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ABSTRACT: 

 

One of the major factors controlling the distribution and abundance of marine submerged aquatic vegetation (SAV) is light availability. 

Reduced water clarity due to sediment loading from rivers greatly affects the health and coverage of seagrasses and seaweeds. 

Monitoring SAV using unmanned aerial vehicles (UAV) has been getting attention because of its cost-effectiveness and ease of use. 

In this research, a low-cost UAV was utilized to assess the impacts of river discharges on SAV in Busuanga Island, Philippines. Linear 

regression was performed to determine the effectivity and accuracy of UAV-based percent cover estimation compared to established 

field survey methods of monitoring SAV. Water quality was estimated in the study area by performing spatial interpolation methods 

of in situ measurement of turbidity, chlorophyll, temperature, salinity, and dissolved oxygen using a multi-parameter water quality 

sensor. Current velocity and tidal fluctuations were monitored using bottom-mounted sensors deployed near the river mouth and in 

seagrass and seaweed areas with relatively good water clarities. Four stations were surveyed using automated UAV missions which 

were flown simultaneously with field observations. Each station surveyed has varying distances from the river mouth. Results from 

the classification of the UAV data and field survey show that SAV is more abundant as the distance from the river mouth increases 

and the turbidity decreases. Classification overall accuracies of UAV orthophotos ranging from 87.91-93.41% were achieved using 

Maximum Likelihood (ML) Classification. Comparison of field-based and UAV-based survey of percent cover of seagrasses show an 

overestimation of 1.75 times from the UAV compared to field observations. 

 

 

1. INTRODUCTION 

Submerged aquatic vegetation (SAV) plays an important role in 

the coastal ecosystem. They support a diverse group of fauna and 

flora as they serve as shelter and breeding grounds to several 

marine species and also provide for their food. (Ackleson and 

Klemas, 1987; Orth and Moore, 1984). Aside from that, they also 

serve as bottom sediment stabilizers and act as buffers of water 

flow (Komatsu et al., 2002). Seagrasses, considered as SAV, are 

marine flowering plants with roots, while seaweeds, also known 

as macroalgae, are freely floating plants (Kolanjinathan et al., 

2014).  Unfortunately, SAV is among the most neglected 

ecosystems. In the Philippines, they are less protected by 

environmental laws compared to other coastal ecosystems such 

as mangroves and coral reefs which lead to the loss of these 

important habitats in the country. 

 

There has been an increasing loss of SAV cover throughout the 

world, most of them undocumented (Green and Short, 2004). 

Several factors contribute to the decline of SAV coverage which 

includes natural and anthropogenic factors. The changing climate 

and environment will only aggravate the decline of these 

important blue carbon ecosystems. The monitoring of these 

habitats is essential and needed for proper coastal planning and 

management. However, field-based monitoring methods are 

costly and time-consuming. Therefore, a need for a cost-effective 

and easy method of monitoring SAV arises. 

 

The use of remote sensing as a means to monitor SAV (Ackleson 

and Klemas, 1987) has been getting popular because of 

advancements in satellite technology (Yuan and Zhang, 2008) 

and development of low-cost unmanned aerial vehicles (UAV) 

(Flynn and Chapra, 2014). However, monitoring SAV using 

optical remote sensing usually requires the study area to have 

clear waters. Optical remote sensing of the marine environment 

is restricted by the exponential attenuation of light radiations in 

the water (Smara et al., 1998). Tropical coastal areas, like the 

Philippines, are usually affected by terrestrial runoff from rivers 

which can significantly increase water turbidity. Turbid waters 

may cause misclassifications and low accuracies in mapping 

SAV using remotely sensed data (McCarthy and Sabol, 2000). 

