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ABSTRACT: 
 
Stereo image orientation is one of the major topics in computer vision, photogrammetry, and robotics. The stereo vision problem 
solution represents the basic element of the multi-view Structure from Motion SfM in computer vision and photogrammetry. 
A successfully reconstructed stereo image geometry is based on solving the epipolar constraint using the fundamental matrix which is 
based on the projective geometry in computer vision. However, in photogrammetry, the problem is well known as relative orientation 
and there is a different solution that is based on the euclidean geometry using collinearity or coplanarity equations.  
A lot of literature and discussions were found in the last decades to solve the epipolar geometry problem. However, there is still no 
clear description to compare between solutions introduced using both projective and euclidean solutions and which method of the 
relative image orientation is mostly preferred.    
To the best of our knowledge, computing and plotting the epipolar lines using photogrammetric collinearity and coplanarity equations 
is not shown before in the educational litrature. In this paper, a detailed mathematical solution of the epipolar geometry will be shown 
using both photogrammetric and computer vision techniques. This is aimed to remove any confusion for new learners in using the 
current methods in both scientific fields and show that using any technique should lead to comparable results with advantages and 
disadvantages. 
 
 

1. INTRODUCTION 

A long discussion has happened in the last few decades between 
both communities of photogrammetry and computer vision since 
they both aim for solving similar vision problems in different 
ways. In photogrammetry, the aim was started for topographic 
mapping and military reconnaissance and that pushed to reach a 
high level of precision based on using calibrated cameras 
(Forstner, 2002). While with the advanced development of 
computer science, computer or machine vision gained a lot of 
attention and was enriched with a wide range of techniques that 
handles the same problems that were solved by photogrammetry. 
Interestingly, photogrammetry mathematical techniques were 
based on Euclidean geometry while computer vision used 
homogeneous coordinates and projective geometry. Generally, 
more direct solutions were found in the computer vision field 
assuming mostly uncalibrated cameras while assuming calibrated 
cameras with the development of nonlinear solutions in 
photogrammetry. This use of direct solutions in computer vision 
using the algebraic minimization didn't mostly imply the 
uncertainty in the measurements (Forstner, 2002). On the other 
hand, the photogrammetric nonlinear rigorous solutions are very 
much relying on the starting values of the unknowns which is a 
nontrivial task. Remarkably, most photogrammetric packages 
nowadays are either using computer vision techniques to handle 
the uncalibrated camera cases or a mixture of both to count also 
for apriori uncertainty of measurements and estimate final 
precision. 
For students and specialists from both fields, it's not an easy task 
to understand the techniques adopted by both fields because of 
the different types of mathematical treatment behind them. 
Accordingly, in this paper, one aim is to introduce a 

computational guide to solve the important problem of the 
epipolar geometry of a stereo pair of images using the Euclidean 
and projective geometrical solutions and assess their 
performances with the existence of noise or blunders. 
The euclidean-based nonlinear solution adopted for a long time 
in photogrammetry is the well-known collinearity equations (Liu 
et al., 2006; Luhmann T. et al., 2006; Salma, 1980; Wolf and 
DeWitt, 2000) which is the workhorse for solving the image 
orientation problems. Another condition equation called the 
coplanarity is also developed for a long time in photogrammetry 
mainly to recover the stereo image orientation problem using 
euclidean coordinates (Salma, 1980; Wolf and DeWitt, 2000). 
From a computer vision perspective, the collinearity equations 
are defined as the pinhole camera model using homogenous 
coordinates (Forstner, 2002; Hartley and Zisserman, 2003) where 
a special matrix called the projection matrix P is developed. 
Worth mentioning that the projection matrix was recognized by 
the photogrammetry field for five decades under the name of 
Direct Linear Transformation DLT (Luhmann, 2014; Salma, 
1980). 
When the vision problem extends from the single image 
geometry to stereo, epipolar constraint arise and constitute the 
base of the solution. The epipolar geometry entails that for a 
stereo camera configuration, the center of each camera 𝑂𝑂1, 𝑂𝑂2, 
and the world point P defines a plane in space which is called the 
epipolar plane (Figure 1a). The result of projecting the world 
point P onto the image planes of the two cameras is to have two 
conjugate points 𝑝𝑝1 and 𝑝𝑝2 respectively. Furthermore, two 
special points 𝑒𝑒1 and 𝑒𝑒2 called the epipoles will be found as a 
result of the projection of each camera into the other. The 
intersection of the epipolar plane with the two image planes will 
result in two epipolar lines 𝑙𝑙1 and 𝑙𝑙2 where they pass through 𝑒𝑒1 
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and 𝑒𝑒2 respectively. Every point in one image will have its 
conjugate in the second image constrained to lie along the 
epipolar line (Figure 1b). The epipolar constraint has a great 
benefit in dens image matching, image rectification, and 
Structure from Motion SfM among other applications.   
In literature, it's difficult to find a detailed description for solving 
the mentioned epipolar constraint and the relative orientation of 
the same problem using both euclidean and homogenous 
coordinates. Some papers were presented to investigate which 
method can provide more accurate solutions. For example, the 
authors (Kim and Kim, 2016) presented the solution of the 
epipolar geometry applied in computer vision and 
photogrammetry and concluded that despite the epipolar 
resampling methods developed in the two fields being 
mathematically identical, their performance in the epipolar 
parameter estimation may be changed. 

 
a) 

  
b) 

Figure 1. Epipolar geometry. 
 

In (El-Ashmawy, 2015) it was shown that using the coplanarity 
and collinearity will give more accurate results of the estimated 
camera exterior orientation compared to the DLT method which 
is based on the projective geometry. This conclusion is assured 
by (Barrile et al., 2017) who found that using photogrammetric 
relative and absolute orientation of a triple of images can give 
more accurate results than the computer vision conventional 
techniques. 
This paper aims to give a detailed solution for the stereo vision 
epipolar constraint given in computer vision and 
photogrammetry using both homogeneous and euclidean 
coordinates. This is expected to help the learners from both fields 
to get familiar with the solution introduced by the other field. In 
the end, it is hoped that an integrated solution that is more robust 
and less error-prone can be found. 
The paper structure starts after this introduction with a brief 
presentation of the method in section 2 and then continues in 
section 3 to present the detailed mathematical solutions using the 
euclidean and homogenous coordinates. Then, section 4 
illustrates the results and completes them with discussions. 
Conclusions will be finally given in section 5. 
  
  

2. METHOD 

Three techniques using coplanarity, collinearity, and 
fundamental matrix will be investigated to achieve the relative 
orientation task for the same stereo images data in two different 
experiments. The numerical solutions will be given for the 
benefit of reproducing the calculations and applying a more 
sophisticated analysis by the readers. 

To understand the mathematical concepts behind the mentioned 
techniques, we will describe them with illustrations in the 
following section 2.1 explaining the epipolar geometry 
processing from both perspectives of traditional photogrammetry 
and section 2.2 describing the computer vision approach using 
the fundamental matrix.  
 
2.1 Epipolar constraint using euclidean geometry 

In conventional photogrammetry, mathematical computations 
are applied using the euclidean coordinates. So we have the 
image coordinates defined as [𝑥𝑥,𝑦𝑦], and the object coordinates as 
[𝑋𝑋,𝑌𝑌,𝑍𝑍] coordinates. Two mathematical techniques are found to 
solve the stereo relative orientation, the collinearity, and the 
coplanarity conditions. The limitation of these two techniques is 
to have calibrated camera parameters known.  
 
