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ABSTRACT: 

 

Automatic 3D building reconstruction from laser scanning or photogrammetric point clouds has gained increasing attention in the 

past two decades. Although many efforts have been made, the complexity of buildings and incompletion of point clouds, i.e., data 

missing, still make it a challenging task for automatic 3D reconstruction of buildings in large-scale urban scenes with various 

architectural styles. This paper presents an innovative approach for automatic generation of 3D models of complex buildings from 

even incomplete point clouds. The approach first decomposes the 3D space into multiple space units, including 3D polyhedral cells, 

facets and edges, where the facets and edges are also encoded with topological-relation constraints. Then, the units and constraints 

are used together to approximate the buildings. On one hand, by extracting facets from 3D cells and further extracting edges from 

facets, this approach simplifies complicated topological computations. On the other hand, because this approach models buildings on 

the basis of polyhedral cells, it can guarantee that the models are manifold and watertight and avoid correcting topological errors. A 

challenging dataset containing 105 buildings acquired in Central, Hong Kong, was used to evaluate the performance of the proposed 

approach. The results were compared with two previous methods and the comparisons suggested that the proposed approach 

outperforms other methods in terms of robustness, regularity, and accuracy of the models, with an average root-mean-square error of 

less than 0.9 m. The proposed approach is of significance for automatic 3D modelling of buildings for urban applications. 

 

 

 
*  Corresponding author 

 

1. INTRODUCTION 

Three-dimensional (3D) reconstruction from point clouds has 

been an active topic in photogrammetry and computer vision 

communities. However, missing data on the vertical surfaces, 

especially in the aerial laser scanning (ALS) data, could be a 

serious problem. Therefore, most of the previous methods, 

including model-driven, data-driven and hybrid-driven methods 

(Haala and Kada, 2010; Wang et al., 2018), only focused on 

reconstructing rooftops of buildings and produced 2.5D 

building models (Zhou and Neumann, 2010). Although dense 

image matching (DIM) point clouds generated from oblique 

images through multi-view stereo pipelines (Vu et al., 2012; Wu 

et al., 2018) provide more information on vertical surfaces than 

ALS data, the data missing issue still exists where there are 

occlusions between high-rise buildings that are closely located. 

 

In addition, the architectural styles of buildings can vary greatly 

with culture, location and time (Qiao et al., 2009), which makes 

it impossible to fit the point clouds with a predefined model 

library as in model-driven methods (Huang et al., 2013; Kada 

and McKinley, 2009; Poullis and You, 2009). The complexity 

of buildings also increases the difficulties in topological 

computation in model-driven and hybrid-driven methods 

(Vosselman and Dijkman, 2001; Sohn et al., 2008; Verma et al., 

2006), resulting in crack effects in the final models (Poullis, 

2013; Xie et al., 2018) or needing extra work to correct the 

topological errors in the models manually (Xiong et al., 2014). 

And even when the topological errors are enforced to be correct, 

the results might violate some geometric relations with respect 

to regularity, such as co-planarity, parallelism and 

orthogonality. Particular methods have been developed to 

preserve the topological relations while reconstructing building 

rooftops (Chen et al., 2014; Chen et al., 2017), but they cannot 

capture the topological relations between two roof components 

when there is a large height jump. 

 

A recent trend of generating building models is to decompose 

the 3D space into a set of basic units, e.g., boxes, facets and 

cells, and then use these basic units to fit the building surfaces 

(Li et al., 2016; Nan and Wonka, 2017; Verdie et al., 2015). 

This strategy avoids error-prone topological computations 

during the reconstruction and is able to produce true 3D 

building models. Although these methods have made certain 

achievements, their performances are hindered by their own 

limitations. For example, the box-based fitting method (Li et al., 

2016) is applicable only to scenes that satisfy Manhattan 

assumption. Polyfit (Nan and Wonka, 2017) is a more general 

method that generates a set of hypothetical faces by intersecting 

planes extracted by Random Sample Consensus (RANSAC) 

(Schnabel et al., 2007) and then selected 3D faces that best 

approximated the building surface using a binary integer 

programming. However, PolyFit is only intended for the 

reconstruction of simple polygonal surfaces, and in practical 

applications, it might encounter computational bottlenecks with 

complex objects (Nan and Wonka, 2017). 

