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ABSTRACT: 

Due to a growing revolution of the citizen science era with the involvement of non-professionals in scientific tasks such as species 

observation, yields an opportunistic data for modeling and planning purposes. Such citizen science based scientific observations can 

be a sustainable option to answer many research questions. Here, citizen science data of the Clamator jacobinus bird is taken from 

Global Biodiversity Information facility to predict its habitat suitability through maximum entropy approach. The distribution data is 

divided into two monthly sets – June to October and November to May for critically analysing the probable climatic reasons for its 

migration and understanding the influence of climatic variables in its suitability during the Indian monsoon season and Southern 

Africa rainy season. Also, the influential role of different bioclimatic variables in determining the bird’s suitability is described in 

this paper and to predict how this bird will react to different climate change scenarios in 2050 year. The maximum entropy modeling 

is performed on both sets of data and results are surprisingly interesting, which verifies an Indian myth that this bird is harbinger of 

the monsoon in India. This study concluded that the precipitation during warmest and wettest quarter, and isothermality are the 

major factors in determining the migration of Clamator jacobinus, but, hot, dry and cold climate is not suitable for this bird 

suitability. Such study using the citizen science data can be used in biodiversity planning as well as in improving the agricultural 

economy because monsoon is considered as an auspicious season for functioning of biodiversity and agricultural tasks. 

1. INTRODUCTION

The idea of studying climatic variations and its strong influence 

on species distribution started back in the literature to around 

5th century BCE (Woodward, 1987). In twentieth century, this 

study leads to general suite of powerful maximum entropy 

models that can be used in generating the predictive suitability 

of species occurrences by occupying the detailed environmental 

variables (Franklin, 2010; Richardson, Whittaker, 2010). Such a 

maximum entropy approach of estimating the different 

environmental requirements of geographically distributed 

species using presence/absence data are known as a climate 

envelope modeling, ecological niche modeling, species 

distribution modeling, niche-based modeling or habitat 

suitability modeling. With such a widespread interest, niche-

based models and species distribution models have always faced 

some conflicting views on what they truly represent. Some of 

the views on niche-based is that this model provides an 

approximation to the species’ fundamental niche (Sobero´n, 

Peterson, 2005), while others illustrated that the species 

distribution model provides an spatial depiction of the realized 

niche on the grounds of spatial distribution patterns of observed 

species which are utilized to estimate the frequencies among 

species and environment relationships, inhibited by non-

climatic factors (for e.g. Austin et al. 1990; Guisan, 

Zimmermann, 2000; Pearson, Dawson, 2003).  

In recent decades, countless studies are carried out on maximum 

entropy method (SDM) to evaluate its accuracy of predicting 

species range using presence only data (some of the studies are 

Elith* et al. 2006; Hernandez et al. 2006; Hu, Jiang, 2011; 

Kadmon et al. 2003; Skidmore et al. 1996; Stockwell, Peterson, 

2002; Wisz et al. 2008). Hence, these studies are now serving as 

a guideline on what would be the minimum sample size, how 

many species occurrences are required, what would be the 

prediction on selection of random samples from voluminous 

data set and if the random subsampling process would be opted 

then what range predictions model will on per species at per 

sample size (Elith* et al. 2006; Hernandez et al. 2006; Kadmon 

et al. 2003; Stockwell, Peterson, 2002; Wisz et al. 2008).  Due 

to its increasing popularity, maximum entropy model (Maxent) 

becomes widespread for species distribution modeling and 

papers/articles familiarized it had received more than 5,000 

citations in the Web of Science Core Collection, and more than 

60% of the distribution modelers report uses it (Ahmed et al. 

2015). The species information from herbaria and museum, 

theoretically observed data and survey data, can deliver a 

substantial amount of resource information (Chapman, Grafton, 

2008) for modeling the species habitat suitability. 