A. Coplanarity Equations 
Coplanarity equation 1 is based on the condition of having any 
object point 𝑃𝑃, the left camera 𝑂𝑂1, the right camera 𝑂𝑂2, and the 
corresponding image points 𝑝𝑝1, 𝑝𝑝2 on the two images to 
compose one plane (Schindler, 2015) as shown in Figure  2. 
Assuming a rotation matrix R and translation T for every camera 
are given, then the coplanarity condition can be formulated as a 
dependent relative orientation problem where the first image is 
assumed fixed while orienting the second image concerning it. 
Accordingly, a plane equation in 3D can be formulated as a 
determinant 𝐺𝐺 of a 3x3 matrix as follows: 
 

𝐺𝐺 =  𝑑𝑑𝑑𝑑𝑑𝑑 �
𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏
𝑥𝑥1 𝑦𝑦1 𝑧𝑧1
𝑥𝑥2 𝑦𝑦2 𝑧𝑧2

�     (1) 

where 

𝑇𝑇 = 𝑇𝑇2 − 𝑇𝑇1 = [𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏]𝑡𝑡 ,𝑅𝑅1 = �
1 0 0
0 1 0
0 0 1

� ,𝑅𝑅2 =

�
𝑟𝑟11 𝑟𝑟12 𝑟𝑟13
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33

�      (2) 

 
The two vectors pointing from the two cameras to the object point 
can be written in terms of the scale factors 𝑠𝑠 (assumed equal in 
the two images), rotation matrices 𝑅𝑅, and the image coordinates 
𝑝𝑝 as 𝑠𝑠1𝑅𝑅1

𝑡𝑡𝑝𝑝2 and 𝑠𝑠2𝑅𝑅2
𝑡𝑡𝑝𝑝2. Therefore 

 

�
𝑥𝑥1
𝑦𝑦1
𝑧𝑧1
� = 𝑅𝑅1𝑡𝑡 �

𝑥𝑥𝑝𝑝1
𝑦𝑦𝑝𝑝1
−𝑓𝑓

�, �
𝑥𝑥2
𝑦𝑦2
𝑧𝑧2
� = 𝑅𝑅2𝑡𝑡 �

𝑥𝑥𝑝𝑝2
𝑦𝑦𝑝𝑝2
−𝑓𝑓

�   (3) 

 
In the case of the unknown orientation of the two stereo images, 
the coplanarity equations should be applied to solve the relative 
rotation R2 and translation T2 of the second image while 
assuming the first image fixed 𝑅𝑅1 = 𝐼𝐼3∗3,𝑇𝑇1 = [0,0,0]𝑡𝑡. This is 
conventionally known in photogrammetry as the dependent 
relative orientation problem. 

 
Figure 2. Coplanarity condition. 
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The solution starts by either manually measuring corresponding 
points distributed well on the overlap area or estimating the 
matching points by using one of the well-known operators like 
SIFT. To proceed, the pixel coordinates of the matching points 
should be transformed to the principal point 𝑝𝑝. 𝑝𝑝. coordinate-
system (image center) following equation 6. 
Then an iterative nonlinear least-squares solution should be 
applied. If Euler angles 𝜔𝜔2,𝜑𝜑2, 𝑘𝑘2 are used to define the rotation 
matrix 𝑅𝑅2, then the starting values are normally set up as zero 
while a base component 𝑏𝑏𝑏𝑏 is fixed to 1 for example in the 
translation vector 𝑇𝑇2 = [1 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏]𝑡𝑡 to fix the scale of the 
problem. Obviously, a minimum of five corresponding points is 
required to solve the coplanarity condition (Wolf and DeWitt, 
2000) where the observation equations can be set up in a matrix 
form as 𝐴𝐴𝑉𝑉 + 𝐵𝐵∆= 𝐿𝐿 or: 

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐺𝐺1
𝜕𝜕𝑥𝑥𝑝𝑝11

 𝜕𝜕𝐺𝐺1
𝜕𝜕𝑦𝑦𝑝𝑝1

1  𝜕𝜕𝐺𝐺1
𝜕𝜕𝑥𝑥𝑝𝑝2

1  𝜕𝜕𝐺𝐺1
𝜕𝜕𝑦𝑦𝑝𝑝2

1 0
𝜕𝜕𝐺𝐺2
𝜕𝜕𝑥𝑥𝑝𝑝12

 𝜕𝜕𝐺𝐺2
𝜕𝜕𝑦𝑦𝑝𝑝1

2  𝜕𝜕𝐺𝐺2
𝜕𝜕𝑥𝑥𝑝𝑝2

2  𝜕𝜕𝐺𝐺2
𝜕𝜕𝑦𝑦𝑝𝑝2

2 ⋮

0 ⋯ 𝜕𝜕𝐺𝐺𝑛𝑛
𝜕𝜕𝑥𝑥𝑝𝑝1𝑛𝑛

 𝜕𝜕𝐺𝐺𝑛𝑛
𝜕𝜕𝑦𝑦𝑝𝑝1

𝑛𝑛  𝜕𝜕𝐺𝐺𝑛𝑛
𝜕𝜕𝑥𝑥𝑝𝑝2

𝑛𝑛  𝜕𝜕𝐺𝐺𝑛𝑛
𝜕𝜕𝑦𝑦𝑝𝑝2

𝑛𝑛⎦
⎥
⎥
⎥
⎤

�����������������������������������������������
𝐴𝐴𝑛𝑛×4𝑛𝑛

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑣𝑣𝑥𝑥𝑝𝑝1

1

𝑣𝑣𝑦𝑦𝑝𝑝1
1

𝑣𝑣𝑥𝑥𝑝𝑝2
1

𝑣𝑣𝑦𝑦𝑝𝑝2
1

⋮
⋮

𝑣𝑣𝑦𝑦𝑝𝑝2
𝑛𝑛
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�����
𝑉𝑉4𝑛𝑛×1

+

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐺𝐺1
𝜕𝜕𝜔𝜔2

 𝜕𝜕𝐺𝐺1
𝜕𝜕𝜑𝜑2

 𝜕𝜕𝐺𝐺1
𝜕𝜕𝑘𝑘2

 𝜕𝜕𝐺𝐺1
𝜕𝜕𝜕𝜕𝑦𝑦 𝜕𝜕𝐺𝐺1

𝜕𝜕𝜕𝜕𝑧𝑧
 ⋮     ⋮     ⋮      ⋮      ⋮
𝜕𝜕𝐺𝐺𝑛𝑛
𝜕𝜕𝜔𝜔2

 𝜕𝜕𝐺𝐺𝑛𝑛𝜕𝜕𝜑𝜑2
 𝜕𝜕𝐺𝐺𝑛𝑛𝜕𝜕𝑘𝑘2

 𝜕𝜕𝐺𝐺𝑛𝑛𝜕𝜕𝜕𝜕𝑦𝑦  𝜕𝜕𝐺𝐺𝑛𝑛𝜕𝜕𝜕𝜕𝑧𝑧⎦
⎥
⎥
⎥
⎤

���������������
𝐵𝐵𝑛𝑛×5

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝛿𝛿𝜔𝜔2

𝛿𝛿𝜑𝜑2

𝛿𝛿𝑘𝑘2

𝛿𝛿𝑏𝑏𝑦𝑦
𝛿𝛿𝛿𝛿𝑧𝑧⎦

⎥
⎥
⎥
⎥
⎥
⎤

���
∆5×1

 =

⎣
⎢
⎢
⎢
⎡𝐺𝐺1
𝐺𝐺2
⋮
⋮
𝐺𝐺𝑛𝑛⎦

⎥
⎥
⎥
⎤

�
𝐿𝐿𝑛𝑛×1

    (4) 

 
where the 𝐵𝐵 matrix refers to the partial derivatives of 𝐺𝐺 (equation 
1) concerning the unknowns, 𝐴𝐴 matrix refers to the partial 
derivatives of 𝐺𝐺 concerning the image points observations, 𝑉𝑉 is 
the residuals vector, ∆ is the required corrections vector, and 𝐿𝐿 is 
the functional values vector. 
Then to handle the redundancy and nonlinearity, a least-squares 
adjustment is applied using equation 5 to estimate the corrections 
∆ as follows (Alsadik, 2019): 
 
