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ABSTRACT:

The creation of accurate and consistent line drawings is the subject of various applications. Prominent examples are the delineation
of human-made objects in aerial images and the construction of technical line drawings, flow-charts, or diagrams. Interactive
solutions usually restrict the user’s interaction during the design process to enforce geometric relations such as orthogonality or
incidence. To avoid the time-consuming selection of operational modes, a freehand approach is desirable using strokes as the
only user input. In this case, the construction principles have to be inferred automatically by geometric reasoning with uncertain
observations. We present and discuss the corresponding methods in the context of educational technology. By introducing and
utilizing a user-friendly software tool, we offer a hands-on approach to explore the feasibility and usability of the procedure. The
experiments comprise the polygonal approximation of 2D shapes, theorem proving, and the construction of human-made figures.

1. INTRODUCTION

1.1 Motivation

Human-made objects and their models predominantly feature
geometric relationships such as parallelism or orthogonality.
Examples are residential buildings, diagrams, or technical line
drawings. For many technical applications, these constructions
must feature topological consistency, completeness, and inte-
grity (Mäntylä, 1987). Thus, these properties are usually enfor-
ced during the design process by restricting the user’s interacti-
ons.

As an example, Figure 1 shows on the left side the construction
of an orthocenter. The orthocenter is the intersection of the
three altitudes in a triangle, which in turn are given by the per-
pendiculars to the bases passing through the vertices. Thus,
in total, we have seven geometric constraints: three pairs of
straight line segments forming right angles, and four triplets of
segments intersecting in a point. Given six of these constraints,
the seventh constraint can be deduced.

During ruler-and-compass construction, the user has to select
the modes ‘add a line,’ ‘add a perpendicular,’ and ‘add a point’
followed by the typical press-drag-release sequence for com-
puter mice. The interactive selection of geometric entities is
realized by snapping to nearby entities, i.e., by checking if
the mouse is over an existing geometric element. Thus, time-
consuming interaction is required to capture the user’s inten-
tion: The user has to select appropriate construction tools to
enforce desired constraints, e.g., incidence or orthogonality. A
similar rationale applies to parametric modeling with CAD pro-
grams: The user has to select a tool, e.g., ‘add a rectangle,’ fol-
lowed by interactive model instantiation.

Alternatively, the construction principles can be automatically
inferred from the input by stochastic and geometric reasoning,
i.e., the automatic recognition and enforcement of constraints.
The tracked positions of the input device shown in Figure 1 on
the right side are the strokes constituting the user’s input. Here,
∗Corresponding author

Figure 1. Orthocenter of a triangle. Left: construction, right:
intended freehand strokes as user input.

the consideration of uncertainty is essential since the precision
and the accuracy of the data depend on many factors, especially
on

• the user’s skill to draw accurately given an input device
such as computer mouse, stylus, or finger in combination
with a touchpad or screen,

• the user’s willingness to draw accurately according to the
predetermined model, e.g., straight line segments or circu-
lar arcs,

• the present environmental conditions such as the quantity
of light or the view angles, and

• the resolution of the used input device.

For the realization of successful applications, the uncertainty
caused by these effects must be captured, represented, and con-
sidered in the entire reasoning process. Thus, we argue that a
stringent and rigorous stochastic approach is decisive to recog-
nize the construction principles automatically. Following this
paradigm, the user needs not be explicitly aware of the sequen-
tial construction process and there is less interaction required
since the selection of appropriate construction tools or modes
by the user is dispensable.
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1.2 Contributions

Following the approach presented in (Meidow and Lucks,
2019), we discuss geometric reasoning in the context of edu-
cational technology. This comprises the approximation of stro-
kes by straight line segments and the enforcement of automa-
tically recognized constraints by adjustment. The interactive
study of geometric problems is supported by a modeless soft-
ware tool that allows a hands-on approach for geometric reaso-
ning. The corresponding learning-by-doing process is accom-
panied by various visualizations, e.g., confidence regions, types
and relevance of constraints, etc.

We consider three prominent applications with strokes as user
input and line drawings as output:

• Theorem proving for geometric problems by reasoning,
e.g., closing theorems such as Desargues’s theorem.

• The polygonal approximation of building outlines featu-
ring geometric constraints for the edges, such as paralle-
lism or orthogonality.

• Computer-aided constructions of two-dimensional human-
made figures, e.g., flow charts, diagrams or technical line
drawings.