But, the main challenge that exists in these datasets is the 

location uncertainty (the error in geotagging), might have been 

caused due to incorrect geotagging of places or setting of GPS 

to improper datum. (Graham et al. 2004; Wieczorek et al. 

2004). Afore popularization of citizen science and geospatial 

technology, species data were collected and recorded as a 

textual description in a form of names and places which 

changed over a while (Wieczorek et al. 2004). However, 

digitization of these textual descriptions provided substantial 

errors in positional uncertainty (~ several kilometres) (Feeley, 

Silman, 2010). As the geographical coordinates played a major 

role in extracting the co-located environmental variables and 

such erroneous occurrences would provide inaccurate specie-

environment relationship (Feeley, Silman 2010). Nevertheless, 

researchers have developed various techniques which estimates 

and documents the positional uncertainty among species 

occurrence records which removes the highest uncertainties 

prior to suitability modeling (Guo et al. 2008; Wieczorek et al. 

2004) but this reduction in sample size causes model inaccuracy 

(Graham et al. 2008; Hernandez et al. 2006). After assessment 
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of such uncertainty in data collection process, citizen science, 

with trained or untrained participants, and information 

technology are considered as a robust and rigor data collection 

efforts ensuring qualitative and quantitative distribution records. 

 

Citizen science “is a process where concerned citizens, 

government agencies, industry, academia, community groups, 

and local institutions collaborate to monitor, track and respond 

to issues of common community concern” (Whitelaw et al. 

2003) “where citizens and stakeholders are included in the 

management of resources” (Cooper et al. 2007; Howe, 2000). In 

this paper, study is carried out on a current and future habitat 

suitability of bird, Clamator jacobinus (known as jacobin 

cuckoo or pied cuckoo) by implementing using the maximum 

entropy model. The migratory movements of this bird are 

considered as good indicators of monsoon in Southern Africa 

and India (Urfi, 2011). As per the Indian myth, arrival of Pied 

Cuckoo is known for beginning of monsoon, therefore, the 

purpose of this study is to disparagingly analyze the likely 

climatic reasons for its migration and which environmental 

variables play an influential role in its suitability. As, this 

species are sighted in March and April from southern India, 

where the species is known for its extant year-round until the 

middle of May. When the monsoon hits the Andaman, the first 

birds in northern India are seen with summer monsoon winds, 

afterward these birds are sighted across the West, North and 

East. In first week of June, the monsoon reaches Kerala and 

these birds are seen everywhere, except the extreme North-West 

and West. The extant range of Clamator jacobinus with its 

resident, breeding and non-breeding (downloaded from The 

IUCN Red List of Threatened Species) is shown in Figure 2, 

which is used in validating the results of this study, later in this 

paper.     

2. NEED FOR CITIZEN SCIENCE IN BIODIVERSITY 

The automated way of collecting geographical information on 

the species occurrence (Damoulas et al. 2010; Stoeckle, 2003; 

Turner et al. 2003) by human observers are considered as a 

reliable source. In biodiversity domain, many organizations 

have designed citizen science projects as per their scientific 

needs to make fine resolution data with added rigorous 

sampling locally and globally, such as bioblitzes (Novacek, 

2008), shell polymorphism survey (Silvertown et al. 2011), 

water quality survey (Conrad, Hilchey, 2011), and breeding bird 

surveys (Freeman et al. 2007). However, many informatics 

challenges occur in biodiversity data collection which have 

been tackled in recent years are as follows (i) apposite planning 

required for management of voluminous set of data by handling 

the data-management infrastructure which also helps in 

motivating the volunteers, and (ii) data quality and handling of 

certain observational biases essential to sighting variation 

among volunteers (Cooper et al. 2007), ‘false absences’ that 

yields inadequate sightings (McClintock et al. 2010) and often 

uneven data distributions (Boakes et al. 2010). Thereby, the 

need of addressing such challenges prompted the rise of data 

intensive science (Hey et al. 2009), which is being applied to 

large-scale citizen-science based research (Kelling et al. 2009). 