∆= (𝐵𝐵𝑡𝑡(𝐴𝐴𝑄𝑄𝑄𝑄𝑡𝑡)−1𝐵𝐵)−1𝐵𝐵𝑡𝑡(𝐴𝐴𝑄𝑄𝑄𝑄𝑡𝑡)−1𝐿𝐿   (5) 
 
Where 𝑄𝑄 refers to the cofactor weight matrix which is mostly 
selected as an identity matrix assuming all the image coordinates 
are of equal weight since they are detected by the same operator 
like SIFT. Accordingly, the corrections will be updated 
iteratively until reaches an insignificant number (like ≤ 10−7). 

 
Then to estimate and plot the epipolar constraint between the 
stereo images, it is possible to apply the following steps: 
• transform the pixel coordinates to the 𝑝𝑝. 𝑝𝑝. system of the first 

image assuming the coordinates of the 𝑝𝑝. 𝑝𝑝. are 𝑥𝑥𝑜𝑜,𝑦𝑦𝑜𝑜 
 

𝑥𝑥𝑝𝑝1 = 𝑥𝑥1 −
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

2
− 0.5 − 𝑥𝑥𝑜𝑜

𝑦𝑦𝑝𝑝1 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡
2

− 0.5 − 𝑦𝑦1 − 𝑦𝑦𝑜𝑜
    (6) 

Worth noting, format width, height, and focal length can be used 
in pixels or mm units. 

 
• apply the estimation of the following parameters based on the 

measured image point, the base components 𝑏𝑏𝑏𝑏, 𝑏𝑏𝑏𝑏, 𝑏𝑏𝑏𝑏, and 
rotation elements 𝑟𝑟’𝑠𝑠. 
 

𝑐𝑐 = −𝑏𝑏𝑏𝑏 𝑟𝑟32 𝑥𝑥1 𝑓𝑓 + 𝑏𝑏𝑏𝑏 𝑟𝑟31 𝑦𝑦1 𝑓𝑓 − 𝑟𝑟31 𝑧𝑧1 𝑏𝑏𝑏𝑏 𝑓𝑓 + 𝑟𝑟33 𝑓𝑓 𝑥𝑥1 𝑏𝑏𝑏𝑏 −
𝑟𝑟33 𝑓𝑓 𝑦𝑦1 𝑏𝑏𝑏𝑏 + 𝑟𝑟32 𝑓𝑓 𝑧𝑧1 𝑏𝑏𝑏𝑏    (7) 
𝑎𝑎 = 𝑟𝑟12 𝑥𝑥1 𝑏𝑏𝑏𝑏 − 𝑟𝑟11 𝑦𝑦1 𝑏𝑏𝑏𝑏 + 𝑟𝑟11 𝑧𝑧1 𝑏𝑏𝑏𝑏 − 𝑟𝑟13 𝑥𝑥1 𝑏𝑏𝑏𝑏 + 𝑟𝑟13 𝑦𝑦1 𝑏𝑏𝑏𝑏 −
𝑟𝑟12 𝑧𝑧1 𝑏𝑏𝑏𝑏       (8) 
𝑏𝑏 = 𝑟𝑟22 𝑥𝑥1 𝑏𝑏𝑏𝑏 − 𝑟𝑟21 𝑦𝑦1 𝑏𝑏𝑏𝑏 + 𝑟𝑟21 𝑧𝑧1 𝑏𝑏𝑏𝑏 − 𝑟𝑟23 𝑥𝑥1 𝑏𝑏𝑏𝑏 + 𝑟𝑟23 𝑦𝑦1 𝑏𝑏𝑏𝑏 −
𝑟𝑟22 𝑧𝑧1 𝑏𝑏𝑏𝑏       (9) 

• Randomly select some corresponding points like 𝑝𝑝2 on the 2nd 
image in the range [-image width:+image width]. 

• Then estimate the 𝑒𝑒′ and 𝑛𝑛′ coordinates of the epipolar 
line as follows: 

 
𝑛𝑛′ = (𝑎𝑎 𝑥𝑥𝑝𝑝2+𝑐𝑐)

−𝑏𝑏
, 𝑒𝑒′ = 𝑥𝑥𝑝𝑝2 + 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ/2  (10) 

 
Then trim the points if they are located outside the image format 
size.  
 
B. Collinearity Equations 
The collinearity equations are developed based on the concept of 
having an object point [𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌, 𝑍𝑍𝑍𝑍], camera lens [𝑋𝑋𝑜𝑜,𝑌𝑌𝑜𝑜,𝑍𝑍𝑜𝑜], and 
the corresponding image point [𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝] located at the same line in 
space (Luhmann T. et al., 2006; Salma, 1980; Schindler, 2015; 
Wolf and DeWitt, 2000) Figure 3.  

 
Figure 3. Collinearity condition. 

 
Collinearity equations are algebraically formulated as follows 
using Euclidean geometry: 
 
𝐺𝐺𝑥𝑥𝑝𝑝 = −𝑓𝑓 𝑟𝑟11�𝑋𝑋𝑝𝑝−𝑋𝑋𝑜𝑜�+𝑟𝑟12�𝑌𝑌𝑝𝑝−𝑌𝑌𝑜𝑜�+𝑟𝑟13�𝑍𝑍𝑝𝑝−𝑍𝑍𝑜𝑜�

𝑟𝑟31�𝑋𝑋𝑝𝑝−𝑋𝑋𝑜𝑜�+𝑟𝑟32�𝑌𝑌𝑝𝑝−𝑌𝑌𝑜𝑜�+𝑟𝑟33�𝑍𝑍𝑝𝑝−𝑍𝑍𝑜𝑜�
− 𝑥𝑥𝑝𝑝

𝐺𝐺𝑦𝑦𝑝𝑝 = −𝑓𝑓 𝑟𝑟21�𝑋𝑋𝑝𝑝−𝑋𝑋𝑜𝑜�+𝑟𝑟22�𝑌𝑌𝑝𝑝−𝑌𝑌𝑜𝑜�+𝑟𝑟23�𝑍𝑍𝑝𝑝−𝑍𝑍𝑜𝑜�
𝑟𝑟31�𝑋𝑋𝑝𝑝−𝑋𝑋𝑜𝑜�+𝑟𝑟32�𝑌𝑌𝑝𝑝−𝑌𝑌𝑜𝑜�+𝑟𝑟33�𝑍𝑍𝑝𝑝−𝑍𝑍𝑜𝑜�

− 𝑦𝑦𝑝𝑝
�  (11) 

 
where 𝑋𝑋𝑜𝑜 ,𝑌𝑌𝑜𝑜,𝑍𝑍𝑜𝑜= camera coordinates. 