1.3 Related Work

To the best of our knowledge, there are no contributions which
cover all aspects of the task at hand. Probably closest to our
approach is the work of Johnson et al. called “Sketch it, make
it” in the context of modeling for laser cutting (Johnson et al.,
2014). The pen-based interaction proposed in this paper does
not require the user to enter persistent modes but exploits draf-
ting conventions: For instance, the designer has to draw tick
marks and right-angle braces to indicate line segments of iden-
tical length and enclosed right angles. Disambiguities are resol-
ved by a not otherwise explicated “constraint manager.”

In contrast to (Johnson et al., 2014), we utilize the uncertainty
of the data. Early discussions on the uncertainty of a straight
line can be found in (Wolf, 1938). Representations for uncer-
tain straight line segments can be found in (Beder, 2004) and
(Meidow et al., 2009) as well as in up-to-date textbooks, e.g.,
(Förstner and Wrobel, 2016). The hyperbolic error band has
been used for the visualization of the uncertainty of epipolar
lines (Faugeras, 1993, p. 351).

The solution of equation systems with the help of Groebner ba-
ses has been studied in the context of cartographic generaliza-
tion in (Brenner and Sester, 2005). In (Loch-Dehbi and Plümer,
2011, Loch-Dehbi and Plümer, 2009) independent constraints
are found by automatic theorem proving using Wu’s method
(Wu, 1986). The feasibility is demonstrated, but no real data
sets have been analyzed.

2. METHODS

The implementation of the proposed approach is based on va-
rious concepts to get a modeless automatic procedure that fea-
tures real-time capability. They are reflected by the following
workflow, which has to be applied after adding a stroke to the
drawing:

Figure 2. Strokes with different precisions depicited by the con-
fidence regions of the approximating straight line segments. The
confidence regions are most narrow close to the centroid of the
corresponding point sets.

1. the approximation of the user’s strokes by straight line seg-
ments (feature extraction)

2. the recognition of geometric relations (hypothesis genera-
tion testing)

3. the identification of subtasks (connected components), and

4. the selection of consistent and independent constraints for

5. the enforcement of the deduced constraints (adjustment).

The first step is essential to obtain a reasonable estimate for
the precision of the input data. This information is used in the
following for hypotheses testing and adjustment.

2.1 Recognition of Geometric Relations

Feature extraction and adjacencies. Given a stroke as a set
of uncertain point coordinates, we estimate a statistically best-
fitting straight line and the positions of the two end-points de-
limiting the straight line segment. Besides the estimate of the
line parameters l, the procedure provides an estimate of the co-
variance matrix Σll of the parameters and an estimate of the a
priori unknown variance factor which reflects the precision of
the observed point coordinates (Förstner and Wrobel, 2016, pp.
397–400).

The estimates are only representative if no outliers are present
and the model is valid, i.e., a straight line segment reasonably
approximates a stroke. Thus, we assume the user to draw as
accurately as possible straight line segments and do not apply
a robust estimation. Figure 2 shows examples of different stro-
kes. The variations might result from the user’s skills and wil-
lingness to draw accurately, from varying environmental condi-
tions, and from different resolutions of the input devices. Be-
cause of a line’s uncertainty in direction (orientation) and lateral
position, the confidence region is given by the area between two
hyperbola branches. As to be expected, the confidence region
is most narrow close to the centroid of the corresponding point
set.

For the generation of hypotheses to be checked, we consider
only pairs and triples of spatially adjacent segments. Two seg-
ments are considered to be adjacent if they intersect, if one
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constraint distance ν

orthogonal d⊥(l ,m) = lTDm 1
parallel d‖(l ,m) = −lTSm 1
concurrent d◦(l ,m , n) = det([l,m,n]) 1
identical d≡(l ,m) = JT(l−m) 2

Table 1. Distance measures according to (Meidow and Lucks,
2019) for three straight lines l , m , and n with corresponding de-
grees of freedom ν. See the text for explanation of the variables.

segment touches the other, or if both segments touch each ot-
her, i.e., form a chain. These relations can be recognized by
checking the incidences of end-points and straight lines for all
pairs of segments (Beder, 2004). Here, the overlap of axis-
aligned bounding boxes can be utilized to cull candidates.

Geometric Constraints. Adopting the approach presented in
(Meidow and Lucks, 2019), we introduce the relations ‘paral-
lel’, ‘orthogonal’, ‘identical’, and ‘concurrent’, i.e., ‘copunc-
tual’, as geometric relations for pairs and triplets of straight
lines. Further applicable constraints are discussed in (Heuel,
2004) and (Brenner and Sester, 2005). After recognizing an
identity constraint, the involved segments can be merged im-
mediately by averaging. This approach avoids usually unneces-
sary identity constraints and allows for easy prolongations of
segments.