After reviewing accuracies of citizen observatory data, the 

observation data Global Biodiversity Information Facility 

(GBIF) repository is used in this paper to apply a data intensive 

science approach in maximum entropy modeling. The 

motivation and solution for using occurrences data of GBIF 

because GBIF has a process of managing the voluminous as 

well as continual data, acquired from thousands of volunteers 

using informatics and social networking. Also, GBIF is an 

authentic repository where various organizations/ institutes 

share their data by ensuring its data quality and, particularly 

data quantity which are relevant to modeling and decision-

making purposes.  

3. METHODS 

3.1 Distribution Data  

The distribution data obtained from the GBIF repository for 

Clamator jacobinus are total of 36,365 records, observed on the 

basis of specimen data, human and machine observations, 

holding very high number of NA values and duplicate records. 

To clean distribution records, NA values and repeated 

geographical records are eliminated and final set are left with 

10,292 presence records among which majority is of citizen 

science data (10,160 records are human observations). These 

citizen observations are incorporated into the GBIF database by 

various organizations such as eBird, Kenya Bird Map, 

naturgucker, Safring, National Biodiversity Data Bank (1900-

2000) and Southern African Bird Atlas Project2 (SABAP2). 

These data are continuously in use for developing of suitaibility 

models and for planning the safeguarding actions (Coxen et al. 

2017; Pacifici et al. 2017; Robinson et al. 2018; Sullivan et al. 

2017). For distribution data, this study targeted GBIF datasets 

because this is the most updated catalogue on species 

distributions, having occurrence datasets from resourceful and 

authentic citizen science databases, systematic surveying 

stations and ad hoc observations from experts. To the best of 

our knowledge, GBIF maintains a proper balance between 

quality and quantity of citizen science data at a broad scale. 

After accounting the null and duplicate records from raw data, 

10,292 independent presence records are used in constructing 

the suitability model for Clamator jacobinus species. For the 

study researched in this paper, the distribution data is 

categorized into two sets on the basis of favourable 

climatological seasons as per target species extant - November 

to May set (mostly suitable for bird residant in Southern Africa) 

and June to October set (Indian monsoon).  

 

3.2 Environmental Variables 

3.2.1 Current Climatic Data 

To study and determine the eco-physiological responses of 

Clamator jacobinus with respect to rapid changes in the 

environment, nineteen bioclimatic variables for the period 

1970–2000 are obtained from the WorldClim database at a 

spatial resolution of 2.5 arc minutes (~4.5 km) catalogue (Fick, 

Hijmans, 2017; Hijmans et al. 2005; Smeraldo et al. 2018). 

These bioclimatic variables are built using monthly data from 

the 1st of January 1970 to the 31st of December 2000 at very 

high resolution, and contains more meaningful information than 

simple precipitation. 

 

3.2.2 Future Climatic Data 

For predicting the habitat suitability conditions from current to 

future, bioclimatic layers for the year 2050 (averaged for 2041–

2060) analogous to the climatic responses of Representative 

Concentration Pathways (RCP) 8.5. These datasets are obtained 

on the basis of mean ensemble of various Coupled Model 

Intercomparison Project (CMIP5) models (Amman et al. 2003; 

Amman et al. 2007; Sato et al. 1993; Stenchiko et al. 1998) at 

spatial resolution of 2.5 arc minutes (~4.5 km).  The RCP 8.5 is 

used to estimate a little migration by observing a pessimistic 

scenario, in which atmospheric CO2 levels of 2100 are 2.5 times 
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higher than current levels (Riahi et al. 2011; Sharma et al. 

2017).  