 

River discharges hinder the use of optical remote sensing for 

SAV mapping and they also affect the distribution and abundance 

of the coastal ecosystem. Suspended sediments from the river 

cause turbidity which limits the light penetrating the water 

column. Light availability is an important factor for SAV to 

thrive underwater (Koch, 2001). River runoff may also cause 

nutrient enrichment which may increase the presence of 

phytoplankton. Consequences due to this phenomenon may 

include increased concentrations of chlorophyll-a and depletion 

of oxygen which may result in shifts in species composition, 

increased growth of epiphytic algae, and loss of SAV (Devlin et 

al., 2011). To be able to manage the coastal resources properly 

and prevent the loss of SAV, it is important to monitor their 

condition and the surrounding environment using cost-efficient 

and less time-consuming methods. 

 

The main objective of this research is to investigate the effects of 

river discharges on the distribution and abundance of SAV in the 

study area. This is carried out by processing data from ocean 

monitoring sensors, UAV images, and field observations using 

remote sensing and geographic information system (GIS) 

methods. It also aims to determine the applicability of using UAV 

for monitoring SAV habitats.  
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2. MATERIALS AND METHODS 

2.1 Study Area 

The study area is in Busuanga Island which is situated in the 

Northern part of Palawan province in the Philippines. It is a 3rd 

class municipality with an estimated population of 22,046 in the 

year 2015 (Philippine Statistic Authority, 2015). The coastal 

ecosystem in Busuanga is relatively pristine compared to other 

parts of the country which are degraded due to human-induced 

disturbances, tourism, bad aquaculture practices, direct 

mechanical damages, release of toxic compounds into the coastal 

waters, etc. Mangroves, seagrass, seaweeds, and coral reefs are 

abundant and thriving in Busuanga. There are several rivers 

present on the island, however, only one river was selected as a 

study site (Figure 1). This river was nearest an established marine 

protected area which means human-induced disturbances in the 

area are limited. Moreover, the site is selected because of the 

presence of SAV in areas near and far from the river mouth.  

 

Four stations (A, B, C, and D) were selected in the study area. As 

shown in Figure1, each station has varying distances from the 

river mouth, wherein, Station A is the closest (~300 meters) while 

Station D (~5000 meters) is the farthest. 

 

 

 
 

Figure 1. Location of SAV surveys (A, B, C, D), UAV surveys 

(A, B, C, D) and sensor deployments (1, 2, 3) 

  

2.2 Field Data Gathering 

Before going to the field, a Sentinel-2A multispectral satellite 

image of the study area was processed and classified.  IsoDATA, 

an unsupervised classification method, was performed to map 

and determine the location of SAV in the study area. The 

Sentinel-2A image was also used to determine the relative depth 

of the area which was utilized in the planning stage of the field 

survey. The field survey was conducted last September 22-29, 

2019 in Busuanga, Palawan. It comprised of four major surveys: 

sensor deployment, water quality survey, UAV flight missions, 

and SAV field survey.  

 

At the start of the field survey, water quality assessment was 

conducted using an AAQ Rinko Profiler in 18 different locations 

within the study site. The AAQ Rinko is a multi-parameter sensor 

that can measure depth, chlorophyll, turbidity, dissolved oxygen, 

pH, temperature, and salinity. A spatial interpolation method was 

performed later on to estimate the water quality distribution in 

the study area. Reconnaissance of possible locations of sensor 

deployment was also assessed simultaneously with the gathering 

of water quality parameters.  

 

The ocean monitoring sensors were deployed in three different 

locations (Figure 1) using a bottom-mounted set-up (Figure 2). 

Various sensors to assess the current velocity, tidal fluctuations, 

and turbidity in the study area were included. To measure current 

speed and direction, an Infinity Electro-Magnetic (EM) sensor 

was deployed while a compact CLW was used to measure 

chlorophyll and turbidity values. Both sensors are made by JFE 

Advantech. Additionally, to monitor the water level and 

temperature, a HOBO water level logger was added to the set-up. 

Figure 2 shows a photo of the set-up with the sensors deployed 

near the river mouth (Sensor 1/Station A). To make sure that the 

presence or absence of river discharges will be captured by the 

sensors, set-ups were made at shallow depths (1-3 meters at low 

tide) with minimal obstructions of water flow in their 

surroundings. It was also made sure that the sensors will not 

breach the water surface during the lowest tide of the day.  