 

In this paper, an innovative approach for 3D reconstruction of 

complex buildings from even incomplete point clouds is 

developed. This method adopts a space-decomposition-and-

approximation strategy; but unlike previous methods, the 

topological relations between the basic space units are extracted 

after space decomposition. Then, the topological relations are 
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used as constraints in the approximation step to select the 

optimal space units to form the building models. The 

topological-relation constraints guarantee the building models 

to be watertight, manifold, and, to some extent, regularized. 

Experiments with point clouds containing 105 buildings in 

Central, Hong Kong, were carried out to evaluate the 

performance of the proposed approach.  

 

2. AUTOMATIC 3D RECONSTRUCTION OF 

COMPLEX BUILDINGS WITH TOPOLOGICAL-

RELATION CONSTRAINTS 

2.1 Overview of the Approach 

As shown in Figure 1, the proposed approach includes three 

main steps. In the first step, planar primitives are extracted from 

the point clouds using RANSAC and refined based on 

geometric relation constraints. The refined planar primitives are 

then used to partition the 3D space into a set of polygonal cells 

with a designed partitioning order through a half binary space 

partition (BSP) tree (Sohn et al., 2008). In the second step, 

facets are first extracted based on the 2D topological relations 

between the cells and then edges are extracted based on the 1D 

topological relations between facets. The last step selects a set 

of space units, i.e., cells, facets and edges, that best approximate 

the building, and this binary labelling problem is solved by 

integer linear programming (ILP) (Johnson et al., 2000). The 

fidelity measurements derived from cells and facets and 

regularity measurements derived from edges formulate the 

objective function of the ILP problem, and the topological 

relations between these space units formulate the constraints of 

the ILP problem. 

 

 

Figure 1. Overview of the proposed method. 

 

2.2 3D Arrangement based on Planar Primitives 

The space decomposition generates a set of 3D cells, called cell 

complex, to present the 3D space that is occupied by the 

bounding box of a building. These cells have simple and convex 

geometries and are compactly connected with each other. A 

subset of the cell complex will later facilitate the watertight and 

manifold building models without any intersecting computation 

to determine the edges or corner points.  

 

2.2.1 Extraction and Refinement of Planar Primitives: A 

planar primitive P is defined as a bordered plane with a normal 

vector n and a distance coefficient d. In this paper, a set of 

initial planar primitives P = {P1, P2, …, Pn} are extracted using 

RANSAC (Schnabel et al., 2007) and their boundaries are 

extracted using alpha-shape (Liang et al., 1998). To enhance the 

regularities between the planar primitives, the initial primitives 

P are refined based on a set of rules for geometric relationships 

as shown in Table 1, where nz denotes the unit vector in z-axis. 

nxy denotes the projection of normal n on the xy-plane,  and d’ 

are angle and distance thresholds. 

 

Relation type Description 

Horizontality Pi is vertical if  (ni, nz) < . 

Verticality Pi is vertical if  (ni, nz) > /2 - . 

Parallelism Pi and Pj are parallel if  (ni, nj) < . 

Orthogonality Pi and Pj are orthogonal if  (ni, nj) > /2 - . 

Z-symmetry 
Pi and Pj are z-symmetric if | (ni, nz) -  (nj, nz)| 

<.  

XY-Parallelism Pi and Pj are xy-parallel if  ( i, ) < . 

Co-planarity 
For two parallel plane primitives Pi and Pj, Pi 
and Pj are co-planar if |di - dj| < d’. 

Table 1. Geometric relations used to refine planar primitives 

extracted from buildings. 

 

To handle the possible regularity conflicts between the planar 

primitives during the refinement, a geometric relation priority 

rank is defined as horizontality = verticality > parallelism > 

orthogonal > z-symmetry = xy-parallelism > co-planarity. 

Based on this priority rank, the initial planar primitives are 

refined on the basis of three plane clusters. They are horizontal 

planes, vertical planes and oblique planes. 

 

2.2.2 3D Arrangement with a Half-Cut BSP Tree: After 

the extraction and refinement of the planar primitives, the 

bounding box of the building is then partitioned into a set of 

convex cells with 3D Boolean operations. By each cut, the 

existing cells, which are parent cells, are split into zero or two 

child cells, which can be recorded by a BSP tree (Sohn et al., 

2008). Instead of partitioning the entire 3D space with each cut 

as in the studies of Verdie et al. (2015) and Nan and Wonka 

(2017), which result in redundant cell complex and lead to large 

computational cost, this method uses a half-cut BSP tree that 

only partitions the parent cells occupying the planar primitives 

during each cut, as shown in Figure 2. 
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Figure 2. Space partition with planar primitive based on half-cut 

BSP tree. 