 
Figure 1. Clamator jacobinus (Source: Gulshan 2019) 

 

 
Figure 2. Map showing extant of Clamator jacobinus 

3.3 Model Construction and Validation 

The focal objective of this research study is to predict the 

scenarios of future suitability from Clamator jacobinus current 

suitability. For model construction related to this research, 

machine learning based Maxent approach is used to predict 

habitat suitability by establishing the spatial relationship 

between presence records and most significant bioclimatic 

variables, which further provides high extrapolation accuracies, 

even for absence or less presence records (Phillips et al. 2004; 

Phillips et al. 2006).  

 

Before constructing the model, it is required to estimate 

reasonable geographic boundaries because the Maxent map 

outputs are scale dependent and the range of climates predict 

the most suitable habitat by relating the environmental 

conditions in which species are consistently absent. Therefore, 

if the range is too wide, then the conditions for favourable 

environments may be lost in the prevalent poor environments. 

For this necessarily primary approach, a two-degree buffer is 

considered around the extremes of the species extant and range 

of bioclimatic variables geographical boundaries. This model 

starts with uniformly distributed data of Clamator jacobinus 

and runs in multiple iterations with maximum substantial 

environmental variables until no improved predictions are built.  

 

To assess the behaviour of model, a k-fold cross validation 

approach (Kohavi, 1995) is applied on occurrence data, which 

separated the data into two sets, each containing five random 

observation group (because five case fold is considered here) – 

train and test data. The train data holds 75% of total records for 

model construction and remaining 25% is with test data to 

validate the model results. The second step was the selection of 

parameters - (i) betamultiplier - a regularization multipliers 

value is set to ‘1’ because the smallest value makes the 

projected distribution more close fit to the training data, its 

value ranges from 1 to 15; (ii) Explanatory Variables (EVs) - in 

model, four variable transformation types are used as a 

calculation features for continuous EVs such as hinge, linear, 

quadratic and threshold (Phillips et al. 2017; Phillips, Dudík, 

2008); and (iii) threshold features used are as 

‘lq2lqptthreshold’, ‘l2lqthreshold’ and ‘hingethreshold’.  

 

The statistical assessment of model is done by the area under 

receiver operating characteristic (ROC) curve (AUC) which 

gives the probability of randomly chosen presence and absence 

site (Fielding, Bell, 1997). The ROC analysis is responsible for 

evaluating the model performance by two factors - sensitivity 

(absence of omission error) and specificity (absence of 

commission error) are used to test the predictions. The AUC 

process involves setting of thresholds on prediction to generate 

false positive rate (prediction of presence for site where species 

is absent) and then evaluates the true positive rate (successful 

presence prediction) as a function of false positive rate. The 

random ranking of sites has an average AUC of 0.5 and a 

perfect ranking of sites shows the best possible AUC of 1.0, 

also the models with AUC above 0.75 are considered possibly 

suitable with noble discriminatory command (Elith 2002; 

Phillips, Dudík, 2008). 

4. RESULTS 

Maxent is a machine learning process that goes through 

multiple iterations to convert a training model into acceptable 

model. Due to this stochastic nature, multiple replicates of the 

model must be run in order to bring the average of the outputs 

to a suitable result. Therefore, the model was set to ten replicate 

runs for two sample sets, in each set 75% of random samples 

are used for standardizing of model and remaining 25% are for 

assessing the model’s implementation. The first set of data 

consists of citizen observation records from June to October 

month, which is Indian summer monsoon season with more 

than 90% of total annual precipitation in central and western 

parts of India, and 50%-75% of total annual rainfall in southern 

and north-western parts of India. The second set of data holds 

distribution records from November to May month (sighted by 

citizen scientists), covering four Indian climatological seasons – 

post-monsoon, winter and summer, and rainy season of 

Southern Africa where Clamator jacobinus is known for its 

residant. 