 

 
Figure 2. Photo of the deployed bottom-mounted set-up near the 

river mouth 
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The next task was to conduct UAV flight missions 

simultaneously with field observations of SAV using the 

Seagrass-Watch protocol (Seagrass-Watch, 2010). For the UAV 

survey, a DJI Phantom 4 Pro V2 drone was flown autonomously 

in the four stations. The camera sensor mounted on the drone is 

only capable of capturing the red, green, and blue (RGB) 

wavelength ranges of the electromagnetic spectrum which is one 

of the limitations of this study. During the survey, a 30-meter 

flying height was kept constant for all the stations. However, 

additional 50-meter altitude flights were also conducted as 

backup data. This was proven useful as the most turbid area 

(Station A) was difficult to process because of the lack of visible 

tie points in the UAV images. The combination of images from 

both 30-meter and 50-meter flights was successfully processed 

and an orthophoto was generated. The camera angle was kept at 

nadir for all the flight missions. Also, all flight missions were 

conducted during the low tides wherein the effects of depth and 

turbidity are minimal. Another factor to consider when doing 

flight missions is to minimize the presence of sun glint and 

whitewash due to waves on the images. Fortunately, sun glint and 

whitewash were minimal in the images gathered for this research. 

Furthermore, it is also easier to do the SAV survey during low 

tide 

 

For the SAV survey, the methods of Seagrass-Watch for the 

Philippines were followed. In this protocol, three 50-meter 

parallel transects, 25 meters apart, were laid out per station. 

Ground controls points using colorful buoys with weights were 

established at the end of the transects. This way, they will be 

easily identifiable in the drone images. This enabled the correct 

identification of the location of the transects for analysis and 

accuracy assessment, wherein usually, handheld GPS was used 

to mark the position of the transects. A handheld GPS, however, 

may causes blunders in the validation of classifications due to its 

low positional accuracy. Highly accurate positioning equipment 

such as Differential GPS is more recommended to use than 

handheld GPS. However, they are too expensive and are more 

prone to damages due to seawater exposure. Therefore, using 

buoys to mark the transects is a cheaper, easier, and more 

accurate alternative to handheld GPS. For every transect, a 50 cm 

by 50 cm quadrat was laid out every 5 meters to monitor the 

habitats present in the area. Field observations were written on 

waterproof slates and photos of each quadrat were taken. Data 

gathered from each quadrat were seagrass percent cover, species, 

canopy height, and epiphyte cover. Seaweed percent cover was 

also encoded. All stations of SAV surveys were observed to be 

less than two meters in depth. 

 

2.3 Data Processing 

The water quality measurements from the AAQ Rinko Profiler 

were interpolated using the Spline Interpolation with Barrier tool 

in ©ArcMap. It approximates values using a mathematical 

function that reduces overall surface curvature which produces a 

smooth surface that passes precisely through the input points. 

This interpolation method is appropriate for producing gently 

varying surfaces such as pollution concentrations (ESRI, 2016). 

In concept, the spline curves a plane that passes through the input 

points while lessening the overall curvature of the surface. 

(Briggs, 1974; ESRI, 2016). The results of the interpolation and 

the location of the AAQ measurements are shown in Figure 3. 

Using this map, relative turbidity between the stations of SAV 

and UAV survey can be determined. 

 
Figure 3. Map of turbidity measurements using AAQ 

 

The UAV images gathered were processed using ©Agisoft 

Photoscan to create orthophotos. The settings used were high 

accuracy for the alignment of photos and medium accuracy for 

building the dense cloud and mesh. Table 1 shows the summary 

of the parameters of the UAV surveys such as flying height, no. 

of photos aligned, and spatial resolution of the output orthophoto. 

In Station A, which was nearest the river mouth, a combination 

of images from the 30-m and 50-m flights were used for image 

matching/determination of image tie points for photo alignment. 

Images from the 30-m flights are insufficient due to lack of 

visible tie points in this highly turbid area nearest the river mouth. 