 

Because the half-cut BSP tree only partitions parent cells 

containing the planar primitive by each cut, it is noted that the 

final cell complex is related to the partitioning order. Thus, a 

partitioning order is defined as follows. First, vertical planar 

primitives are designed to have higher priority than horizontal 

or oblique ones to avoid incomplete partitioning caused by 

missing data on vertices surfaces, which is actually a common 

problem in point clouds. Second, in the same priority class, 

planar primitives with larger areas are considered to have higher 

priority than smaller ones, aiming to minimize the size of the 

final cell complex. Note that, planar primitives being too small 

are considered to be error-prone and are removed during the 3D 

arrangement. 

 

2.3 Extraction of 3D Facets and Edges based on 

Topological Relations 

After 3D arrangement, a set of simple and convex cells can be 

obtained and is annotated as C = {C1, C2, … Cm}. In this stage, 

the 3D space is further decomposed into 3D facets and edges 

based on the topological relations between the cell units. 

 

2.3.1 Extraction of 3D Facets: The 3D facets refer to the 

interfaces between the 3D cells. To extract the 3D facets, the 

bounding faces of each cell are first obtained from their 

geometries and regarded as initial 3D facets F1, which denotes 

3D facets that are connected to single cells. For each pair of 

facets Fi, Fj  F1 that are co-planar, a new facet Fij  F2 (F2 

denotes 3D facets that are connected to two cells) is decided 

whether or not to be created based on the 2D topological 

relation between Fi and Fj, as shown in Figure 3. If the 

topological relation is not separated nor connecting, a new facet 

Fij is created and Fi and Fj are updated. This process is repeated 

until there are no facets in F1 producing new Fij  F2. 

 

2.3.2 Extraction of 3D Edges: The extraction of 3D edges 

uses a similar strategy as the extraction of 3D facets. First, the 

bounding edges of each 3D facet are obtained and annotated as 

E1, which denotes edges connected to single facets. Then 3D 

edges E2 (E2 denotes edges connected to two facets) are 

determined based on the 1D topological relations between co-

linear edges Ei and Ej  E1, as shown in Figure 4, through an 

iterative update process. 

 

 

Figure 3. Extraction of facets based on 2D topological relations. 

 

 

Figure 4. Extraction of edges based on 1D topological relations. 

 

2.4 Building Approximation with Topological-relation 

Constraints 

Taking each cell, facet and edge as a node, the approximation of 

the buildings can be considered as a labelling problem that finds 

the best nodes that form an optimal model. In solving this 

problem, fidelity energies are encoded in the cell nodes and 

facet nodes, and regularity energies are encoded in the edge 

nodes. The global energy function is given as: 

 

 

 (1) 

 

where l is the binary labelling configuration that assigns each 

cell, facet and edge a label lC, lF and lE, respectively ( lC, lF , lE 

 {0, 1}; 1 denotes that the cell/facet/edge is selected, and 0 

denotes that it is not). 
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2.4.1 Cell Fidelity Energies: Cells inside the building are 

defined as occupied and those outside the building are defined 

as empty. As all of the cells are convex and supposed not to 

bestride the building surfaces, the determination of occupied 

cells can be simplified as to determine whether their centroids 

are inside the building. If a ray starting from the centroid of a 

cell has an odd number of intersection points with the building 

surfaces, the cell is occupied (Figure 5 (a)), otherwise, it is 

empty (Figure 5 (b)). 

 

Figure 5. Occupied and empty cells illustrated in 2D. 

 

For each of cell C  C, a number of rays starting from its 

centroid are drawn and used to determine the possibility of the 

cell being occupied based on the number of rays having an odd 

number of intersection points with the building planar 

primitives. The cell energies are formulated as: 

   (2) 

where N(C) is the number of cells in C, lC  {0, 1} is the binary 

label assigned to C, lC = 1 denotes C is occupied and 0 denotes 

empty, and pC is the ratio of the number of rays having odd 

numbers of intersection points with building surfaces to the total 

number of rays. 