𝑓𝑓: focal length in mm or pixels. 
𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝: image coordinates in mm or pixels. 
𝑟𝑟’𝑠𝑠=rotation matrix elements as 𝑅𝑅 = 𝑅𝑅𝑘𝑘𝑅𝑅𝜑𝜑𝑅𝑅𝜔𝜔 or:  

𝑅𝑅 =

�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
�

      (12) 
 
It should be noted that the rotations are based on a right-handed 
system. 
Similarly to the coplanarity, a minimum of five corresponding 
points is required to solve the relative orientation using 
collinearity. So if points 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, and 𝑔𝑔 are used in solving the 
relative orientation problem then every point will involve two 
collinearity equations and then the observation equations (Wolf 
and DeWitt, 2000) will be represented in matrix form as shown 
in equation 13 where the gray refers to image 1 and yellow refers 
to the image 2: 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 𝐵𝐵𝑎𝑎𝑠𝑠 0 0 0 0
0 0 𝐵𝐵𝑏𝑏𝑠𝑠 0 0 0
0 0 0 𝐵𝐵𝑐𝑐𝑠𝑠 0 0
0 0 0 0 𝐵𝐵𝑑𝑑𝑠𝑠  0
0 0 0 0 0 𝐵𝐵𝑔𝑔𝑠𝑠

𝐵𝐵𝑎𝑎𝑒𝑒 𝐵𝐵𝑎𝑎𝑠𝑠 0 0 0 0
𝐵𝐵𝑏𝑏𝑒𝑒 0 𝐵𝐵𝑏𝑏𝑠𝑠 0 0 0
𝐵𝐵𝑐𝑐𝑒𝑒 0 0 𝐵𝐵𝑐𝑐𝑠𝑠 0 0
𝐵𝐵𝑑𝑑𝑒𝑒 0 0 0 𝐵𝐵𝑑𝑑𝑠𝑠  0
𝐵𝐵𝑔𝑔𝑒𝑒 0 0 0 0 𝐵𝐵𝑔𝑔𝑠𝑠

 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝛥𝛥
𝑒𝑒

𝛥𝛥𝑎𝑎
𝑠𝑠

𝛥𝛥𝑏𝑏
𝑠𝑠

𝛥𝛥𝑐𝑐
𝑠𝑠

𝛥𝛥𝑑𝑑
𝛥𝛥𝑔𝑔
𝑠𝑠

𝑠𝑠

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

−

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑣𝑣𝑥𝑥𝑥𝑥
𝑣𝑣𝑦𝑦𝑦𝑦
⋮
𝑣𝑣𝑦𝑦𝑦𝑦
𝑣𝑣𝑥𝑥𝑥𝑥
𝑣𝑣𝑦𝑦𝑦𝑦
⋮
𝑣𝑣𝑦𝑦𝑦𝑦⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐺𝐺𝑥𝑥𝑥𝑥
𝐺𝐺𝑦𝑦𝑦𝑦
⋮
𝐺𝐺𝑦𝑦𝑦𝑦
𝐺𝐺𝑥𝑥𝑥𝑥
𝐺𝐺𝑦𝑦𝑦𝑦
⋮
𝐺𝐺𝑦𝑦𝑦𝑦⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   (13) 

 

O1 

𝑃𝑃 

𝑥𝑥𝑝𝑝 𝑝𝑝 

𝑦𝑦𝑝𝑝 

𝑋𝑋𝑝𝑝 

𝑌𝑌𝑝𝑝 

𝑍𝑍𝑝𝑝 

𝑋𝑋𝑝𝑝,𝑌𝑌𝑝𝑝, 𝑍𝑍𝑝𝑝 

𝑋𝑋𝑜𝑜,𝑌𝑌𝑜𝑜,𝑍𝑍𝑜𝑜  
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where 𝑒𝑒 refers to exterior orientation parameters. 
 𝑠𝑠 refers to the object points defined in [𝑋𝑋,𝑌𝑌,𝑍𝑍]. 
 ∆ refers to the corrections, then 

 𝛥𝛥
𝑒𝑒

= [𝛿𝛿𝜔𝜔2 𝛿𝛿𝜑𝜑2 𝛿𝛿𝑘𝑘2 𝛿𝛿𝑏𝑏𝑏𝑏 𝛿𝛿𝑏𝑏𝑏𝑏]𝑡𝑡  , and for point 𝑎𝑎 the 
correction vector is 𝛥𝛥𝑎𝑎

𝑠𝑠
= [𝛿𝛿𝑋𝑋𝑎𝑎  𝛿𝛿𝑌𝑌𝑎𝑎 𝛿𝛿𝑍𝑍𝑎𝑎]𝑡𝑡 and so on. 

 
The 𝐵𝐵 matrices representing the jacobian matrices, for example, 
𝐵𝐵𝑎𝑎𝑒𝑒 and 𝐵𝐵𝑎𝑎𝑠𝑠 of point 𝑎𝑎 are composed by taking the partial 
derivation of the collinearity equations 11 to the orientation 
parameters and the object point 𝑎𝑎 respectively as: 
 

𝐵𝐵𝑎𝑎𝑒𝑒 =

⎣
⎢
⎢
⎢
⎡�
𝜕𝜕𝐺𝐺𝑥𝑥𝑥𝑥
𝜕𝜕𝜔𝜔2

� �
𝜕𝜕𝐺𝐺𝑥𝑥𝑥𝑥
𝜕𝜕𝜑𝜑2

� �
𝜕𝜕𝐺𝐺𝑥𝑥𝑥𝑥
𝜕𝜕𝑘𝑘2

� �
𝜕𝜕𝐺𝐺𝑥𝑥𝑥𝑥
𝜕𝜕𝑏𝑏𝑏𝑏

� �
𝜕𝜕𝐺𝐺𝑥𝑥𝑥𝑥
𝜕𝜕𝑏𝑏𝑏𝑏

�

�
𝜕𝜕𝐺𝐺𝑦𝑦𝑦𝑦
𝜕𝜕𝜔𝜔2

� �
𝜕𝜕𝐺𝐺𝑦𝑦𝑦𝑦
𝜕𝜕𝜑𝜑2

� �
𝜕𝜕𝐺𝐺𝑦𝑦𝑦𝑦
𝜕𝜕𝑘𝑘2

� �
𝜕𝜕𝐺𝐺𝑦𝑦𝑦𝑦
𝜕𝜕𝑏𝑏𝑏𝑏

� �
𝜕𝜕𝐺𝐺𝑦𝑦𝑦𝑦
𝜕𝜕𝑏𝑏𝑏𝑏

�
⎦
⎥
⎥
⎥
⎤
   

 

𝐵𝐵𝑎𝑎𝑠𝑠 = �
�𝜕𝜕𝐺𝐺𝑥𝑥𝑥𝑥
𝜕𝜕𝑋𝑋𝑎𝑎

� �𝜕𝜕𝐺𝐺𝑥𝑥𝑥𝑥
𝜕𝜕𝑌𝑌𝑎𝑎

� �𝜕𝜕𝐺𝐺𝑥𝑥𝑥𝑥
𝜕𝜕𝑍𝑍𝑎𝑎

�

�𝜕𝜕𝐺𝐺𝑦𝑦𝑦𝑦
𝜕𝜕𝑋𝑋𝑎𝑎

� �𝜕𝜕𝐺𝐺𝑦𝑦𝑦𝑦
𝜕𝜕𝑌𝑌𝑎𝑎

� �𝜕𝜕𝐺𝐺𝑦𝑦𝑦𝑦
𝜕𝜕𝑍𝑍𝑎𝑎

�
�           (14) 

 
Then the least-squares adjustment (equation 5) is applied to 
compute the most probable values of the second image relative 
orientation besides the object points coordinates.   
When the orientation of the two images is solved, epipolar lines 
constraint can be constructed. The mathematical approach to 
solve the epipolar constraint using collinearity can be described 
as follows: 

• transform the pixel coordinates to the principal point 𝑝𝑝. 𝑝𝑝. 
coordinates of the first image (equation 6).  