4.1 Model Evaluation 

After execution of model, its performance is measured by the 

plots shown in Figure 3 and 5. These plots deliver information 

on AUC for both training and test data, the red (training) line 

denotes the model is performing well for the training data and 

blue (testing) line indicates the performance of model with 

respect to the testing data, and it is good for model that training 

AUC will be higher than test AUC. If the model performs 

worse, then the blue line falls below the turquoise line, whereas, 

if blue line sets on top left of the graph, the model is better in 

predicting the present records on test data. If the the sensitivity 

value is to closer 1, the prediction is better. It can be seen in 

both the plots the model predicted better than the random one, 

with AUC higher than 0.5 i.e., 0.909 for first set of data and 

0.834 for second set. 
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Figure 4 and 6, showed the separate AUC for both sample sets - 

0.97 and 0.9 which is closer to 1, thus this model’s prediction 

can be trusted.  

4.2 Contribution and Importance of Environmental 

Variables 

Of the 19 variables used in modeling (Table 1), the significant 

environmental conditions affecting the spatial distribution of 

Clamator jacobinus are isothermality (16.8%), mean 

temperature of warmest quarter (15.7%), annual precipitation, 

precipitation of warmest quarter (13.6%) and precipitation of 

wettest month (11.3%) during Indian summer monsoon season, 

i.e. June to October. The permutation importance involves 

method of computing feature importance by measuring the 

decrease when feature is not present. The variables having 

highest permutation importance are precipitation of warmest 

quarter and isothermality.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Training and test AUC plot to measure performance of 

model against first set of data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. AUC plot against test data of first set 

 

For another seasonal set (November to May), the environmental 

variables favourable for suitability of Clamator jacobinus are 

precipitation of warmest quarter (31.9% of variation), 

isothermality (16.1% of variation), temperature seasonality 

(14.9% of variation) and precipitation of wettest quarter (8.9% 

of variation) (Table 2). This model gives precipitation of 

warmest quarter as a highest permutation importance in 

computing the current site suitability of species which explains 

that the preferable season for this bird’s suitability is monsoon 

season. 

4.3 Current and Future Suitability of Clamator jacobinus 

Based on the presence records of June to October month, the 

model computed the suitable habitat of Clamator jacobinus 

(Figure 7) depicting potential suitability of this bird is in India 

due to monsoon season and remaining parts of its residant is 

found unsuitable or low suitable for its distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 5. Training and test AUC plot to measure performance of 

model against second set of data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. AUC plot against test data of second set 

 

The colour scale shows the probability of output models ranging 

from 0 to 1 denoting the suitability ranges - high (light and dark 

green colour), medium (yellow and dark brown), low suitability 

(light brown colour), and unsuitable (grey colour). In Figure 7, 

the southern part of India such as Andhra Pradesh, Goa, 

Karnataka, Kerala, Maharashtra, and Tamil Nadu shows high 

and medium site suitability, whereas western part – Gujarat is 

having medium suitability, and northern parts of India is found 

to be suitable at high and medium range. And the Southern 

Africa is found unsuitable for this bird because its June to 

October months are having dry and hot climate which is not 

favourable for this bird’s habitat. The area covered by grey 

colour depicted that the species suitability is not available in 

those parts, which is true when compared with its extant layer of 

IUCN, as shown in Figure 2. Another suitability for the months 

November to May is shown in Figure 8 with a scale bar 

depicting the good suitability range of Clamator jacobinus in 

South Africa and southern parts of India. Figure 8 illustrated that 

the Southern Africa is having the medium and low range 

suitability whereas the South Africa is found with good suitable 

extant of this bird. As Indian monsoon season typically lasts 

from June to September in North and Central India, therefore, 
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model provides a low or no suitability in these parts, whereas, in 

South India, especially Tamil Nadu gets most of its annual 

precipitation in October and November, thus, Figure 8 is 

satisfying this favourable season which proved that model is 

predicting the good suitability for this species.  