 

2.4.2 Facet Fidelity Energies: For a 3D facet F  F, if it is 

supported by points in the building point cloud, it is defined as 

occupied, otherwise, it is empty. The facet fidelity energies are 

given as follows: 

   (3) 

where N(F) is the number of facets in F, lF  {0, 1} is the 

binary label assigned to F, lF = 1 denotes F is occupied and 0 

denotes empty, and pF is the coverage ratio of the area of 

supporting points to the area of facet F, as computed in Nan and 

Wonka (2017). 

 

2.4.3 Edge Regularity Energies: The edge energies are used 

to introduce regularity constraints about the buildings into the 

optimal approximation. As man-made objects are generally 

believed to conform to planarity and orthogonality, the edge 

energies favour flat and right angles between corresponding 

facets by setting it a regularity value of 0, and penalize other 

angles by setting it a regularity value of 1. The edge regularity 

energies have the following formulation: 

    (4) 

where N(E) denotes the number of the edges in E, and A(E) is 

the regularity value set to an edge E  E. 

 

2.4.4 Energy Optimization with Topological-Relation 

Constraints: With the cell, facet and edge energies described 

above, the global energy in Equation (1) is presented as a 

sectional-continuous function. To simplify the ILP problem, the 

probabilities of the cells and facets being occupied are 

binarilized into {0, 1} based on two user defined thresholds 

thresholds C and F (e.g., C = 0.5 and F = 0.3), as shown in 

Equation (5) and (6). 

   (5) 

   (6) 

 

The global energy in Equation (1) is therefore turned into the 

quadratic format as follows: 

 （7）

 

Simultaneously, due to the topological relationships between 

the cells, facets and edges, the binary variables lC, lF and lE (C  

C, F  F and E  E) also meet the following constraints: 

   (8) 

The first constraint means that for a facet F  F, it is occupied 

(lF = 1) when only one of its connected cells is occupied (lC = 

1), otherwise it is empty (lF = 0). The second constraint means 

an edge E  E is occupied (lE = 1) when both of its two 

connected facets are occupied (lF = 1), otherwise it is empty (lE 

= 0). 

 

With the objective function in Equation (7) and the constraints 

in Equation (8), the ILP problem can be solved by the Gurobi 

solver (Gurobi, 2015). Finally, the building model is formed by 

the occupied cells, facets and edges labelled as 1 

 

3. EXPERIMENTAL ANALYSIS 

3.1 Dataset Description 

The dataset used for experimental evaluation is the DIM point 

clouds acquired in Central, Hong Kong, with a point density of 

8 points/m2, containing 105 buildings with various architecture 

styles. Some of the buildings have serious problems of missing 

data, as shown in Figure 6. 

 

Figure 6. Building point clouds with various complex structures 

and missing data. 

 

3.2 Qualitative Evaluation of the Reconstruction Results 

Figure 7 gives an overview of the reconstruction results of the 

105 buildings in the test dataset. It can be seen that although the 
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architectural styles of the buildings are very complicated and 

vary significantly, the reconstruction results are generally 

consistent with the appearances of the buildings in the point 

clouds, indicating a promising performance of the proposed 

method. 

 

Figure 7. Overview of the textured point clouds (first row) and 

the reconstruction results (second row) of the 105 buildings in 

Central, Hong Kong. 

 

Figure 8 shows the detailed reconstruction results of four 

challenging types of buildings, i.e., buildings with complex 

structures, with missing data, with curved surfaces, and with 

true 3D structures. Taking Figure 7 and Figure 8 together, it can 

be noted that the proposed approach performs promisingly in 

modelling buildings with various architectural styles. Even with 

the complexity of buildings and poor-quality input data, the 

proposed approach produces satisfactory building models. 

 

3.3 Quantitative Evaluation and Comparisons with 

Previous Methods 

For quantitative evaluation of the geometric accuracy of the 

models generated from point clouds, the root-mean-square error 

(RSME) formulated as in Equation (9) is used. 

   (9) 

where || p – B || denotes the distance between a point p and the 

geometric model B of a building B, and N (B) is the number 

of points in the building point cloud . 

 

 

Figure 8. Reconstruction results of four challenging types of 

buildings. 