Combining the two sets of flying heights, a total of 520 photos 

were aligned successfully. The drawback was a lower spatial 

resolution orthophoto compared to the other stations (Table 1.) 

The spatial resolution of the generated orthophotos was suitable 

for distinguishing seagrasses, seaweeds, and sand using visual 

inspection. High spatial resolution data was successfully 

produced with minimal costs and less time in the field. However, 

using UAV also has disadvantages. The reduced time spent in the 

field was replaced by long processing time in the computer 

laboratory and the lower cost was offset by expensive computer 

requirements such as large storage capability and fast processing 

power. 

 
Station Flying 

Height 

No. of photos 

aligned 

Spatial Resolution 

of Orthophoto 

A 30 m + 50 m 520 1.27 cm 

B 30 m 439 0.88 cm 

C 30 m 307 0.82 cm 

D 30 m 456 0.79 cm 

 

Table 1. Summary of UAV Processing Information 

 

A 

B 

C 

D 
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The resulting orthophotos, shown in Figure 4, were classified 

using Maximum Likelihood (ML) Classification, one of the most 

widely used parametric algorithm (Jensen, 2014). ML uses the 

training data to estimate the mean and variances of the classes 

which are then utilized to compute for probabilities (Campbell 

and Wynne, 2011). This is advantageous if you have good 

training datasets, which is the case when using UAV data, 

because of the easily identifiable objects in high spatial resolution 

data. Before performing the classification, land features were 

masked out as well as floating objects such as boats because they 

are not of interest in this study. Masking unnecessary objects will 

also lessen the number of classes for classification and reduce 

possible errors. Then, a combination of image interpretation and 

field observation data was utilized to generate training datasets 

for classification. Accuracies of the classifications were 

determined using confusion matrices.  

 
Figure 4. Processed UAV orthophotos and SAV transect plots 

overlaid in ©Google Earth images 

 

To further assess the output of the classified images, a 

comparison of UAV-based and field-based seagrass percent 

cover estimation was performed and analyzed using linear 

regression. This was done by digitizing the quadrats on the 

orthophotos and then calculating the zonal statistics of the 

classified seagrasses per quadrat. Figure 5 shows the steps to 

calculate the percent cover of seagrass from UAV classified 

images. The relationship between the UAV-based seagrass 

quadrat statistics and field observations was determined using 

linear regression.  

 

 
Figure 5. Process of calculating the percent cover of seagrass 

from UAV classified images 

3. RESULTS AND DISCUSSION 

3.1 Sensor Deployment and Water Quality Survey 

Based on the data from the deployed sensors and water quality 

survey, Station A, which is nearest the river mouth, has the 

highest turbidity while Stations C and D, farthest from the river 

mouth, have low turbidity values (Figure 3). The turbidity 

readings in Station B fall in the middle range of Stations A and 

C. Additionally, salinity values are lowest in Station A, as shown 

in Figure 6. This indicates a mixing of river and seawater in the 

area. Stations C and D have the highest salinity values signifying 

minimal to zero influence from the river discharges. Station B, 

on the other hand, has high salinity readings (Figure 6) but also 

high turbidity (Figure 3) which indicates that there other possible 

sources of suspended sediments in the area which are not covered 

by the scope of this study.  

 

 
Figure 6. Map of salinity measurements using AAQ 

 

Results from the water level logger (Figure 7) deployed near 

Station A show the change in water pressure which indicates a 

diurnal tide from September 24-25, 2019 while a mixed semi-

diurnal tide happened from September 26-29, 2019. This plot was 

already corrected for atmospheric pressure by subtracting values 

from a water level logger left at the surface during the survey. 

UAV flight missions were conducted during the low tide of the 

day, which usually occurs in the afternoon as indicated in the 

water level logger data.  