Code Description Percent 

contribution 

Permutation 

importance 

bio3 Isothermality 16.8 19 

bio10 Mean Temperature 

of Warmest Quarter 

15.7 2.5 

bio12 Annual 

Precipitation 

13.6 4.2 

bio18 Precipitation of 

Warmest Quarter 

13.2 37.1 

bio13 Precipitation of 

Wettest Month 

11.3 4.8 

bio2 Mean Diurnal 

Range 

9.3 3.6 

bio17 Precipitation of 

Driest Quarter 

4.7 1.6 

bio15 Precipitation 

Seasonality 

3.6 1.9 

bio19 Precipitation of 

Coldest Quarter 

3.1 4.9 

bio16 Precipitation of 

Wettest Quarter 

1.9 1.6 

bio4 Temperature 

Seasonality 

1.4 8.9 

bio9 Mean Temperature 

of Driest Quarter 

1.3 1.4 

bio6 Min Temperature of 

Coldest Month 

1.2 2.3 

bio11 Mean Temperature 

of Coldest Quarter 

0.9 0.7 

bio5 Max Temperature of 

Warmest Month 

0.9 1.1 

bio8 Mean Temperature 

of Wettest Quarter 

0.7 2.4 

bio7 Temperature 

Annual Range 

0.3 1.9 

bio1 Annual Mean 

Temperature 

0.1 0.2 

bio14 Precipitation of 

Driest Month 

0 0 

Table 1. Environmental variables used for modeling of June to 

October data and its percent contribution & permutation 

importance 

 

Code Description Percent 

contributi

on 

Permutation 

importance 

bio18 Precipitation of Warmest 

Quarter 

31.9 34.7 

bio3 Isothermality 16.1 9.1 

bio4 Temperature Seasonality 14.9 7.5 

bio16 Precipitation of Wettest 

Quarter 

8.9 0.8 

bio14 Precipitation of Driest 

Month 

6.4 2 

bio12 Annual Precipitation 6.1 17 

bio17 Precipitation of Driest 

Quarter 

3.8 0.9 

bio8 Mean Temperature of 

Wettest Quarter 

2.7 11.5 

bio13 Precipitation of Wettest 

Month 

2.3 4.6 

bio5 Max Temperature of 

Warmest Month 

2.1 2 

bio2 Mean Diurnal Range 1.7 3 

bio11 Mean Temperature of 

Coldest Quarter 

1.7 0.9 

bio10 Mean Temperature of 

Warmest Quarter 

0.5 2.1 

bio19 Precipitation of Coldest 

Quarter 

0.3 0.9 

bio1 Annual Mean 

Temperature 

0.2 0.1 

bio6 Min Temperature of 

Coldest Month 

0.1 0.6 

bio7 Temperature Annual 

Range 

0.1 0.7 

bio15 Precipitation Seasonality 0.1 0.3 

bio9 Mean Temperature of 

Driest Quarter 

0 1.4 

Table 2. Environmental variables used for modeling of 

November to May data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Current suitability of Clamator jacobinus for Indian 

monsoon season (June to October) 

 

This study also predicted future suitability map of 2050 (Figure 

9) from current suitability conditions by projecting changes in 

movement of bird and this revealed that the range contraction 

would happen in all parts of India except southern parts of Tamil 

Nadu which would experience little bit of improvement. Also, 

the quantiles (at 5% and 95%) of relevant environmental 

variables (occupied by bird) are calculated to get a comparative 

range in climate change scenarios of current and 2050 suitability 

for Clamator jacobinus with respect to Indian monsoon season 

(Table 3). 

5. DISCUSSION 

This is one of the first studies to explore the habitat suitability of 

Clamator jacobinus in Southern Africa and India by 

efficaciously demonstrating the efficacy of a wide-scale citizen 

science observations data in developing distribution models for 

habitat availability across an entire extant of species. Based on 

the presence records and environmental variables, species 

distribution modeling is done for the current distribution of 

Clamator jacobinus in Indian and Southern Africa. The results 

of model are validated against the extant layers of The IUCN 

Red List of Threatened Species. 
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According to suitability results of Indian monsoon season, seems 

surprisingly interesting to verify the old age belief that this bird 

is a sign of monsoon in India. Also, the study presented in this 

paper proved that the bird is not favourable in other 

climatological seasons such as hot, dry and cold, therefore when 

the season changes in Africa other than monsoon, the bird makes 

its arrival to North and Central India through South India from 

Southern Africa by the journey of Arabian Sea, along with the 

monsoon winds and thereby, monsoon starts in India from June 

and lasts till September. 