• Apply the inverse collinearity equations of the form 
𝑋𝑋 = 𝑋𝑋𝑜𝑜 + (𝑍𝑍 − 𝑍𝑍𝑜𝑜) 𝑚𝑚11(𝑥𝑥−𝑥𝑥𝑜𝑜)+𝑚𝑚21(𝑦𝑦−𝑦𝑦𝑜𝑜)+𝑚𝑚31(−𝑓𝑓)

𝑚𝑚13(𝑥𝑥−𝑥𝑥𝑜𝑜)+𝑚𝑚23(𝑦𝑦−𝑦𝑦𝑜𝑜)+𝑚𝑚33(−𝑓𝑓)

𝑌𝑌 = 𝑌𝑌𝑜𝑜 + (𝑍𝑍 − 𝑍𝑍𝑜𝑜) 𝑚𝑚12(𝑥𝑥−𝑥𝑥𝑜𝑜)+𝑚𝑚22(𝑦𝑦−𝑦𝑦𝑜𝑜)+𝑚𝑚32(−𝑓𝑓)
𝑚𝑚13(𝑥𝑥−𝑥𝑥𝑜𝑜)+𝑚𝑚23(𝑦𝑦−𝑦𝑦𝑜𝑜)+𝑚𝑚33(−𝑓𝑓)

 (15) 

where 𝑍𝑍 value will be ranged arbitrarily like between 10 and -10. 
 

• After computing the ground 𝑋𝑋𝑋𝑋 coordinates associated 
with the assumed values of 𝑍𝑍 on the first image, The same 
coordinates will be projected to the second image which 
has its orientation parameters using the forward collinearity 
equations (11). 

• Finally, transform the coordinates from the principal point  
system to the pixel coordinate system.  

• The 𝑥𝑥,𝑦𝑦 image coordinates will be fitted to a 2D line which 
will represent the epipolar line on the second image. This 
approach can be inverted for finding the epipolar lines 
associated with the image points at the 2nd image.  

 
2.2 Epipolar constraint using projective geometry 

In computer vision, mathematical computations are applied using 
homogenous coordinates. So we have the image coordinates 
defined as [𝑥𝑥,𝑦𝑦, 1]𝑡𝑡 , and the object coordinates as [𝑋𝑋,𝑌𝑌,𝑍𝑍, 1]𝑡𝑡 
coordinates. The epipolar geometry of two stereo images is 
described by a very special singular 3x3 matrix called the 
fundamental matrix 𝐹𝐹. The 𝐹𝐹 matrix expresses the relative 
orientation between the two stereo frames similarly to coplanarity 
condition equations. Worth mentioning, 𝐹𝐹 is used to map 
corresponding conjugate points in image 1 to image 2 where the 
epipolar line 𝑙𝑙2 of point 𝑝𝑝1 is 𝐹𝐹𝐹𝐹1 and that epipolar line 𝑙𝑙1 of 
point 𝑝𝑝2 is 𝐹𝐹𝑡𝑡𝑝𝑝2 (Hartley and Zisserman, 2003; Szeliski, 2011). 
Therefore 𝐹𝐹 explains the epipolar constraint  between two 
conjugate points (Figure 4) as 𝑝𝑝2𝑡𝑡𝐹𝐹𝐹𝐹1 =  0 or: 

𝑝𝑝2𝑡𝑡𝐹𝐹𝐹𝐹1 = [𝑥𝑥′1 𝑦𝑦′1 1] �
𝐹𝐹11 𝐹𝐹12 𝐹𝐹13
𝐹𝐹21 𝐹𝐹22 𝐹𝐹23
𝐹𝐹31 𝐹𝐹32 𝐹𝐹33

� �
𝑥𝑥1
𝑦𝑦1
1
� = 0  (16) 

The 𝐹𝐹 matrix can be computed either by knowing the intrinsic 
𝐾𝐾 and extrinsic parameters 𝑅𝑅,𝑇𝑇 between the two cameras or 
when enough corresponding points between the two images are 
known (uncalibrated camera).  
In the uncalibrated camera case, the conventional method is 
applied by using the 8-points algorithm (equation 17) which is a 
linear solution that enforces the matrix to have a rank of 2 (Figure 
4). This algorithm solution can have difficulties, especially with 
noisy points and therefore RANSAC technique is mostly used 
(Szeliski, 2011). Interestingly, using the 𝐹𝐹 matrix without 
knowing the intrinsic parameters 𝐾𝐾 leads to an uncalibrated SfM 
solution. 

𝐴𝐴𝐴𝐴 = �
𝑥𝑥′1𝑥𝑥1 𝑥𝑥′1𝑦𝑦1 𝑥𝑥′1    
⋮ ⋮ ⋮   

𝑥𝑥′𝑛𝑛𝑥𝑥𝑛𝑛 𝑥𝑥′𝑛𝑛𝑦𝑦𝑛𝑛 𝑥𝑥′𝑛𝑛    

𝑦𝑦′1𝑥𝑥1 𝑦𝑦′1𝑦𝑦1 𝑦𝑦′1   
⋮ ⋮ ⋮ 

𝑦𝑦′𝑛𝑛𝑥𝑥𝑛𝑛 𝑦𝑦′𝑛𝑛𝑦𝑦𝑛𝑛 𝑦𝑦′𝑛𝑛 

𝑥𝑥1 𝑦𝑦1 1
⋮ ⋮ ⋮
𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 1

�

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐹𝐹11
𝐹𝐹12
𝐹𝐹13
𝐹𝐹21
𝐹𝐹22
𝐹𝐹23
𝐹𝐹31
𝐹𝐹32
𝐹𝐹33⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0 (17) 

 
where 𝑛𝑛 is the number of corresponding points. The system of 
equations (17) is solved using linear least squares by the singular 
value decomposition SVD (Hartley and Zisserman, 2003) and 
selecting the last eigenvector of V. 
Preferably, the point coordinates are normalized to avoid the ill-
conditioned matrix by firstly locating the origin of the new 
coordinates at the centroid of the image points (translation) and 
secondly, by transforming the average distance of the 
transformed image points from the origin to be like √2 pixels 
(scaling) (Hartley and Zisserman, 2003). The SVD method will 
result in an estimate of the fundamental matrix, which may be of 
rank 3 and then an optimization approach should be followed to 
find the correct fundamental matrix of rank 2.  
In the case of having a calibrated camera, equation 18 is showing 
the estimation method of 𝐹𝐹 as follows: 
 
𝐹𝐹 = 𝐾𝐾′−𝑇𝑇[𝑡𝑡]𝑥𝑥𝑅𝑅𝐾𝐾−1     (18) 
 
Where   

[𝑡𝑡]𝑥𝑥 =�
0 −𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏 0 −𝑏𝑏𝑏𝑏
−𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏 0

�, 𝐾𝐾 is the intrinsic matrix assuming 

one camera is used. 
 
It worth mentioning that when the intrinsic parameters 𝐾𝐾 are 
known, then we can compute a singular matrix called the 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐸𝐸 which is completely defined by three 
rotational angles and two translational parameters (dependant 
relative orientation) as follows (Hongdong and Hartley, 2006; 
Nister, 2004): 
𝐸𝐸 = 𝐾𝐾𝑡𝑡  𝐹𝐹𝐹𝐹 =  [𝑡𝑡]𝑥𝑥𝑅𝑅    (19) 
 

 
Figure 4. Estimating 𝐹𝐹 matrix using the 8-point algorithm. 