 

Figure 9 and 10 show the quantitative evaluations of the 

reconstruction results of several complex buildings. The results 

from our approach are compared with the results by three 

previous methods: Poisson, 2.5D D-C (Zhou and Neumann, 

2010) and  PolyFit (Nan and Wonka, 2017) and. Poisson and 

2.5D D-C methods produced 3D models presented by triangular 

mesh, while PolyFit and our approach produced polygonal 3D 

models, which have regularized boundaries, require smaller 

storage space and can be easily converted into CityGML 

standards. In general, according to Table 2, the Poisson results 

have the highest accuracy, but they totally ignored the regularity 

of the buildings. The enlarged views in Figure 9 shows the 

details of the reconstructed building rooftops. Results from our 

approach have the smallest RSME values of 0.67 m and 0.58 m 

(as shown in Table 2) for the two buildings, indicating a higher 

modelling accuracy than PolyFit and 2.5D D-C. The main 

defects of the models generated by our approach occurred at 

linear and small structures on the building roofs, which can be 

eliminated during the extraction of the planar primitives of the 

buildings. Points carved into the building, which might be 

generated by mismatching during the MVS pipeline, could also 

cause inaccuracies on the building façades (such as Building-1 

shown in Figure 9). However, this problem is consistent with 

the results of PolyFit and 2.5D D-C. 
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Although PolyFit shows competitive performance in 

reconstructing simple buildings with high regularity, it tends to 

generate inaccurate models for buildings with complex 

structures (such as Building-3 shown in Figure 10) or just failed 

to output the building models (such as Building-4 and 5 shown 

in Figure 10). In contrast, both our approach and the 2.5D D-C 

show high robustness in the reconstruction of buildings with 

various complex architectural styles. However, again, 2.5D D-C 

only produces triangular mesh models with highly irregular 

boundaries, mostly with relatively lower geometric accuracy 

compared with our appraoch (as indicated by the RSME 

measurements of Building-1~4 shown in Table 2). With respect 

to the modelling of small structures on the building rooftops, 

2.5D D-C shows better performance than our approach (as 

illustrated by Building-3 in Figure 10), because of the failure to 

present such small structures with planar primitives. However, 

2.5D D-C only focuses on the reconstruction of non-vertical 

structures (e.g., building rooftops), whereas our approach 

considers the structures of the entire building and has better 

performance in modelling building façades (as illustrated by 

Building-4 in Figure 10). 

 

In general, our approach, Poisson and 2.5D D-C have higher 

robustness than PolyFit, meanwhile, our approach is also able to 

generate polygonal models with high regularity and true 3D 

structures, which is beyond the capability of Poisson and 2.5D 

D-C. Although small structures are likely to be left out in the 

final models, which can be a common issue for reconstruction 

methods based on planar segments, our approach, in fact, 

exhibits outstanding performances considering the limited 

qualities of the input data. 

 

 

 

 Building-1 Building-2 Building-3 Building-4 Builidng-5 

Poisson 0.27 0.28 0.25 0.24 0.24 

2.5 D-C 0.76 0.71 0.61 1.39 0.80 

PolyFit 1.24 0.69 0.83 - - 

Ours 0.67 0.58 0.49 1.23 1.43 

Table 2. RMSE measurements (m) of building reconstruction results of different methods. 

 

 

Figure 9. Evaluations of reconstruction results of two simple buildings and comparison with the results of Poisson, 2.5D D-C and 

PolyFit. Details of the reconstructed building rooftops are shown in the black rectangles, where the input point clouds are overlapped 

on the building models. 
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Figure 10. Evaluations of reconstruction results of three complex buildings and comparison with the results of Poisson, 2.5D D-C 

and PolyFit. Details of the reconstructed building rooftops are shown in the black rectangles, where the input point clouds are 

overlapped on the building models. 

 

4. CONCLUSIONS AND DISCUSSION 1 

In this paper, we propose an innovative and robust approach for 2 

automatic generation of 3D building models, regardless the 3 

complexity of buildings and the incompletion of point clouds. 4 

Qualitative and quantitative experimental evaluations using a 5 

challenging dataset in Central, Hong Kong, show promising 6 

performances of the proposed approach. The proposed approach 7 

provides a practical solution for automatic 3D reconstruction of 8 

buildings in large-scale urban scenes, which constitute the 9 

spatial data infrastructure for smart cities.  10 

 11 

Future efforts will be made to investigate the automatic 12 

generation of hybrid models, where non-planar structures will 13 

be presented as regularized triangular meshes rather than 14 

approximated by planes. In addition, converting the polygonal 15 

building models into standard format (such as CityGML models) 16 

with enriched topological and semantical information will also 17 

be investigated, so that the models can be used to support 18 

various 3D GIS applications. 19 

 20 
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