthermore, it is possible to see how high IoU scores corres-
pond to low accuracy metrics. In general, instances are detec-
ted well macroscopically, but more sophisticated methods such
as informed machine learning approaches exploiting geomet-
rical constraints or spatial post-processing might significantly
improve results.
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Figure 10. Some example predictions for the tiled test images
for the baseline model. In yellow are shown predictions, while in
green the reference samples. Note that only predictions with IoU

≥ 0.5 are shown.
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Figure 11. Some details of predictions. In yellow are shown
predictions, while in green the reference samples. Note that only

predictions with IoU ≥ 0.5 are shown.
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4. CONCLUSIONS AND FUTURE PLANS

We introduced the SemCity Toulouse benchmark, a satellite-
based data set for very high spatial resolution building instance
segmentation. Beside building instances, we provide ancillary
data in form of a multi-class land cover classification map,
covering four times the area of the instances annotation map.
This should give opportunity to take advantage of different
types and levels of labels, if the number of actual labels for
the intended task is limited. The data sets are available under
http://rs.ipb.uni-bonn.de/data/.

We also discussed pros and cons of the baselines obtained by
Mask R-CNN, which is a standard for instance segmentation
tasks. In addition, we make suggestions on how the baseline
solution can be improved. We hope that our project will enable
and foster the evaluation and development of machine learning
methods and bridges the gap between different research com-
munities.

With the publication of this paper we will first provide the in-
stance building segmentation and the semantic segmentation for
the same area. Due to cross-checking by several annotators and
minor improvements to ensure quality, the rest of the semantic
segmentation will be published this fall. Due to this, the num-
bers in Tab. 2 can slightly change. Our further plans are to
provide an additional point in time for change detection and to
extend the benchmark by another city with different character-
istics.

ACKNOWLEDGMENTS

We thank the International Society for Photogrammetry and Re-
mote Sensing for funding the scientific initiative ’ISPRS Bench-
mark Challenge on Large Scale Classification of VHR Geospa-
tial Data’, in which this benchmark was created. We like to
acknowledge the annotators who ensure the quality of the data
set not only by manual labeling but also by independent cross-
checking. Finally, we would like to thank the Swiss Data Sci-
ence Center for offering a GPU to train the benchmark models.

REFERENCES

Bakuła, K., Mills, J., Remondino, F., 2019. A Review of Bench-
marking in Photogrammetry and Remote Sensing. International
Archives of the Photogrammetry, Remote Sensing & Spatial In-
formation Sciences, XLII-1-W2, 18.

Bettge, A., Roscher, R., Wenzel, S., 2017. Deep self-taught
learning for remote sensing image classification. ESA Big Data
from Space.

Crawford, M. M., Tuia, D., Yang, H. L., 2013. Active learning:
Any value for classification of remotely sensed data? Proceed-
ings of the IEEE, 101(3), 593–608.

Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J.,
Basu, S., Hughes, F., Tuia, D., Raska, R., 2018. Deepglobe
2018: A challenge to parse the earth through satellite images.
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), IEEE, 172–17209.

Garzelli, A., Nencini, F., Capobianco, L., 2007. Optimal
MMSE pan sharpening of very high resolution multispectral
images. IEEE Transactions on Geoscience and Remote Sens-
ing, 46(1), 228–236.

GFDRR, 2020. Open cities ai challenge: Seg-
menting buildings for disaster resilience. https:

//www.drivendata.org/competitions/60/

building-segmentation-disaster-resilience/. Ac-
cessed: 2020-01-23.

He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn.
Proceedings of the IEEE International Conference on Com-
puter Vision, 2961–2969.

Humanity & Inclusion, 2018. crowdAI Mapping Challenge
- Building Missing Maps with Machine Learning. https:

//www.crowdai.org/challenges/mapping-challenge.
Accessed: 2020-01-23.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., Zitnick, C. L., 2014. Microsoft coco:
Common objects in context. European Conference on Com-
puter Vision, 740–755.

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B., 2019.
Deep learning in remote sensing applications: A meta-analysis
and review. ISPRS Journal of Photogrammetry and Remote
Sensing, 152, 166–177.

Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., 2017.
Can semantic labeling methods generalize to any city? the in-
ria aerial image labeling benchmark. 2017 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), IEEE,
3226–3229.

Mnih, V., 2013. Machine Learning for Aerial Image Labeling.
PhD thesis, University of Toronto, Canada.

Oliver, A., Odena, A., Raffel, C. A., Cubuk, E. D., Goodfellow,
I., 2018. Realistic evaluation of deep semi-supervised learning
algorithms. Advances in Neural Information Processing Sys-
tems, 3235–3246.

Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J. D., 2013.
ISPRS Test Project on Urban Classification and 3D Building
Reconstruction. , ISPRS - Commission III - Photogrammetric
Computer Vision and Image Analysis, Working Group III / 4 -
3D Scene Analysis.

Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J. D., Breitkopf,
U., Jung, J., 2014. Results of the ISPRS benchmark on urban
object detection and 3D building reconstruction. ISPRS Journal
of Photogrammetry and Remote Sensing, 93, 256–271.

Van Etten, A., Lindenbaum, D., Bacastow, T. M., 2018. Spa-
cenet: A remote sensing dataset and challenge series. arXiv
preprint arXiv:1807.01232.

Waqas Zamir, S., Arora, A., Gupta, A., Khan, S., Sun, G., Shah-
baz Khan, F., Zhu, F., Shao, L., Xia, G.-S., Bai, X., 2019. isaid:
A large-scale dataset for instance segmentation in aerial images.
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 28–37.

Wurm, M., Stark, T., Zhu, X. X., Weigand, M., Taubenböck, H.,
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