 
The essential matrix can help to avoid the projectivity distortion 
effect in the uncalibrated SfM and to have a metrical solution. 

 

O1
 O2

 

  

𝐾𝐾 𝐾𝐾’ 𝑭 
𝑭𝒕 𝑅𝑅,𝑇𝑇 

𝒙′, 𝒚′,𝟏 
 

𝒙,𝒚,𝟏 
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Conventionally multiple solutions are found and the selection of 
the most proper matrix should be applied (Forstner, 2002; Hartley 
and Zisserman, 2003; Szeliski, 2011). 
Worth noting, the possibility to decompose 𝐸𝐸 into four possible 
solutions of the rotation 𝑅𝑅1,2 and translations 𝑡𝑡1,2 using the 
following algorithm:  
• Decomposition using SVD as [U,D,V] = svd (E) 

• Prepare 𝑊𝑊1 = �
0 −1 0
1 0 0
0 0 1

�, 𝑊𝑊2 = �
0 1 0
−1 0 0
0 0 0

� 

• Translation vector (skew-symmetry matrix) S = 
UW2U'; 

• Two possible rotation matrices R1 = UWV' and 
R2 = UW'V' 

• Two possible translation vectors: t1 = third 
column of U; t2 = -t1 

• Check determinant (det):if det(R1)or 
det(R2)<0, then multiply by -1   

 
Furthermore, an assessment of the epipolar geometrical 
reliability will be investigated in the paper using the three 
presented methods in section 2.1 and section 2.2. Assessment will 
be applied by computing the distances between the points in one 
image to the corresponding epipolar lines will be computed using 
equation 20 (Weisstein, 1996) of the point-line distance as shown 
in Figure 5.    

 
Figure 5. Point-Line Distance [18] 

 
𝑑𝑑 = |𝑎𝑎𝑥𝑥𝑜𝑜+𝑏𝑏𝑥𝑥𝑜𝑜+𝑐𝑐|

√𝑎𝑎2+𝑏𝑏2
     (20) 

 
where 𝑎𝑎,𝑏𝑏, and 𝑐𝑐 are the epipolar line equation parameters and 
𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 are the coordinates of the image points while | | refers to 
the norm. 
  

3. RESULT 

To investigate the three computational algorithms, two 
experimental tests are applied for ground close-range stereo 
images and aerial images. 
  
3.1 First test 
In the first test, two stereo images in an urban environment 
(Figure 6) are taken using a camera having the following 
parameters: 

• focal length =18 mm 
• pixel size= 4.7 µm 
• format size= 4753×3168 pixels 
• lens distortion is negligible. 

  
Figure 6. First test stereo images with a significant rotation 

difference. 
 

A- Using coplanarity equations 
The first solution of the relative orientation problem and the 
epipolar geometry will be investigated using the coplanarity 
equations given 15 homologous image points (Table 1). 
Accordingly, the solution is applied and iterated until converged 
to insignificant correction values. In Table 1 the details of the 
first iteration least-square matrices are shown. 

 
Table 1. The image correspondences and the least-squares 
adjustment of the first iteration 
 
The nonlinear least-squares adjustment continues and stops when 
the corrections are negligible (<10−5) as shown in Figure 7. 

  
Figure 7. The convergence of the relative orientation 

parameters corrections using coplanarity – test 1.  
 
Table 2 summarizes the final relative orientation parameters and 
their precision 𝜎𝜎 using coplanarity equations. 

 𝜔𝜔deg 𝜑𝜑deg 𝑘𝑘deg 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏 
Adjusted 8.7923 -9.5087 6.5114 -1.1236 0.5837 

𝜎𝜎 ±0.0482 ±0.0289 ±0.0395 ±0.0041 ±0.0032 
Initial  0 0 0 1 0 

Table 2. Relative orientation parameters using coplanarity. 
 
Furthermore, the epipolar lines of the same corresponding points 
of Table 1 are calculated using equations 6-10 as shown in Figure 
8. 

 
Figure 8. The image point correspondences and the epipolar 

lines on the stereo images using photogrammetric coplanarity or 
collinearity equations. 

 
B- Using collinearity equations 
The second solution of the relative orientation problem and the 
epipolar geometry will be investigated using the collinearity 
equations given the same homologous image points (Table 1). 
Accordingly, the solution is applied and iterated until converged 
to insignificant correction values. In Figure 9, the sparse 
coefficient matrix B and the normal equations matrix of equation 
5 are shown. It's worth mentioning that the zero values assumed 
for the left image orientation have their effect on having zero 
partial derivatives shown in the matrix of coefficients. 

 

𝑑𝑑 

𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐 𝑟𝑟 

𝑛𝑛𝑐𝑐𝑟𝑟𝑚𝑚 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐 = 0 

left image right image 1st iteration
x y x y B matrix L matrix corrections

1527.20 1295.80 1108.80 2196.60 1.6024E+06 8.8518E+05 1.4491E+07 3.6521E+05 -4.8531E+06 3.44990E+06 by -1.0887
2479.40 956.26 2223.00 1955.30 9.8196E+05 5.7652E+04 1.4434E+07 9.6044E+04 -5.8596E+05 3.82610E+06 bz -2.1635
1527.30 988.41 1158.90 1860.60 1.4109E+06 9.5964E+05 1.4503E+07 7.2489E+05 -4.6612E+06 3.34030E+06 omega 0.32104
2855.50 1506.20 2651.50 2690.90 7.8128E+05 -5.5219E+05 1.4581E+07 -2.1434E+04 1.0551E+06 4.53710E+06 phi -0.15211
2802.30 1567.50 2589.40 2754.00 8.1536E+05 -5.0229E+05 1.4648E+07 -3.5211E+03 8.1728E+05 4.54400E+06 kappa -0.52384
1393.70 1196.40 974.11 2079.40 1.6069E+06 1.0300E+06 1.4475E+07 5.4337E+05 -5.3689E+06 3.38170E+06
1862.70 1341.40 1488.90 2285.90 1.4316E+06 5.7550E+05 1.4497E+07 2.1521E+05 -3.3974E+06 3.61720E+06
3742.50 1162.80 3486.90 2314.70 9.7889E+05 -1.4664E+06 1.4359E+07 -4.6791E+05 4.2545E+06 4.41150E+06 intial values
730.52 1630.60 93.57 2538.90 2.4394E+06 1.4649E+06 1.4712E+07 -1.0636E+05 -8.7412E+06 3.47860E+06 by 1

2204.20 754.52 1942.80 1698.70 1.0011E+06 3.7904E+05 1.4572E+07 3.5933E+05 -1.6591E+06 3.61600E+06 bz 0
2909.30 1006.20 2651.40 2041.70 9.8770E+05 -4.0322E+05 1.4403E+07 -1.5913E+05 1.0547E+06 3.96570E+06 omega 0
2442.10 125.22 2265.60 1102.90 6.7596E+05 1.9285E+05 1.5369E+07 1.6105E+05 -4.2281E+05 3.74430E+06 phi 0
2658.80 829.30 2413.70 1833.50 9.3868E+05 -9.9011E+04 1.4479E+07 -2.8452E+04 1.4438E+05 3.84590E+06 kappa 0
1893.30 882.15 1588.90 1794.20 1.1658E+06 6.5389E+05 1.4520E+07 5.5243E+05 -3.0144E+06 3.49300E+06
2824.90 619.36 2603.00 1641.30 8.4983E+05 -2.4470E+05 1.4612E+07 -2.1897E+05 8.6936E+05 3.91380E+06
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Figure 9. Sparse matrices pattern of the least-squares 

adjustment using collinearity equations. 
 