 

Furthermore, the Infinity EM and compact CLW data indicate 

that water temperature and turbidity increase when water is 

coming from the river. The direction of the current recorded by 

the Infinity EM indicates that the water came from the river, 

going to the direction of Station A, during periods where high 

turbidity was logged by the compact CLW. When compared to 

the data of absolute water pressure, it can be concluded that high 

turbidity occurs during ebb tide. On the other hand, when the tide 

is high, low turbidity and temperature values were observed. This 

A 

B 

C 

D 
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means that the high turbidity values in the study area are due to 

river discharges. The SAV station A is located less than 100 

meters away from the sensor set-up. 

 

 
Figure 7. Ocean monitoring sensor readings near the river 

mouth 

 

3.2 SAV Survey 

Based on field observations, Enhalus acoroides (Ea) is the only 

species of seagrass present in Station A. These species are the 

most resilient to turbid water and can tolerate lower salinity 

concentrations. On the other hand, only two species were found 

in Station B, Ea, and Cymodocea serrulata (Cs). Ea and Cs were 

also present in Station C with the addition of Thalassia hempricii 

(Th). There were also three seagrass species found in Station D: 

Ea, Th, and Cymodocea rotundata (Cr). This indicates an 

increase in the number of seagrass species as the distance from 

the river mouth increases. Averages of the percent cover per 

station also show an increase of both seagrass and seaweed 

percent cover as shown in Figure 8. The average epiphyte covers 

of seagrasses, on the other hand, decreases from Station A to 

Station D. Based from these results, it can be determined that as 

the proximity of the station from the river increases, turbidity 

decreases, while the number of seagrass species increases and the 

percent cover of seagrass and seaweeds also increases. 

 

3.3 UAV Survey 

The processed UAV orthophotos were classified using ML 

Classification and the results are shown in Figure 9. Initially, 

because of high turbidity, the classification results in Station A 

was expected to have low accuracy. However, an overall 

accuracy of 90.16% was achieved with a kappa coefficient of 

0.8036. The reason for this is because, after masking land 

features, only two classes remain: seagrass and silt/sand. No 

seaweed was present in Station A.  

 
 

Figure 8. Summary of SAV field survey showing averages of 

seagrass and seaweed percent covers and average epiphyte 

cover of seagrasses 

 

On the other hand, in Stations B, C, and D, the presence of 

seaweeds were observed. The overall accuracies obtained for 

those three stations were 93.41%, 87.91%, and 90.22% 

respectively. The relatively low accuracy in Station C was due to 

changes in cloud cover during the flight mission, which 

consequently, affected the exposure of the UAV images. Water 

column correction was not applied because flight missions were 

conducted during the low tide of the day. This may also be the 

reason why the accuracy of seagrass classification in Station A 

was relatively high. During low tide, the leaf blades of Ea were 

already breaching the water surface negating the effects of 

turbidity which affects the classification accuracy of remotely 

sensed data. This proves the capability of using low-cost UAV 

systems for mapping SAV. It is well recommended to do flight 

missions during low tide, especially in highly turbid waters. 

 

 
Figure 9. Results of the classification of UAV orthophotos 

 

A study by Taddia et al in 2019 produced reliable results when 

classifying seagrass from UAV using ML Classification method 

(Taddia et al., 2019). However, their results indicate that 
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performing radiometric calibration before classification will 

produce better accuracy. This was not tested in this study. 

Furthermore, a paper by Chayhard et al. in 2018 compared UAV 

and satellite images for mapping seagrasses (Chayhard et al., 

2018). They found out that UAV produced better accuracy than 

satellite images such as WorldView-2 and GeoEye-1 in 

classifying long leaves and short leaves type of seagrasses using 

ML classification. 

 

The UAV-based percent covers of seagrass and seaweed were 

calculated by dividing the total number of classified pixels of 

both benthic covers to the total number of pixels in the image. 

Figure 10 shows the results of this calculation. From this 

information, it can be concluded that seagrass and seaweed 

percent cover increase as the distance from the river mouth 

increases. This result was similar to field observations as shown 

in Figure 8.  