Table 1 summarizes for three straight lines l , m , and n the used
constraints and the corresponding distance measures. We uti-
lize the homogeneous representations l, m, and n for the three
lines to formulate the constraints as polynomials with the diago-
nal matrix D=Diag([1, 1, 0]) and the skew-symmetric matrix
S=[0, 0, 1]×. The columns of the 3×2 matrix J span the null-
space of the spherically normalized vector lT and the projection
leads to two independent equations for the identity constraint
(Förstner and Wrobel, 2016).

For the distance measures listed in Table 1 we compute va-
riances and covariance matrices, respectively, by variance-
covariance propagation. Theses entities serve for the formu-
lation of test statistics within the hypothesis testing.

Hypotheses Generation and Testing. We formulate the null
hypothesis that an assumed geometric relation is correct. In this
case, we have the expectation values E[d]=0 for the means of
the distances summarized in Table 1. Since we have no prior
probabilities for alternative hypotheses, we follow the standard
testing procedure according to (Neyman and Pearson, 1933).
The corresponding test statistics

T = dTΣ−1
dd d ∼ χ2

ν (1)

is χ2-distributed with ν=1 or ν=2 degrees of freedom in our
case.

The probability α of rejecting a null hypothesis although it ac-
tually holds, should be low. After choosing a significance num-
ber, e.g., α= 0, 05, the critical value χ2

1−α;ν of the correspon-
ding χ2

ν-distribution is computed. The hypothesis will not be
rejected if T <χ2

1−α;ν holds for the value of the test statistics.

The result of these tests is a set of constraints which represent
the identified geometric relations and are likely to hold.

Input: Set C of consistent and non-redundant constraints
required up to now, set C of redundant constraints
recognized up to now, set A of A additional
constraints ai

Output: Set C′ of functionally independent constraints,
set C′ of redundant or contradictory constraints

1: function GREEDYSEARCH( C, C, A)
2: C′ ← C
3: C′ ← C
4: for i = 1 to A do
5: C′ ← C′ ∪ {ai} . to be checked
6: Compute M×N matrix H iteratively for set C′.
7: if rank(H) < min(M,N) then
8: C′ ← C′ \ {ai} . remove again
9: C′ ← C′ ∪ {ai}

10: end if
11: end for
12: end function

Table 2. Greedy search for functionally independent constraints.
H is the Jacobian matrix of the constraints.

2.2 Adjustment

The interactive construction is a step-by-step procedure. During
this process, the human operator is geared to the results obtai-
ned so far. Thus, the formulation of an incremental and recur-
sive adjustment seems to be natural and adequate. We consider
new, additional straight lines and the results of the preceding
adjustment to be the unconstrained input for the next adjust-
ment. Then, a greedy search is applied to select consistent and
independent constraints.

Identification of Subtasks. For large-scale problems, the de-
composition into sub-tasks is mandatory. By considering the
segments and constraints of a construction as vertices of a bipar-
tite graph, we relate the segments to the recognized constraints
and vice versa (Meidow and Lucks, 2019). The connected com-
ponents of this graph constitute sub-tasks that can be solved se-
parately. After adding a new straight line segment to the scene,
or after deleting segments and constraints, the connected com-
ponents have to be determined anew. This determination can
fast and be done efficiently by a depth-first search (Cormen et
al., 2009).

Selection of Independent Constraints. The adjustment re-
quires a set of consistent and functionally independent con-
straints. For an incremental construction process, a greedy se-
arch appears to be the natural choice to determine such sets au-
tomatically.

Figure 2 lists a pseudo-code for this approach: Given a set C of
already established constraints, the algorithm checks the newly
recognized constraintsA={ai} consecutively whether they are
redundant or actually contradictory. A constraint is consistent
if the Jacobian matrix H of the constraints has full rank. Con-
straints which have been discarded might become subsequently
necessary after the deletion of constraints by the user. The-
refore, we keep track of the rejected constraints, too, and the
greedy search can be used after incremental and decremental
operations.