The nonlinear least-squares adjustment continues and stops when 
all the corrections are negligible (<10−5) as shown in Figure 10. 
More than the image orientation computations, collinearity will 
produce the XYZ coordinates of the object points in an arbitrary 
scale and at the reference of the first image. These points in a 
multiview problem can finally result in a sparse point cloud 
similar to the conventional approach of SfM. However, the 
proper estimate of their initial coordinates is crucial to have a 
convergent nonlinear collinearity solution. Table 3 summarizes 
the final relative orientation parameters using collinearity 
equations and their precision 𝜎𝜎. As logically expected, the same 
parameter values are estimated using the coplanarity equations. 

 
Figure 10. The convergence of the relative orientation 

parameters corrections using collinearity – test 1.  
 

 𝜔𝜔deg 𝜑𝜑deg 𝑘𝑘deg 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏 
Adjusted  8.7924 -9.5092 6.5115 -1.1235 0.5837 

𝜎𝜎 ±0.0502 ±0.0297 ±0.0134 ±0.0032 ±0.0037 
Initial  -10 5 0 -1 0 

Table 3. Relative orientation parameters using collinearity 
 
Additionally, the epipolar lines of the same corresponding points 
used to run coplanarity are calculated using equations 11-15 as 
shown previously in Figure 8. 
 
C- Using the fundamental matrix 
The first step here is to consider the homogenous coordinates of 
the points by adding 1’s to the image pixel coordinates. 
Then find the transformation that normalizes the image points 
which can be achieved by  

1. Find the mean of the interest points 
2. Find the distance of the image points from their mean 
3. Normalize all the image points using the mean and 

distance 
4. Find the transformation for normalizing points 

 
Accordingly, two matrices T1 and T2 will be found: 
 

𝑇𝑇1 = �
0.00127 −1.1957

0.00127 −1.4552
1

� ,𝑇𝑇2 = �
0.00111 −1.2192

0.00111 −1.5411
1

� 

 
Then, using Linear Least Squares, solve for an initial estimate of 
the Fundamental Matrix by determining the SVD of A matrix of 
equation 17 and selecting the last eigenvector. Denormalizing 
and conditioning the Fundamental Matrix to enforce the rank 
constraint (Sarkar, 2016). Table 4 illustrates the numerical steps 
of the solution. 
 

 
Table 4. The normalized image correspondences and the 
fundamental matrix derivation. 
 
The final fundamental matrix computed is 
 

𝐹𝐹 = �
      9.8137 × 10−8   1.6743 × 10−7    0.0012553
−2.9586 × 10−7 7.8773 × 10−8 −0.0006930
−0.0012355 0.001064 1

� 

 
Furthermore, the epipolar lines of the same corresponding points 
are calculated as shown in Figure 11 where they indicate a similar 
solution to one shown using the coplanarity equations. 

 
Figure 11. The image point correspondences and the associated 

epipolar lines on the stereo images using the fundamental 
matrix – test 1. 

 
The E matrix is then decomposed into rotation and translation as 
shown in Table 5. 

 𝜔𝜔deg 𝜑𝜑deg 𝑘𝑘deg 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏 
Using E    8.7081 -9.5799 6.5027 -1.1751 0.5239 

Table 5. Relative orientation parameters using E matrix. 
 
As mentioned in section 2 of the methodology, the distance 
between 12 image points that are not counted for the 
computations and the corresponding derived epipolar lines are 
computed to assess the performance of the three presented 
techniques (Figure 12). 
 

 
Figure 12. Bar plots of the distance differences– test 1. 

   
To visualize the distance differences, Figure 13 is prepared to 
show three points to their associated epipolar lines. On the left, 
the differences are visible of ≅7 pixels using collinearity and 
coplanarity while around half-pixel on the right using the 
fundamental matrix.  

  
Figure 13. The epipolar lines to points distances are visible 

using the coplanarity and collinearity methods (left) compared 
to the distances found using the F matrix (right). 

Normalized correspondences Normalized correspondences
left image right image SVD
(T1*P1) (T2*P2) A matrix in equation 17 f elements

0.74420 0.19085 1 0.00737 0.88884 1 0.00549 0.00141 0.00737 0.66148 0.16964 0.88884 0.74420 0.19085 1 0.02553
1.95370 -0.24045 1 1.23990 0.62191 1 2.42250 -0.29814 1.23990 1.21510 -0.14954 0.62191 1.95370 -0.24045 1 0.04350
0.74433 -0.19961 1 0.06280 0.51715 1 0.04674 -0.01254 0.06280 0.38493 -0.10323 0.51715 0.74433 -0.19961 1 0.50560
2.43150 0.45812 1 1.71390 1.43560 1 4.16740 0.78518 1.71390 3.49070 0.65769 1.43560 2.43150 0.45812 1 -0.07629
2.36390 0.53598 1 1.64520 1.50540 1 3.88920 0.88181 1.64520 3.55870 0.80689 1.50540 2.36390 0.53598 1 0.02066
0.57462 0.06459 1 -0.14162 0.75919 1 -0.08138 -0.00915 -0.14162 0.43625 0.04904 0.75919 0.57462 0.06459 1 -0.28949
1.17040 0.24878 1 0.42785 0.98763 1 0.50074 0.10644 0.42785 1.15590 0.24570 0.98763 1.17040 0.24878 1 -0.44038
3.55820 0.02191 1 2.63810 1.01950 1 9.38680 0.05779 2.63810 3.62750 0.02234 1.01950 3.55820 0.02191 1 0.38847

-0.26779 0.61614 1 -1.11570 1.26750 1 0.29877 -0.68741 -1.11570 -0.33942 0.78095 1.26750 -0.26779 0.61614 1 0.55401
1.60420 -0.49671 1 0.92995 0.33806 1 1.49180 -0.46192 0.92995 0.54230 -0.16792 0.33806 1.60420 -0.49671 1 F 
2.49980 -0.17701 1 1.71380 0.71749 1 4.28420 -0.30337 1.71380 1.79360 -0.12701 0.71749 2.49980 -0.17701 1 0.025525 0.043497 0.505600
1.90640 -1.29610 1 1.28700 -0.32102 1 2.45360 -1.66810 1.28700 -0.61199 0.41607 -0.32102 1.90640 -1.29610 1 -0.076292 0.020655 -0.289490
2.18160 -0.40172 1 1.45090 0.48718 1 3.16530 -0.58285 1.45090 1.06280 -0.19571 0.48718 2.18160 -0.40172 1 -0.440380 0.388470 0.554010
1.20920 -0.33459 1 0.53847 0.44370 1 0.65114 -0.18017 0.53847 0.53654 -0.14846 0.44370 1.20920 -0.33459 1
2.39260 -0.66840 1 1.66030 0.27456 1 3.97240 -1.10970 1.66030 0.65692 -0.18352 0.27456 2.39260 -0.66840 1

Denormalizing the Fundamental Matrix Conditioning the Fundamental Matrix to enforce the rank constraint
F=F/F(3,3)  F = T2'*F_conditioned*T1 F_conditioned =

9.81E-08 1.67E-07 1.26E-03 3.566E-08 6.083E-08 4.561E-04 0.02538 0.04329 0.50563
-2.96E-07 7.88E-08 -6.93E-04 -1.075E-07 2.862E-08 -2.518E-04 -0.07650 0.02037 -0.28945
-1.24E-03 1.06E-03 1.00E+00 -4.489E-04 3.866E-04 3.633E-01 -0.44035 0.38851 0.55401
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3.2 Second test 
The second test is applied on two aerial images taken by the Leica 
City Mapper camera. The camera parameters are: 

• focal length =83 mm 
• pixel size= 5.2 µm 
• format size= 10336×7788 pixels 

 
The ten image correspondences in pixels are shown in Table 6 

 
Table 6. Image point correspondences – test 2 

 
A- Using coplanarity equations 
Similar to the first test,  start the solution using the coplanarity 
equations given 10 homologous image points. Accordingly, the 
solution is applied and iterated until converged to insignificant 
correction values.   
The nonlinear least-squares adjustment continues and stops when 
the corrections are negligible (<10−5) as shown in Figure 14. 