 

 

 

 

 

 

 

Figure 8. Current suitability of Clamator jacobinus for 

November to May month 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Comparison between current (with observations in red 

points) and 2050 suitability of Clamator jacobinus in India and 

Southern Africa 

To evaluate the effect of climate change, this study showed the 

future suitability condition of this bird in 2050. From the 

suitability prediction of 2050, it is fairly clear that there would 

be no arrival of Clamator jacobinus in the districts of 

Maharashtra, Goa, Karnataka, Kerala, Tamil Nadu and Andhra 

Pradesh, Gujarat and northern parts of India, whereas the 

southern part of Tamil Nadu would be a suitable habitat for 

Clamator jacobinus in all climatic scenarios. This kind of study 

may be considered for the planning of agricultural activities and 

biodiversity planning because monsoon is considered as an 

auspicious season for having a high impact on agricultural 

economy and biodiversity functioning (Urfi, 2011).  

Variable Name Current 

Suitability 

Quantile  

(5%-95%) 

Future Suitability 

(2050)  

Quantile 

(5%-95%) 

Isothermality 0.39- 0.64 0.36-0.62 

Mean Temperature of 

Warmest Quarter [°C] 

25.1- 33.2 28.2-36.6 

Annual Precipitation 

[mm/year] 

494- 2904 585.8-3225.8 

Precipitation of 

Warmest Quarter 

[mm/quarter] 

79-744 69-683 

Precipitation of Wettest 

Month [mm/month] 

128-968.3  151-985.6 

Mean Diurnal Range 

[°C] 

7.7-14.2 7.4-13.7 

Precipitation of Driest 

Quarter [mm/quarter] 

1-97 1-78 

 Precipitation 

Seasonality [coefficient 

of variation] 

0.7-1.5 0.74-1.57 

Precipitation of Wettest 

Quarter [mm/quarter] 

282.1-2218 347-2482 

Precipitation of Coldest 

Quarter [mm/quarter] 

2-347.15 2-367.8 

Table 3. Comparative climate change scenarios of current and 

2050s 

The maximum entropy approach gives a natural probabilistic 

interpretation on utmost to tiniest suitable habitat conditions and 

its results can be easily inferred by the domain experts. In 

Maxent, a set of distribution estimates the target distribution by 

finding the suitability using maximum entropy, which is closest 

to uniform, in such constraints that the expected value of each 

feature under this estimated distribution set should matches with 

its empirical average. The inexpensive citizen science data 

remains a vital source for biodiversity monitoring and keeps 

encouraging public participation in the process of scientific 

findings as well as for country well-being (Bonney et al. 2009; 

Ward et al. 2015).  

 

6. CONCLUSIONS 

Correlating bioclimatic variables with species distribution for 

suitability analysis is a needed stride towards implementing 

conservation plans.  Citizen science catalogues can provide a 

vast set of distribution records in achieving better results for 

modeling of species. As a matter of fact, the old-age belief and 

myth is true in context of Jacobin Cuckoos that this bird arrives 

in most parts of central and northern India with monsoon winds 

but due to climatological changes in 2050 its suitability may 

decrease as compared to current one. Citizen science and 

maximum entropy are valuable suitability prediction techniques 

for ecological requirements, allowing several climatic variables 

to be assimilated with maximum entropy modeling. The study 

presented in this paper could help decision makers in defining 

conservation plans and places Clamator jacobinus inhabit in 

future, as a crucial perspective for any strategy on biodiversity 

preservation. 
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