For large problems with many constraints, the procedure descri-
bed above can become numerically unstable, since it depends
on the rank of the Jacobian matrix. Since all of the constraints
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can be formulated as polynomials, the greedy search can also be
performed using algebraic methods, i.e., Groebner basis calcu-
lations (Brenner and Sester, 2005). These methods do not rely
on numerical properties and can in principle handle problems
of arbitrary size. For algebraic reasoning it is advantageous to
formulate the constraints differently and to process parallelism
and identity first, then orthogonality and concurrence last. Es-
pecially in the presence of concurrence constraints, the Groeb-
ner bases can become quite large leading to memory problems.
For details of our approach to algebraic reasoning, we refer to
(Meidow and Hammer, 2016).

3. IMPLEMENTATION

A successful realization of the methods explained in Section 2
implies proper representations of the geometric entities and
constraints and appealing human engineering. Both aspects are
crucial for the efficiency and the acceptance of software soluti-
ons.

3.1 Representations

We formulate geometric constraints for straight lines. These
correspond to straight line segments, which result from the
approximation of strokes as user input. By representing the
straight lines with homogeneous coordinates, we obtain con-
straints which are simple and bilinear w.r.t. the observations.
However, the utilization of homogeneous coordinates consti-
tutes an over-parametrization and requires normalization con-
straints to obtain unique results within the adjustment process.
Thus, compared to a conventional Euclidean parametrization,
we initially get larger equation systems to be solved (Meidow
et al., 2009).

To avoid this overload, we exploit the concept of reduced coor-
dinates to come up with a minimal representation of spheri-
cally normalized homogeneous coordinate vectors representing
a straight line l

l : {l,Σlrlr} , (2)

cf. (Förstner and Wrobel, 2016, Chap. 10.2.2, eq. 10.31). This
representation contains the spherically normalized 3-vector l re-
presenting the straight line l and the 2×2 covariance matrix
Σlrlr representing the uncertainty of the straight line in terms
of the so-called reduced coordinates lr in the tangent plane of
the sphere at point l.

Note that this representation allows for easy testing of geome-
tric relations and estimation of geometric entities. See (Förstner
and Wrobel, 2016) for a comprehensive presentation.

3.2 Human Engineering

An ergonomic and user-friendly graphical user interface is re-
quired to increase the acceptance of the proposed approach.
This interface comprises (1) the interactive input in the form
of strokes, (2) the visualization of approximating straight line
segments and deduced constraints, and (3) an editing possibi-
lity including automatic updates by adjustment.

User input and real-time feedback. In the approach, the se-
lection of operational modes is replaced by the automatic recog-
nition of constraints and their subsequent enforcement. Thus,
strokes are the only input for the construction or delineation.
However, an additional editing functionality is desirable since

we cannot expect all automatically drawn decisions to be cor-
rect in terms of ‘intended.’ To support the learning-by-doing
approach, the user should be able to revise the reasoning results,
e.g., by undo/redo operations, deletion of unintended segments
or constraints, etc. Furthermore, immediate feedback is desi-
rable during the step-by-step construction of line drawings. To
achieve real-time capability for problems of moderate size, the
identification of sub-tasks is mandatory. Sets of independent
constraints have to be determined, which can be solved inde-
pendently.

Visualizations. The independent sets of constraints and
straight line segments form connected components which can
be presented color-coded to the user to indicate the sub-tasks.
The tracked positions of the input device form ordered sequen-
ces of points (strokes), which are approximated by straight line
segments. The uncertainty of these segments is depicted by
drawn confidence regions, i.e., ellipses for end-points and hy-
perbolas for straight lines. By varying the precision of the stro-
kes, the human operator can study the effects on the recognition
and enforcement of constraints. Last but not least, color-coded
symbols can illustrate the types (geometric relations) and the re-
levance (required or not required) of the recognized constraints
at appropriate positions.

4. EXPERIMENTS

Several experiments can be conducted by using a software im-
plementation that exploits the design principles explained in the
previous section. We discuss three use cases: Theorem pro-
ving for geometric constructions, the polygonal approximation
of building outlines and roofscapes, and the creation of plain
technical drawings or diagrams.

4.1 Performance Evaluation

If an evaluation of results is possible or not, depends on the
specific application:

The investigation of geometric configurations implies the iden-
tification of independent constraints, e.g., for the study of clo-
sing theorems. We use numerical criteria within a greedy se-
lection process, which might lead to numerical problems for
large-scale problems. Since the constraints are formulated as
polynomials, we can apply algebraic methods for theorem pro-
ving and thus for the verification of results. An interactive poly-
gonal acquisition of an object’s shape is usually subjective. The
result depends on human interpretation and the required degree
of generalization and approximation, respectively. Actually, in-
teractive acquisitions often serve as reference data, e.g., for the
evaluation of results obtained by automatic methods. Howe-
ver, given a second, independent acquisition, the results can be
compared w.r.t. completeness, e.g., by the determination of the
overlap (Meidow and Lucks, 2019). No evaluation is possible
for the constructions of human-made figures, e.g., flowcharts,
diagrams, or technical drawings.