 
Figure 14. The convergence of the relative orientation 

parameters corrections using coplanarity in test 2.  
 
Table 7 summarizes the final relative orientation parameters 
using coplanarity equations. 

 𝜔𝜔deg 𝜑𝜑deg 𝑘𝑘deg 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏 
Adjusted −8.816

× 10−2 
1.697
× 10−2 

−1.032
× 10−2 59.5893 0.2408 

𝜎𝜎 ±6.57
× 10−4 

±3.85
× 10−4 

±9.68
× 10−5 ±7.1702 ±0.0440 

Initial 0 0 0 1 0 
Table 7. Relative orientation parameters using coplanarity – test 
2 
 
Furthermore, the epipolar lines of the same corresponding points 
of Table 1 are calculated using equations 6-10 as shown in Figure 
15. 

 
Figure 15. The image point correspondences and the epipolar 

lines on the stereo aerial images using photogrammetric 
coplanarity or collinearity equations – test 2. 

 
B- Using collinearity equations 
Using collinearity equations, the solution is applied and iterated 
until converged to insignificant correction values.    
The nonlinear least-squares adjustment continues and stops when 
all the corrections are negligible (<10−5) as shown in Figure 16. 

 
Figure 16. The convergence of the relative orientation 

parameters corrections using collinearity– test 2.  
 
As logically expected, the same parameter values are estimated 
using the coplanarity equations as shown in Table 8. 
Additionally, the epipolar lines of the same corresponding points 
used to run coplanarity are calculated using equations 11-15 as 
shown in Figure 15. 
 

 𝜔𝜔deg 𝜑𝜑deg 𝑘𝑘deg 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏 
Adjusted −8.879

× 10−2 
1.719
× 10−2 

−1.032
× 10−2 59.5204 0.24013 

𝜎𝜎 ±6.58
× 10−4 

±3.85
× 10−4 

±9.70
× 10−5 ±7.1675 ±0.0436 

Initial 0 0 0 1 0 

Table 8. Relative orientation parameters using collinearity– test 
2. 
 
C- Using the fundamental matrix 
Find the transformation that normalizes the image points. 
Accordingly, two matrices T1 and T2 will be found: 
 
𝑇𝑇1 = �

5.9961 × 10−4 −0.78153
5.9961 × 10−4 −1.4297

1
� , 𝑇𝑇2 = �

6.1169 × 10−4 −1.1049
6.1169 × 10−4 −1.7671

1
� 

 

Then, using Linear Least Squares, solving the fundamental 
matrix is 

𝐹𝐹 = �
      4.4806 × 10−11   −9.0602 × 10−8     −0.0029758

9.0433 × 10−8 −2.2347 × 10−12 −0.00069393
0.0028345 0.00069267 1

� 

 
Furthermore, the epipolar lines of the same corresponding points 
are calculated as shown in Figure 17 where they indicate a similar 
solution to one shown using the coplanarity equations. 

 
Figure 17. The image point correspondences and the associated 

epipolar lines on the stereo images using the fundamental 
matrix in test 2. 

As noted in section 2 of the methodology, the distance between 
39 image points that are not counted for the computations and the 
corresponding derived epipolar lines are computed to assess the 
performance of the three presented techniques (Figure 18). 

 

Figure 18. Bar plots of the distance differences – test 2 

 x left y left x right y right 

point 1 3556.108 353.049 3531.743 1886.107 

point 2 4925.915 2226.046 4899.958 3765.610 

point 3 4651.606 1565.489 4626.512 3097.389 

point 4 1003.965 1832.618 982.438 3363.495 

point 5 1138.639 383.015 1116.408 1916.129 

point 6 2285.525 1983.704 2262.830 3514.305 

point 7 1738.772 1761.984 1716.222 3293.560 

point 8 1787.852 1434.615 1765.327 2966.638 

point 9 5127.784 1651.893 5101.955 3189.943 

point 10 844.961 994.823 823.095 2526.558 
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To visualize the distance differences, Figure 19 is prepared to 
show three points to their associated epipolar lines. On the left, 
the differences are visible of ≅ 0.46 pixels using collinearity and 
coplanarity while ≅ 0.37 on the right using the fundamental 
matrix.  

  
a)     b) 

Figure 19. The epipolar lines to points distances – test 2. a) 
using the coplanarity and collinearity methods. b) using the F 

matrix (right). 
 

4. DISCUSSION AND CONCLUSION 

This paper introduced a clear computational description for the 
new learners of the photogrammetry field in terms of computing 
the epipolar geometry for a stereo pair of images. Three 
mathematical techniques are explained using coplanarity, 
collinearity, and fundamental matrix. 
From the experiments applied in section 3, we noticed that 
collinearity and coplanarity are identical to give similar relative 
orientation results. Both methods are solved using nonlinear 
least-squares adjustment and must start from reliable initial 
values. This is can be considered as a disadvantage compared to 
the direct solution following a computer vision-based solution 
using the fundamental matrix. Furthermore, using the 
fundamental matrix approach, we didn’t have to know the camera 
parameters to solve the epipolar geometry. 
In terms of minimum data required to solve the relative 
orientation problem, at least 5 matching image points are required 
for running the coplanarity and collinearity equations while at 
least 7 points are required to estimate the fundamental matrix. 
However, using the current keypoints detectors can result in 
thousands of valid points which means there will be always a 
wealth of points to run the orientation problem. This is can be 
useful to select the points spreading all over the images to ensure 
a geometrical robust solution when possible. 
On other hand, from both coplanarity and collinearity models, it 
is feasible to estimate the uncertainty in the computed parameters 
as shown in Tables 2 and 3 in the first test and apply further 
statistical analysis for blunder detection and analyze the goodness 
of the least-squares adjustment of relative orientation. What is 
noticed about collinearity is the sensitivity to the proper initial 
values compared to coplanarity and this is can be related to the 
high number of parameters to be estimated when running 
collinearity which also requires the estimation of the object point 
XYZ coordinates.  
As shown in Figure 12 of the first test, the Fundamental matrix 
resulted in a higher accuracy to represent the epipolar geometry 
compared to the coplanarity and collinearity equations. This 
result indicated that the presented technique to reconstruct the 
epipolar geometry using coplanarity and collinearity models is 
more vulnerable to rotational variations. As a final conclusion, if 
the uncertainty indexes are required in the image orientation, then 
collinearity and coplanarity are the preferred methods. On the 
other hand, when the aim is to have a robust direct solution 
regardless of the prior knowledge about the camera parameters 
then the fundamental matrix is the preferred solution. Future 
work can be applied to illustrate more comparisons about 
multiview stereo vision and the bundle adjustment in both fields 
of photogrammetry and computer vision.    
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