 

 
Figure 10. UAV-based percent cover estimation of seagrass and 

seaweed 

 

The advantage of doing UAV-based measurement is that it is less 

time consuming, tedious, and biased. From the field survey, one 

flight will only take approximately 20 minutes, including the set-

up, to complete, while the field observations took about 2-3 

hours, longer in the station with turbid waters. The effort exerted 

to complete both tasks were huge in disparity. However, there 

was more information gathered from field observations such as 

species and epiphyte cover, which is difficult to extract from a 

low-cost UAV data. To achieve such objective, a multispectral or 

hyperspectral sensor is needed to separate SAV species using 

remotely sensed data. On the other hand, the field-based method 

is more biased in gathering data compared to the UAV-based 

method. The percent cover extracted from the UAV covers all 

areas within the flight mission, while the field-based data only 

captures sampling points within the study area. Nevertheless, 

results from both methods showed increasing seagrass and 

seaweed cover as turbidity and distance from the river mouth 

decrease. 

Further comparison of UAV-based and field-based observations 

was performed using linear regression. Field data from each 

quadrat were compared to the statistics of the digitized quadrats 

overlaid on the classified image. A plot of the results for Station 

C can be seen in Figure 11 while a summary of the regression 

statistics for Stations C and D is shown in Table 2. The highest 

R-squared was 0.7965 which was obtained in Station C. This 

indicates a relatively good agreement between the UAV-based 

and field-based estimation of seagrass percent cover.  

 

Regression Statistics Station C Station D 

R Square 0.7965 0.6762 

Adjusted R Square 0.7652 0.6450 

Standard Error 0.2075 0.2699 

Observations 33 33 

 

Table 2. Summary of regression statistics for seagrass percent 

cover from drone and field observations 

 

Moreover, the results of linear regression in Station C indicate 

that percent cover from the UAV was overestimated 1.7517 times 

compared to field observations. Incidentally, results from the 

UAV classification in Station D overestimated the percent cover 

1.7515 times compared to field data. When investigating for the 

probable cause of the overestimation, it was found out that 

seagrass and seaweed shadows cast on the substrate were also 

classified at habitat covers which caused the overestimation of 

percent covers. However, it is also important to note that field-

based observation of percent cover may be biased. The values 

during field observation are dependent on the observer and are 

subjective which can result in over/underestimation. On the other 

hand, results from the classification of UAV orthophotos are 

objective because they are calculated from the number of 

classified pixels. 

 

 
Figure 11. Linear relationship of seagrass percent cover from 

drone and field data in Station C 

Seagrass percent cover 
 

Predicted seagrass percent cover using linear regression  
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4. CONCLUSIONS 

The coastal environment is under threat of loss due to various 

anthropogenic and natural factors. It is vital to understand the 

relationships between different marine resources and their 

surrounding environment which may lead to proper management 

and protection. SAVs are important marine habitats that are 

neglected and improperly managed. A cost-efficient and less 

tedious method of monitoring them was presented in this 

research. Using Maximum Likelihood (ML) Classification of 

UAV orthophotos, accuracies ranging from 87.91-93.41% were 

obtained in mapping seagrass and seaweed in Busuanga, 

Palawan. Comparison between percent cover estimation from 

field observations and classified orthophotos using linear 

regression indicates a 1.75 multiplier of the values from the UAV 

versus ground data.  

 

Based on sensor data, classified UAV orthophotos, and SAV 

field observations, it was found out that water turbidity is highest 

near the river mouth (Station A). In this station, there are fewer 

species of seagrass, no presence of seaweed, and low seagrass 

percent cover. However, as the distance from the river mouth 

increases, the turbidity decreases while the number of species 

increases, and the percent cover of seagrass and seaweed also 

increases. 

 

For future research, it is suggested to investigate the possibility 

of using high-resolution satellite data as an alternative to UAV 

images. Freely available satellite images are advancing in terms 

of spatial and spectral resolution. However, because satellite 

sensors gather data at a specific time of the day, it is problematic 

to simultaneously gather field and remotely sensed data during 

the low tide of the day which is not a problem when using UAV. 

Moreover, for water quality estimation, numerical modeling may 

be integrated with the methods presented to improve the study of 

the effects of river discharges on SAV because temporal analysis 

may be investigated 
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