4.2 Theorem Proving

We consider the construction of Pappus’s hexagon to illustrate
the corresponding theorem in its affine form:

Theorem 1 (Pappus’s hexagon theorem) If six points x 1, y2,
x 3, y3, x 2 and y1 of an affine plane are alternating incident
with two straight lines l and m , and if the straight line x 1 y2 is
parallel to x 2 y3 and the straight line y1 x 2 is parallel to y2 x 3,
then the straight lines y1 x 1 and x 3 y3 are also parallel.
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Figure 3. The construction of Pappus’s hexagon featuring nine
constraints for the straight lines: Six times concurrence (‘�’) and
three times parallelism (‘‖’). The constraint ‘7‖8’ has been re-
cognized to be redundant.

Figure 4. Strokes used as input for the construction depicted in
Figure 5.

Figure 3 shows a corresponding construction featuring nine
constraints: Six times concurrence (‘�’) and three times paral-
lelism (‘‖’) of straight lines. According to the theorem, we have
eight independent constraints. Please note, that the redundant
constraint identified by the greedy search (Algorithm 2) might
be parallelism or concurrence—depending on the order of the
recognized constraints. Furthermore, bear in mind that in con-
trast to ruler-and-compass constructions, the line l or the line
m or both lines can be drawn last with the proposed approach.
The construction of the hexagon shown in Figure 3 is based on
strokes and fitted straight line segments.

If we add the two straight lines y1 x 3 and x 1 y3 to the con-
struction, we obtain the three intersection points x 1 y2 ∩ y1 x 2,
x 1 y1 ∩ y1 x 3, and y2 x 2 ∩ x 2 y3, which are collinear, see Fi-
gure 5. Figure 4 shows the strokes used as input for the con-
struction.

In total, 24 geometric constraints have been recognized: 21 ti-
mes concurrence and three times parallelism. Note, that if four
straight lines meet in a point,

(
4
3

)
= 4 concurrence constraints

can be formulated, but just two of them are functionally inde-
pendent. Thus, a set of 14 constraints remains containing 12
times concurrence and two times parallelism or 11 times con-

1

2

3

45

6

7

8

910

11

4||5

3||6

7||8

Figure 5. Pappus’s hexagon with three collinear intersection
points in the middle. In particular, the constraints ‘7‖8’ and
‘�(9, 10, 11)’ are redundant.

currence and three times parallelism.

4.3 Polygonal Approximation of Outlines

As a prominent application, we demonstrate the acquisition of
building outlines and roofscapes based on orthophotos. Fi-
gure 6 shows interactively outlined roof areas in a true ortho-
photo (Cramer, 2010). Redundant constraints are shown in
light gray. Many of the parallelism constraints have been iden-
tified to be redundant since orthogonality is presented first to
the greedy search. The set of constraints and segments splits
into five connected components: The building’s roof and four
dormers. Each component constitutes a subtask to be solved.

Table 3 summarizes the recognized constraints and their rele-
vance for each subtask. In general, different orders of consi-
deration during the greedy search will lead to different sets of
independent constraints. This becomes clear just considering a
rectangle. Here, six constraints can be found, four times ortho-
gonality and two times parallelism. Now, if the orthogonality
constraints are processed first, as is the case with our numeri-
cal formulation, three of them are functionally independent, and
the parallelism constraints are a result of these. If, as is the case
with our algebraic formulation, parallelism is considered first,
the set of independent constraints consists of two times paralle-
lism and one orthogonality constraint, the other orthogonalities
following from these. However, the results of the adjustments
will be identical due to the geometric equivalence.

4.4 Constructions

To illustrate the design of a simple technical drawing, we con-
sider the construction of a building with a gable roof in parallel
projection with hidden line removal. Figure 8 depicts a con-
struction obtained by geometric reasoning and subsequent ad-
justment. The corresponding strokes are shown in Figure 9.
The dashed lines have been introduced as auxiliary lines to en-
force eaves at the same height and the symmetry of the roof.
These lines can later be removed to obtain a proper model of
the building.

The construction in Figure 8 features 13 straight line segments
and 45 constraints—13 times orthogonality (‘2’), 12 times pa-
rallelism (‘‖’), one time identity (‘./’), and 19 times the concur-
rence of three straight lines each (‘�’). Actually 14 constraints
are required to enforce all recognized geometric relations.
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Figure 6. Brightened true orthophoto of an urban scene with
superimposed outlines obtained by the recognized constraints (2,
‖, �) and subsequent adjustment.

Figure 7. Display detail of Figure 6 showing the building’s dor-
mers which constitute subtasks to be solved.

connected constraint
component type recognized required
#1 orthogonality 13 11
19 segments parallelism 21 3

concurrence 7 7
#2 orthogonality 2 2
8 segments parallelism 3 2

concurrence 4 4
#3 orthogonality 3 3
8 segments parallelism 2 1

concurrence 3 3
#4 orthogonality 1 1
8 segments parallelism 5 4

concurrence 4 4
#5 orthogonality 2 2
8 segments parallelism 5 3

concurrence 4 4

Table 3. Recognized and required constraints for the scene shown
in Figures 6 and 7.

Figure 8. Drawn wireframe model of a building with gable roof in
parallel projection. The construction with 14 segments features
45 constraints of which 21 are required. The dashed auxiliary
lines enforces eaves at the same height and a symmetric roof.

After removing the auxiliary lines, we yield the final result de-
picted in Figure 10. The construction features nine segments
and 15 constraints of which nine are actually required, i.e., non-
redundant.

5. SUMMARY AND OUTLOOK

5.1 Summary

The automatic recognition of constraints and their subsequent
enforcement offer a new paradigm for the construction of
technical drawings by computer-aided design. Compared to
conventional approaches, the selection of operation or con-
struction modes becomes dispensable. The common interactive
snapping of geometric entities is replaced by the automatic de-
tection of incidences and identities, respectively, by hypothesis
testing. As a consequence, the user’s interaction is limited to
perform strokes by a press-drag-release or touch-draw-lift-off
sequence. These motions provide tracked positions as point se-
quences, which are the bases for statistical analysis: Given a
specific input device and environmental conditions, the user’s
willingness and capability to draw can be captured by the esti-
mation of straight line segments.
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Figure 9. Strokes used for the construction shown in Figure 8. .

Figure 10. Line drawing after removing the auxiliary lines shown
in Figure 8. The construction features 9 segments with 15 geo-
metric constraints of which 9 are required.

The reasoning is then performed with these segments and the
corresponding straight lines. Thus, the only relevant parame-
ter is the significance level, which might be adjusted by the
user. By zooming into the scene, the user can draw locally
more accurately. The identification of connected components
for the sets of related segments and constraints paves the way
for large-scale applications. In contrast to ruler-and-compass
constructions, the user must not explicitly be aware of a feasi-
ble order of construction steps. For example, to construct the
orthocenter of a triangle as depicted in Figure 1, the user could
start by drawing the altitudes first provided that he or she has a
good awareness of geometric dimensions and construction prin-
ciples.

For the demonstration of technology and educational purposes,
we implemented a software tool featuring a user-friendly inter-
face to increase the method’s acceptance. This interface covers
the interactive input, visualizations, and an editing possibility.
The latter is decisive since we cannot expect all automatically
drawn decisions to be correct in terms of ‘intended.’ Thus, the
user is able to revise the reasoning results by undo-operations,
deletion of unintended segments and constraints, etc. By adjus-
ting the significance level, the user can control the sensitivity of
the recognition. Visual feedback is provided by showing con-
fidence regions, indicating recognized constraints, and marking
sub-tasks. This allows for the interactive exploration and study
of geometric problems and constructions.

5.2 Outlook

For the future, the incorporation of additional constraints is en-
visaged, e.g., equidistant parallels or identical angles, which
enables free-hand drawing of work-flows or diagrams, for in-
stance. If also points are considered explicitly, metric con-
straints can be envisioned, too.

For large-scale applications, numerical problems are likely to
occur due to decisions based on estimated ranks and condition
numbers. Exact solutions could be obtained by applying alge-
braic methods, for instance, automatic theorem proving using
Wu’s method (Wu, 1986). Unfortunately, the number of re-
sulting polynomials in the bases and the orders of the polyno-
mials can be quite large, leading to long computations. This
hampers real-time applications. However, the algebraic com-
plexity depends on the formulation of the constraints and the
parametrization of the geometric entities.
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